Singular coherent structures in 2D Euler equation and hydrodynamic limits

Joonhyun La
KIAS
joonhyun@kias.re.kr
July 25, 2023

Singular solutions of 2D incompressible Euler equations

$$
\begin{aligned}
\partial_{t} \omega+u \cdot \nabla_{x} \omega & =0 \\
u & =\nabla^{\perp} \Delta^{-1} \omega .
\end{aligned}
$$

- (Generalized) Yudovich solutions $\omega \in L^{\infty}$: globally well-posed.
- Diperna-Majda solutions $\omega \in L^{p}$: global existence.
- Weak solutions.

Singular solutions of 2D incompressible Euler equations

- Q1. What can we say about the behavior of singular solutions?
- Propagation of certain structures? Singular vortices?
- Q2. Can we derive singular solutions as limits?
- Limits of smooth solutions/ vanishing viscosity limit/etc.
- Macroscopic limit of solutions of Boltzmann equation.

Transport equation

$$
\left\{\begin{align*}
\partial_{t} \theta+u \cdot \nabla_{x} \theta & =0 \tag{Tr}\\
\left.\theta\right|_{t=0} & =\theta_{0}
\end{align*}\right.
$$

- Associated ODE:

$$
\left\{\begin{aligned}
\frac{d}{d t} \phi(x, t) & =u(\phi(x, t), t) \\
\phi(x, 0) & =x
\end{aligned}\right.
$$

Transport equation

- Condition for uniqueness: Osgood.
- $L:\left(0, m_{L}\right) \rightarrow \mathbb{R}^{+}$: modulus of continuity.

$$
\begin{aligned}
|u(x, t)-u(y, t)| & \leq\|u\|_{L} L(|x-y|) \\
\lim _{z \rightarrow 0+} \mathcal{M}(z) & =\infty \\
\mathcal{M}(z) & :=\int_{z}^{m_{L}} \frac{d r}{L(r)} .
\end{aligned}
$$

- Osgood's lemma:

$$
-\mathcal{M}(|\phi(x, t)-\phi(y, t)|) \leq-\mathcal{M}(|x-y|)+\int_{0}^{t}\|u(s)\|_{L} d s .
$$

Transport equation

- u Lipschitz: $L(z)=z, \mathcal{M}(z)=\log _{+}(1 / z)$.
- $u \log$-Lipschitz: $L(z)=z \log (1 / z), \mathcal{M}(z)=\log \log _{+}(1 / z)$.
- $L(z)=z \log (1 / z) \log _{2}(1 / z) \cdots \log _{n}(1 / z), \mathcal{M}(z)=\log _{n+1}(1 / z)$.

Transport equation

- For Osgood u, unique integrable solution to (Tr) (Ambrosio and Bernard 2008, Caravenna and Crippa 2021):

$$
\theta(x, t)=\theta_{0}\left(\phi^{-1}(x, t)\right)
$$

(Flow)

- Not much quantitative information about θ.
(EX: Loss of regularity below Lipschitz)
- Certain singular features propagate by Osgood vector fields.

Propagation of singular structures

Theorem (Drivas, Elgindi, L. 2022)

Let $L:\left(0, m_{L}\right) \rightarrow \mathbb{R}^{+}$be Osgood(i.e. $\left.\mathcal{M}(0+)=\infty, \mathcal{M}(z)=\int_{z}^{m_{L}} \frac{d r}{L(r)}\right)$, u div-free with modulus of continuity L. Define the seminorm by

$$
[f]_{x, \gamma, L}=\lim _{r \rightarrow 0+} \sup _{y: 0<|x-y|<r} \frac{|f(x)-f(y)|}{\mathcal{M}(|x-y|)^{\gamma}}, \gamma \in \mathbb{R} .
$$

Then $\theta=\theta_{0}\left(\phi^{-1}(x, t)\right)$ defined by (Flow) preserves the seminorm:

$$
[\theta(t)]_{\phi(x, t), \gamma, L}=\left[\theta_{0}\right]_{x, \gamma, L} .
$$

- $\gamma>0$: singularities, $\gamma<0$: cusps.
- Chae and Jeong (2020): preservation of logarithmic cusps for Lipschitz drifts.

