Singular coherent structures in 2D Euler equation and hydrodynamic limits

Joonhyun La

KIAS

joonhyun@kias.re.kr

July 25, 2023

$$\partial_t \omega + u \cdot \nabla_x \omega = 0,$$

 $u = \nabla^\perp \Delta^{-1} \omega.$

- (Generalized) Yudovich solutions $\omega \in L^{\infty}$: globally well-posed.
- Diperna-Majda solutions $\omega \in L^p$: global existence.
- Weak solutions.

Singular solutions of 2D incompressible Euler equations

- Q1. What can we say about the behavior of singular solutions?
 - Propagation of certain structures? Singular vortices?
- Q2. Can we derive singular solutions as limits?
 - Limits of smooth solutions/ vanishing viscosity limit/etc.
 - Macroscopic limit of solutions of Boltzmann equation.

$$\begin{cases} \partial_t \theta + u \cdot \nabla_x \theta = 0, \\ \theta|_{t=0} = \theta_0. \end{cases}$$
(Tr)

Image: A match a ma

• Associated ODE:

$$\begin{cases} \frac{d}{dt}\phi(x,t) = u(\phi(x,t),t),\\ \phi(x,0) = x. \end{cases}$$

Joonhyun La (KIAS)

▶ ◀ 볼 ▶ 볼 ∽ ९ ୯ July 25, 2023 4 / 29

- Condition for uniqueness: Osgood.
- $L: (0, m_L) \rightarrow \mathbb{R}^+$: modulus of continuity.

$$|u(x,t) - u(y,t)| \le ||u||_L L(|x-y|),$$
$$\lim_{z \to 0+} \mathcal{M}(z) = \infty,$$
$$\mathcal{M}(z) := \int_z^{m_L} \frac{dr}{L(r)}.$$

• Osgood's lemma: $-\mathcal{M}(|\phi(x,t) - \phi(y,t)|) \leq -\mathcal{M}(|x-y|) + \int_0^t \|u(s)\|_L ds.$

- *u* Lipschitz: L(z) = z, $\mathcal{M}(z) = \log_+(1/z)$.
- u log-Lipschitz: $L(z) = z \log(1/z)$, $\mathcal{M}(z) = \log \log_+(1/z)$.
- $L(z) = z \log(1/z) \log_2(1/z) \cdots \log_n(1/z)$, $\mathcal{M}(z) = \log_{n+1}(1/z)$.

• For Osgood *u*, unique integrable solution to (Tr) (Ambrosio and Bernard 2008, Caravenna and Crippa 2021):

$$\theta(x,t) = \theta_0(\phi^{-1}(x,t)).$$
 (Flow)

- Not much quantitative information about θ. (EX: Loss of regularity below Lipschitz)
- Certain singular features propagate by Osgood vector fields.

Theorem (Drivas, Elgindi, L. 2022)

Let $L: (0, m_L) \to \mathbb{R}^+$ be Osgood(i.e. $\mathcal{M}(0+) = \infty$, $\mathcal{M}(z) = \int_z^{m_L} \frac{dr}{L(r)}$), u div-free with modulus of continuity L. Define the seminorm by

$$[f]_{x,\gamma,L} = \lim_{r \to 0+} \sup_{y: 0 < |x-y| < r} \frac{|f(x) - f(y)|}{\mathcal{M}(|x-y|)^{\gamma}}, \gamma \in \mathbb{R}.$$

Then $\theta = \theta_0(\phi^{-1}(x, t))$ defined by (Flow) preserves the seminorm:

$$[\theta(t)]_{\phi(x,t),\gamma,L} = [\theta_0]_{x,\gamma,L}.$$

• $\gamma > 0$: singularities, $\gamma < 0$: cusps.

• Chae and Jeong (2020): preservation of logarithmic cusps for Lipschitz drifts.

• Certain singular structures keep their shape.

Theorem (Drivas, Elgindi, L. 2022)

Let L and M as before (L Osgood, $\mathcal{M}(z) = \int_{z} \frac{dr}{L(r)}$.) Let F be a smooth function with at most linear growth at infinity $(\sup_{|z|\geq 1} |F'(z)| < \infty)$. If θ_0 has the form

$$\theta_0(x) = F(\mathcal{M}(|x-x_0|)) + b_0, b_0 \in L^\infty$$

near $x = x_0$, then $\theta(x, t)$ given by (Flow) has the form

$$\theta(x,t) = F(\mathcal{M}(|x - \phi(x_0,t)|)) + b, b \in L^{\infty}$$

near $x = \phi(x_0, t)$.

