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where T > 0 is the temperature.

Thus, Pn(σ) = Wn(σ)/Zn(h,T ), where

Zn(h,T ) =
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Wn(σ) =
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σ

e−Hn(σ)/T .

Zn(h, t) is called the Partition function.
It governs the physical properties of the Ising model on Γn.

An obvious danger occurs at those values of h,T for which
Zn(h,T ) = 0. Luckily, this never happens for h,T ∈ R.
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∑
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= ad(t)z
d + ad−1(t)z

d−1 + · · ·+ a1−d(t)z
1−d + a−d(t)z

−d ,

where d = |En|.

Since I (−σ) = I (σ) and M(−σ) = −M(σ) we have that Zn is
symmetric under z 7→ 1/z :

ai (t) = a−i (t)

Fundamental symmetry of the Ising model!
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∗ Zn(z , t) = 0 has 2|En| roots zi (t) ∈ C.

Free energy:

Fn(z , t) := −T logZn(z , t) = −T

∑
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Magnetization:

Mn(z , t) :=
∑

σ

M(σ)P(σ) = z

∑ 1

z − zi (t)
−|En|
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The Lee-Yang Theorem

Physical values of T > 0 correspond to t ∈ (0, 1), and the physical values
of h ∈ R correspond to z ∈ (0,∞).

Theorem (Lee-Yang, 1952)
At any fixed t ∈ [0, 1], then all complex zeros of Zn(z , t) lie on the unit

circle |z | = 1.

Physical values of z

z = 1

Extensions of this theorem are contemporary mathematics:
D. Ruelle. Characterization of Lee-Yang polynomials. Ann. of Math. (2010).

J. Borcea and P. Brändén The Lee-Yang and Pólya-Schur programs. I. Linear
operators preserving stability. Invent. Math. (2009).
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The thermodynamic limit exists for the sequence Γn if

1

|En|
Fn(z , t) → F (z , t)

for any z ∈ R+ and t ∈ (0, 1).

For each t ∈ [0, 1] there is a measure µt on T describing the
asymptotic distribution of Lee-Yang zeros.
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dµt(φ)
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, andφ = arg(z).

A phase transition occurs at any place where F (z , t) depends
non-analytically on (z , t).

E.g. for small t, M(z , t) has a jump of twice ρt(0) as z changes
from negative to positive.

Understanding how the Lee-Yang distributions µt(φ) vary with t

and φ is essential to understanding phase transitions of the model.
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b bb

aa a

Γn

Γ0 Γ2Γ = Γ1

The Diamond Hierarchical Lattice (DHL).

Γn is obtained by replacing each edge of generating graph Γ (a
diamond) with a copy of Γn−1, considering the marked vertices a
and b as the “endpoints” of Γn−1.
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and Ψ is some degree 2 rational map.
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Renormalization on the Lee-Yang cylinder

Let C := {(z , t) : |z | = 1, t ∈ [0, 1]} be the Lee-Yang cylinder.

One can check that R(C) = C.

Let Sn ⊂ C denote the Lee-Yang zeros for Γn.

◮ S0 := {z2 + 2tz + 1 = 0} ∩ C.

◮ for n ≥ 1 we have Sn+1 = R−1
|C Sn.

It is this recursive relationship between Sn+1 and Sn that makes a
study of the Lee-Yang zeros tractable for hierarchical lattices.
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R has two points of indeterminacy α± = (±i , 1) ∈ T .

Points approaching α+ or α− at angle ω with respect to the
vertical are mapped by R to (2ω, sin2 ω).

ω

α+α− π−π

0

1

G

R

0

(2ω, sin2(ω))
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Let B ⊂ C be the circle at t = 0:

◮ R|B : z 7→ z4.

◮ B is transversally superattracting, with t ′ = O(t2).

◮ Basin of attraction W s(B) is an open neighborhood of B.

◮ Collapsing intervals φ = ±π/2 and all preimages in W s(B).

Let T ⊂ C be the circle at t = 1:

◮ R|T : z 7→ z2.

◮ T is non-uniformly transversally superattracting. If τ = 1 − t,
then τ ′ = O(τ2/ cos2 φ).

◮ indeterminate points α± allow points arbitrarily close to T to
be sent arbitrarily close to B under a single iterate.

◮ Let W s(T ) be the basin of attraction of T . Has positive
Lebesgue measure.



Numerical Experiment

tc

2π0

t

0

1

π
2

φ 3π
2

Ws(B) is colored blue and Ws(T ) is colored orange.
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Theorem (Bleher, Lyubich, R)

R : C → C is partially hyperbolic.

That is:

1. We have a horizontal tangent conefield K(x) and a vertical linefield
L(x) ⊂ TxC depending continuously on x and invariant under DR:

DR(K(x))

C

K(R(x))

K(x)
L(x)

L(R(x)) = DR(L(x))
x

R(x)

2. Horizontal tangent vectors v ∈ K(x) get exponentially stretched
under DRn at a rate that dominates any occasional expansion of
tangent vectors in L(x).