Propagation of singular structures

- Certain singular structures keep their shape.

Theorem (Drivas, Elgindi, L. 2022)

Let L and \mathcal{M} as before (L Osgood, $\mathcal{M}(z)=\int_{z} \frac{d r}{L(r)}$.) Let F be a smooth function with at most linear growth at infinity $\left(\sup _{|z| \geq 1}\left|F^{\prime}(z)\right|<\infty\right)$. If θ_{0} has the form

$$
\theta_{0}(x)=F\left(\mathcal{M}\left(\left|x-x_{0}\right|\right)\right)+b_{0}, b_{0} \in L^{\infty}
$$

near $x=x_{0}$, then $\theta(x, t)$ given by (Flow) has the form

$$
\theta(x, t)=F\left(\mathcal{M}\left(\left|x-\phi\left(x_{0}, t\right)\right|\right)\right)+b, b \in L^{\infty}
$$

near $x=\phi\left(x_{0}, t\right)$.

Propagation of singular structures

- What kinds of shape can propagate?
- $\mathcal{M}\left(\left|x-x_{0}\right|\right), \sqrt{\mathcal{M}\left(\left|x-x_{0}\right|\right)}, \log \left(\mathcal{M}\left(\left|x-x_{0}\right|\right)\right)$, etc.
- Pathological shape: $F(z)=\sin (\lambda z), \lambda>0$ small. $\theta(x, t)$ changes signs like Topologist's sine curve as $x \rightarrow \phi\left(x_{0}, t\right)(t \leq T)$.
- Even more singular (i.e. superlinear F)? It seems to be sharp: if F grows faster, $b \notin L^{\infty}$.

Propagation of singular vortices in 2D Euler equations

- Application: 2D incompressible Euler, singular initial data.
- Singular vortex $\mathcal{M} \rightarrow u$ (Biot-Savart). BUT, modulus of continuity for u worse than $L=-1 / \mathcal{M}^{\prime}$.
- Cancellation from radial symmetry of \mathcal{M}.

Propagation of singular vortices in 2D Euler equations

- $\omega=\mathcal{M}$ in generalized Yudovich space: $\|\omega\|_{L^{p}}$ grows mildly in p.
- $\Theta:[1, \infty) \rightarrow \mathbb{R}^{+}, \int_{1}^{\infty} \frac{d p}{p \Theta(p)}=\infty$.

$$
Y_{\Theta}:=\left\{f \in \cap_{p \in[1, \infty)} L^{p}:\|f\|_{Y_{\Theta}}:=\frac{\|f\|_{L^{p}}}{\Theta(p)}<\infty\right\}
$$

- Modulus of continuity:

$$
|u(x, t)-u(y, t)| \lesssim|x-y| \log (1 /|x-y|) \Theta(\log (1 /|x-y|))
$$

- Existence and uniqueness in Y_{Θ} (Yudovich 1995, Serfati 1994.)

Propagation of singular vortices in 2D Euler equations

- L : Osgood, $z \log (1 / z) \lesssim L(z), \mathcal{M}(z)=\int_{z} \frac{d r}{L(r)}$.
- $\mathcal{M}(z)=\log \log _{+}(1 / z), \log _{3}(1 / z), \cdots$.
- $\omega=\mathcal{M}\left(\left|x-x_{0}\right|\right)$ propagates in 2D Euler equations.

Theorem (Drivas, Elgindi, L. 2022)

Let $\Theta(p)=\log _{k}(p), k \geq 0, L, \mathcal{M}$ as above, $b_{0} \in Y_{\Theta} \cap L^{1}$, $f \in L_{\text {loc }}^{1}\left(\mathbb{R} ; Y_{\Theta} \cap L^{1}\right)$,

$$
\omega_{0}(x)=\mathcal{M}(|x|)+b_{0}(x) .
$$

Then there is $b: L_{\text {loc }}^{\infty}\left(\mathbb{R} ; Y_{\Theta} \cap L^{1}\right), \phi_{*}(t): \mathbb{R} \rightarrow \mathbb{R}^{2}$ such that

$$
\omega(x, t)=\mathcal{M}\left(\left|x-\phi_{*}(t)\right|\right)+b(x, t) .
$$

- Meaningful only when \mathcal{M} is more singular than b.