- What kinds of shape can propagate?
- $\mathcal{M}(|x x_0|), \sqrt{\mathcal{M}(|x x_0|)}, \log(\mathcal{M}(|x x_0|)), \text{ etc.}$
- Pathological shape: F(z) = sin(λz), λ > 0 small. θ(x, t) changes signs like Topologist's sine curve as x → φ(x₀, t) (t ≤ T).
- Even more singular (i.e. superlinear F)? It seems to be sharp: if F grows faster, b ∉ L[∞].

- Application: 2D incompressible Euler, singular initial data.
- Singular vortex $\mathcal{M} \to u$ (Biot-Savart). BUT, modulus of continuity for u worse than $L = -1/\mathcal{M}'$.
- Cancellation from radial symmetry of \mathcal{M} .

- $\omega = \mathcal{M}$ in generalized Yudovich space: $\|\omega\|_{L^p}$ grows mildly in p. • $\Theta : [1, \infty) \to \mathbb{R}^+$, $\int_1^\infty \frac{dp}{p\Theta(p)} = \infty$. $Y_\Theta := \left\{ f \in \cap_{p \in [1,\infty)} L^p : \|f\|_{Y_\Theta} := \frac{\|f\|_{L^p}}{\Theta(p)} < \infty \right\}.$
- Modulus of continuity:

$$|u(x,t)-u(y,t)| \lesssim |x-y|\log(1/|x-y|)\Theta(\log(1/|x-y|)).$$

• Existence and uniqueness in Y_{Θ} (Yudovich 1995, Serfati 1994.)

Propagation of singular vortices in 2D Euler equations

• L: Osgood, $z \log(1/z) \lesssim L(z)$, $\mathcal{M}(z) = \int_z \frac{dr}{L(r)}$.

•
$$\mathcal{M}(z) = \log \log_+(1/z), \log_3(1/z), \cdots$$

• $\omega = \mathcal{M}(|x - x_0|)$ propagates in 2D Euler equations.

Theorem (Drivas, Elgindi, L. 2022)

Let $\Theta(p) = \log_k(p), k \ge 0, L, \mathcal{M}$ as above, $b_0 \in Y_{\Theta} \cap L^1$, $f \in L^1_{loc}(\mathbb{R}; Y_{\Theta} \cap L^1)$,

$$\omega_0(x) = \mathcal{M}(|x|) + b_0(x).$$

Then there is $b: L^{\infty}_{loc}(\mathbb{R}; Y_{\Theta} \cap L^1)$, $\phi_*(t): \mathbb{R} \to \mathbb{R}^2$ such that

$$\omega(x,t) = \mathcal{M}(|x - \phi_*(t)|) + b(x,t).$$

• Meaningful only when \mathcal{M} is more singular than b.

Sketch of the proof.

We find governing equation for ϕ_* and b. Ansatz: assume b and ϕ_* as above.

$$\omega(x,t) = \omega_s(x,t) + b(x,t), \omega_s(x,t) = \mathcal{M}(|x - \phi_*(t)|).$$

 $u_r := -\nabla^{\perp}(-\Delta)^{-1}b, u_s := -\nabla^{\perp}(-\Delta)^{-1}\omega_s$: Osgood. Key observation: ω_s radial, u_s circular, so $u_s \cdot \nabla_x \omega_s = 0$.

$$\partial_t + u \cdot \nabla_x)\omega_s = (\partial_t + u_r \cdot \nabla_x)\omega_s = (\partial_t + u_r \cdot \nabla_x)(|x - \phi_*(t)|)\mathcal{M}'.$$

$$\frac{d}{dt}\phi_*(t) = u_r(\phi_*(t), t), \phi_*(0) = 0 \Rightarrow (\partial_t + u \cdot \nabla_x)\omega_s = 0.$$

Then equation for *b* can be written.

Propagation of singular vortices in 2D Euler equations

• Remark 1. Multiple singular vortices.

$$\omega_0(x) = \sum_{i=1}^N \gamma_i \mathcal{M}(|x-x_0^i|) + b_0(x).$$

Evolution of center excludes self-interaction.

$$egin{aligned} &rac{d}{dt}\phi_j(t)=-
abla_x^\perp(-\Delta)^{-1}\left[\sum_{i
eq j}\gamma_i\mathcal{M}(|x-\phi_i(t)|)+b(x,t)
ight]\circ\phi_j(t),\ &\phi_j(0)=x_0^j. \end{aligned}$$

- cf. Vortex-wave system (point vortices + perturbation). Point vortices do NOT solve Euler since too singular (Schochet 1996), while the above are actual solutions.
- Remark 2. Is log log₊ the most singular vortex? (Open).