The idea of this proof that this conefield is invariant seems to play a role in the
recent work of Dang-Grigorchuk-Lyubich about the Basilica IMG.
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Dynamical results II

Proposition (BLR)

R has a unique invariant central foliation Fc .
(Obtained by integrating L(x)).

Proposition (BLR,Kaschner-R)

Fc has C∞ (but not real analytic) regularity within Ws(B).

Theorem (BLR)

Almost every point on C is in Ws(T ) or in Ws(B).

◮ Ws(T ) has positive measure,

◮ Ws(B) is open and dense.

This is the “intertwined basins” phenomenon studied by Kan-Yorke,
Bonifant-Milnor, Ilyashenko-Kleptsyn-Saltykov....
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Physical Results

For t ∈ [0, 1) the holonomy transformation gt : B → T× {t}
obtained by flowing along Fc .

C B

T

Fc

x

gt(x) T× {t}

Theorem (BLR)

The asymptotic distribution of Lee-Yang zeros at a temperature
t0 ∈ [0, 1) is given by under holonomy by µt = (gt)∗(µ0) where µ0

be the Lebesgue measure on B.
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Idea: Map forward a horizontal line Pt0 := {t = t0} under Rn, then project
vertically onto P0. Sends the circle St0 := Pt0 ∩ C to the circle S0.

π ◦ RnSt0

Rn(St0)

Pt0

P0

S0

St0

C

Use complex extension to prove that π ◦ Rn : St0 → S0 is expanding.

Problem controlling the degrees of the curves Rn(Pt0):
deg(Rn(Pt0)) > 4n, but only wraps around the cylinder 4n times.

Algebraic instability: 4n < deg(Rn) < (deg(R))n = 6n.
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R : [U : V : W ] → [(U2 + V 2)2 : V 2(U +W )2 : (V 2 +W 2)2].

Ψ induces a conjugacy4 between R : C → C and R : C → C , where
C = Ψ(C) is some appropriate Möbius band.

R is algebraically stable, satisfying deg(Rn) = (degR)n = 4n.

Coincides with degree of Rn : C → C , it is “safer” to work with R .

Original idea actually works in these coordinates!
4except on B, where it is 2 - 1.
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2 : w = ū, |u| ≥ 1}.

in CP
2.
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Horizontal circle St0 becomes St0 = {|u| = t−1
0 } = Ψ(St0).

Vertical projection π becomes radial projection pr(u,w) = w/u out
to the line at infinity P0.

We will show that pr ◦ Rn : Pt0 → P0 expands that circle St0 .
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Proof of horizontal expansion, part IV

Suffices to parameterize Pt0 by Ψ : Pt0 → Pt0 and show that

pr ◦ Rn ◦Ψ : Pt0 → P0

expands that circle St0 .

We have:

ψn(z) := pr ◦ Rn ◦Ψ(z , t0) =
Wn(z , t0)

Un(z , t0)
,

where Wn and Un are the conditional partition functions from the
derivation of R .

Claim: ψn : C → C is an Blaschke product preserving the unit disc
D, expanding the circle T = ∂D by a factor of 2n+1.
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−M(σ)
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−
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d + · · ·+ a

−

−d(t)z
−d .

Remarks:

1. Fundamental symmetry of the Ising model under z 7→ 1/z becomes:

a
+
i (t) = a

−

−i (t) for each i = −d . . . d

2. Since Γn has valence 2n at marked vertices a and b we have

a
−

i (t) = 0 for i < −4n + 2n+1

Reason for 2: With −1 spins at the marked vertices a, b, we can’t get more

than 4n − 2n+1 edges with ++, so M(σ) ≤ 4n − 2n+1 .
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Proof of horizontal expansion, part IV

Factor Un(z) ≡ Un(z , t0) and Wn(z) ≡ Wn(z , t0) as

Wn(z) = z−4n+2n+1
∏

(z − bi )

Un(z) = z−4n
∏

(1 − biz) = z−4n
∏

(1 − biz)

We find that

ψn(z) =
Wn(z)

Un(z)
= z2n+1

∏ z − bi

1 − biz

is a Blaschke product with 2n+1 zeros at z = 0.
Are the other zeros bi within the unit disc D?
If yes, then ψn(z) is a Blaschke product that expands the circle T

by at least 2n+1

so we’d be done!
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Theorem (Bleher, Lyubich, R)

Consider a ferromagnetic Ising model on a connected graph Γ and
let σS ≡ −1 on a nonempty subset S of the vertex set V .
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Theorem (Bleher, Lyubich, R)

Consider a ferromagnetic Ising model on a connected graph Γ and
let σS ≡ −1 on a nonempty subset S of the vertex set V .
Then, for any temperature t ∈ (0, 1) the Lee-Yang zeros z−i (t) of
the conditional partition function ZΓ|σS

lie inside the open disc D.



Thank you for listening!
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