Propagation of singular vortices in 2D Euler equations

Sketch of the proof.

We find governing equation for ϕ_{*} and b.
Ansatz: assume b and ϕ_{*} as above.

$$
\omega(x, t)=\omega_{s}(x, t)+b(x, t), \omega_{s}(x, t)=\mathcal{M}\left(\left|x-\phi_{*}(t)\right|\right) .
$$

$u_{r}:=-\nabla^{\perp}(-\Delta)^{-1} b, u_{s}:=-\nabla^{\perp}(-\Delta)^{-1} \omega_{s}$: Osgood.
Key observation: ω_{s} radial, u_{s} circular, so $u_{s} \cdot \nabla_{x} \omega_{s}=0$.

$$
\begin{aligned}
\left(\partial_{t}+u \cdot \nabla_{x}\right) \omega_{s} & =\left(\partial_{t}+u_{r} \cdot \nabla_{x}\right) \omega_{s}
\end{aligned}=\left(\partial_{t}+u_{r} \cdot \nabla_{x}\right)\left(\left|x-\phi_{*}(t)\right|\right) \mathcal{M}^{\prime} . ~=~ \frac{d}{d t} \phi_{*}(t)=u_{r}\left(\phi_{*}(t), t\right), \phi_{*}(0)=0 \Rightarrow\left(\partial_{t}+u \cdot \nabla_{x}\right) \omega_{s}=0 .
$$

Then equation for b can be written.

Propagation of singular vortices in 2D Euler equations

- Remark 1. Multiple singular vortices.

$$
\omega_{0}(x)=\sum_{i=1}^{N} \gamma_{i} \mathcal{M}\left(\left|x-x_{0}^{i}\right|\right)+b_{0}(x)
$$

Evolution of center excludes self-interaction.

$$
\begin{aligned}
\frac{d}{d t} \phi_{j}(t) & =-\nabla_{x}^{\perp}(-\Delta)^{-1}\left[\sum_{i \neq j} \gamma_{i} \mathcal{M}\left(\left|x-\phi_{i}(t)\right|\right)+b(x, t)\right] \circ \phi_{j}(t) \\
\phi_{j}(0) & =x_{0}^{j}
\end{aligned}
$$

- cf. Vortex-wave system (point vortices + perturbation). Point vortices do NOT solve Euler since too singular (Schochet 1996), while the above are actual solutions.
- Remark 2. Is $\log \log { }_{+}$the most singular vortex? (Open).

Propagation of possible nonuniqueness

- 2D Euler with $\omega_{0} \in L^{p}, 1 \leq p<\infty$.
- Diperna and Majda(1987): global existence.
- Vishik(2018): non-uniqueness with forcing.
- Let $\omega_{1}(t), \omega_{2}(t)$ be two solutions from $\omega_{0} \in L^{p}$. How different are they?
- Non-uniqueness "propagates" with speed $\|u\|_{L^{\infty}}$ for $p>2$.

Propagation of possible nonuniqueness

Theorem (Drivas, Elgindi, L. 2022)

(1) Let $u_{1}, u_{2} \in C\left([0, T) ; W^{1, p}\right)$ be two distinct weak solutions to $2 D$ velocity-Euler with $u_{1}(0)=u_{2}(0)$. Then $u_{1}-u_{2}$ cannot be smooth.
(2) Let $\omega_{0} \in L^{1} \cap L^{p}$, smooth away from origin. Let ω_{0}^{ϵ} be regularized data, which are uniformly smooth away from $B_{1}(0)$, and let ω^{ϵ} be corresponding solution.
Let ω_{*} be a subsequential limit of $\omega^{\epsilon}, \epsilon \rightarrow 0$. Then ω_{*} is a weak solution to $2 D$ Euler equation, which is smooth outside of $B_{1+C t}(0)$ where $C=\sup _{\epsilon}\left\|u^{\epsilon}\right\|_{L^{\infty}}$.

Singular Euler solutions as limits

- Singular solutions: limit of regular solutions.
- Limit of regular Euler solutions (e.g. Crippa, De Lellis 2008)
- Vanishing viscosity limit (e.g. Constantin, Drivas, Elgindi 2020)
- Macroscopic limits of smaller scale description of fluids?

Singular Euler solutions as limits of Boltzmann

- Hilbert's sixth problem (1900): developing limiting processes between physical models of different scales.
- Ruling out small scale fluctuations by averaging.
- If fluids are not regular, the limiting process becomes nontrivial.

Kinetic description: Boltzmann equation

- $\partial_{t} F+v \cdot \nabla_{x} F=Q(F, F)$.
- (Hard-sphere) Collision $Q(F, F)(v)$

$$
Q(F, G)(v)=\frac{1}{2} \int_{\mathbb{R}^{3} \times \mathbb{S}^{2}}\left|\left(v-v_{*}\right) \cdot \sigma\right|\left(F_{v^{\prime}} G_{v_{*}^{\prime}}-F_{v} G_{v_{*}}\right) \mathrm{d} v_{*} \mathrm{~d} \sigma .
$$

$\left(v^{\prime}, v_{*}^{\prime}\right) \rightarrow\left(v, v_{*}\right)$ after collision, σ : collision cross-section.

- (local) Maxwellian: R density, U velocity, Θ temperature.

$$
M_{R, U, \Theta}(v)=\frac{R}{(2 \pi \Theta)^{\frac{3}{2}}} \exp \left(-\frac{|v-U|^{2}}{2 \Theta}\right)
$$

Non-dimensionalization

- Non-dimensionalize, take the limit.
- Two non-dimensional numbers
- St $:=\frac{\text { macroscopic length }}{\text { microscopic length }}$
- $\mathrm{Kn}:=\frac{\text { mean free path length }}{\text { macroscopic length }}:$ frequency of collision.
- Non-dimensionalized Boltzmann equation:

$$
\operatorname{St} \partial_{t} F+v \cdot \nabla_{x} F=\frac{1}{\mathrm{Kn}} Q(F, F)
$$

- $\mathrm{Ma}:=\frac{(\text { macroscopic) velocity scale }}{(\text { microscopic) velocity scale }}=\mathrm{St}$.
- $\frac{1}{\mathrm{Re}}=\frac{\mathrm{Kn}}{\mathrm{Ma}}$ (Von Karman).

Hydrodynamic limit

- More collisions $\mathrm{Kn} \rightarrow 0$: averages representative of the distribution (hydrodynamic regime).
- Ma $\ll 1$: macroscopic velocity \ll particle velocity - incompressible regime.
- $\mathrm{Ma}=\mathrm{Kn} \rightarrow 0$: incompresible Navier-Stokes.
- $\mathrm{Kn} \ll \mathrm{Ma} \rightarrow 0$: incompressible Euler.

Hydrodynamic limit

- $\varepsilon=\mathrm{St}=\mathrm{Ma} \rightarrow 0, \kappa=\kappa(\varepsilon)=\frac{1}{\mathrm{Re}} \rightarrow 0$ for

$$
\varepsilon \partial_{t} F^{\varepsilon}+v \cdot \nabla_{x} F^{\varepsilon}=\frac{1}{\varepsilon \kappa} Q\left(F^{\varepsilon}, F^{\varepsilon}\right)
$$

- Goal: $\frac{1}{\varepsilon} \int_{\mathbb{R}^{3}} v F^{\varepsilon}(x, t, v) \mathrm{d} v \rightarrow u(x, t)$.
- $x \in \mathbb{T}^{2}$ (symmetric in z direction).

Hydrodynamic limits toward Euler equation

- Hilbert expansion: perturbative method.
- Singular limit $(\kappa \rightarrow 0)$: use the local Maxwellian $\mu:=M_{1, \varepsilon u, 1}$
- $F^{\varepsilon}=\mu+\varepsilon f_{R} \sqrt{\mu}+$ (correctors).
- We ask $\lim _{\varepsilon \rightarrow 0} f_{R}=0: \frac{1}{\varepsilon} \int v F^{\varepsilon}=u+\int v f_{R} \sqrt{\mu}+\cdots$.
- Stability estimate of f_{R}.

Hydrodynamic limits toward Euler equation

- Regularity requirements for u :
- Relative entropy (Saint-Raymond 2003): $\nabla_{x} u \in L_{t}^{1} L_{x}^{\infty}$ needed, $\frac{1}{\varepsilon} \int v F^{\varepsilon} \rightarrow u$ weakly.
- L^{2} stability of $f_{R}: u \in L_{t}^{2} H_{x}^{k}$ needed, $\frac{1}{\varepsilon} \int v F^{\varepsilon} \rightarrow u$ strongly in L^{2}.
- H^{k} stability of f_{R} : higher regularity for u needed, stronger convergence.

Issues

(1) Not enough regularity: $\nabla_{x} u \notin L^{\infty}$.
(2) Singular structures only observable in stronger topology (e.g. interfaces in vortex patch)
(3) Viscosity effect blurs singular structures.
(9) Large perturbation(general data): $f_{R}=o(1)$, but as large as possible.

Issues

- Issues 3 and 4: Incompressibility - size ε^{-1}, Euler equation - size ε^{0}, viscosity term - size κ.
- Need to suppress up to size κ : (i) put viscosity term in Euler (κ-NS), or (ii) further corrector expansions (but $\kappa=\varepsilon$: too singular).
- $f_{R}=o(\kappa)$ optimal: comparable to viscosity effect.
- Issues 1 and 2: approximation of u bt u^{β} (Euler solution with initial data $u_{0}^{\beta}=u_{0} \star \phi_{\beta}$.)
- $\phi_{\beta} \rightarrow_{\beta \rightarrow 0} \delta_{0}: \beta(\varepsilon) \rightarrow 0$.
- Perturbation around $\mu^{\beta}=M_{1, \varepsilon u^{\beta}, 1}$, stability $u^{\beta} \rightarrow u$ in $W^{1, p}, p<\infty$.
- $\frac{1}{\varepsilon} \int_{\beta}^{\varepsilon} F^{\varepsilon} v d v=u^{\beta}+o(1) \rightarrow u$.
- u^{β} smooth, β can be adjusted: stability estimate for f_{R} in $H_{x}^{2} L_{v}^{2}$.

Issues

- Issues 2 and 4: using strong topology gives a better scaling.
- f_{R} equation: partially coercive, but two problems (more than L^{2} required).
- (i) perturbation around local Maxwellian - higher moment.
- (ii) nonlinearity $Q\left(f_{R} \mu^{\beta}, f_{R} \mu^{\beta}\right)$ - integral with rapidly decaying multiplier: only lacks integrability in x.
- $H_{x}^{2} L_{v}^{2}$ and interpolation $L^{\infty} \subset H^{2}$ treats (ii). (i): small prefactor.
- Scaling: $f_{R} \sim o(\kappa), \partial_{x} f_{R} \sim o(\sqrt{\kappa}), \partial_{x}^{2} f_{R} \sim o(1)$.
- Issues 2 and 3: new expansion designed.
- Scales of various terms tractable as only one is (mostly) used.

Main theorem

Theorem (Kim, L. 2022)

For a singular solution u of $2 D$ Euler equation $\left(\omega \in L^{p},\|\omega\|_{L^{p}}=\Theta(p)\right.$), there exists a sequence of Boltzmann solutions

$$
F^{\varepsilon}=\mu_{\beta}+O(\kappa \varepsilon)
$$

such that $\frac{1}{\varepsilon} \int v F^{\varepsilon} \mathrm{d} v=u^{\beta}+O(\kappa) \rightarrow u$ in $W^{1, p}$. Moreover, u^{β} solves Euler equation as well.

- EX: u vortex patch $\rightarrow u^{\beta}$ smooth Euler, a patch with β-thick layer.