- 2D Euler with $\omega_0 \in L^p, 1 \leq p < \infty$.
- Diperna and Majda(1987): global existence.
- Vishik(2018): non-uniqueness with forcing.
- Let ω₁(t), ω₂(t) be two solutions from ω₀ ∈ L^p. How different are they?
- Non-uniqueness "propagates" with speed $||u||_{L^{\infty}}$ for p > 2.

Theorem (Drivas, Elgindi, L. 2022)

- Let u₁, u₂ ∈ C([0, T); W^{1,p}) be two distinct weak solutions to 2D velocity-Euler with u₁(0) = u₂(0). Then u₁ − u₂ cannot be smooth.
- ② Let $\omega_0 \in L^1 \cap L^p$, smooth away from origin. Let ω_0^{ϵ} be regularized data, which are uniformly smooth away from $B_1(0)$, and let ω^{ϵ} be corresponding solution.

Let ω_* be a subsequential limit of ω^{ϵ} , $\epsilon \to 0$. Then ω_* is a weak solution to 2D Euler equation, which is smooth outside of $B_{1+Ct}(0)$ where $C = \sup_{\epsilon} \|u^{\epsilon}\|_{L^{\infty}}$.

- Singular solutions: limit of regular solutions.
 - Limit of regular Euler solutions (e.g. Crippa, De Lellis 2008)
 - Vanishing viscosity limit (e.g. Constantin, Drivas, Elgindi 2020)
 - Macroscopic limits of smaller scale description of fluids?

- Hilbert's sixth problem (1900): developing limiting processes between physical models of different scales.
- Ruling out small scale fluctuations by averaging.
- If fluids are not regular, the limiting process becomes nontrivial.

•
$$\partial_t F + v \cdot \nabla_x F = Q(F, F).$$

• (Hard-sphere) Collision Q(F, F)(v)

$$Q(F,G)(v) = \frac{1}{2} \int_{\mathbb{R}^3 \times \mathbb{S}^2} |(v - v_*) \cdot \sigma| (F_{v'} G_{v'_*} - F_v G_{v_*}) \mathrm{d} v_* \mathrm{d} \sigma.$$

 $(v', v'_*)
ightarrow (v, v_*)$ after collision, σ : collision cross-section.

(local) Maxwellian: R density, U velocity, Θ temperature.

$$M_{R,U,\Theta}(v) = \frac{R}{(2\pi\Theta)^{\frac{3}{2}}} \exp\left(-\frac{|v-U|^2}{2\Theta}\right).$$

- Non-dimensionalize, take the limit.
- Two non-dimensional numbers

- $Kn := \frac{\text{mean free path length}}{\text{macroscopic length}}$: frequency of collision.
- Non-dimensionalized Boltzmann equation:

$$\operatorname{St}\partial_t F + \mathbf{v} \cdot \nabla_x F = \frac{1}{\operatorname{Kn}} Q(F, F).$$

•
$$Ma := \frac{(\text{macroscopic}) \text{ velocity scale}}{(\text{microscopic}) \text{ velocity scale}} = St.$$

• $\frac{1}{Re} = \frac{Kn}{Ma}$ (Von Karman).

- More collisions ${\rm Kn} \to 0:$ averages representative of the distribution (hydrodynamic regime).
- $\bullet~{\rm Ma}<<1:$ macroscopic velocity << particle velocity incompressible regime.
- $Ma = Kn \rightarrow 0$: incompresible Navier-Stokes.
- $\mathrm{Kn} << \mathrm{Ma} \rightarrow$ 0: incompressible Euler.

•
$$\varepsilon = \text{St} = \text{Ma} \to 0, \kappa = \kappa(\varepsilon) = \frac{1}{\text{Re}} \to 0$$
 for
 $\varepsilon \partial_t F^{\varepsilon} + \mathbf{v} \cdot \nabla_x F^{\varepsilon} = \frac{1}{\varepsilon \kappa} Q(F^{\varepsilon}, F^{\varepsilon}),$

• Goal:
$$\frac{1}{\varepsilon} \int_{\mathbb{R}^3} v F^{\varepsilon}(x, t, v) dv \to u(x, t).$$

• $x \in \mathbb{T}^2$ (symmetric in z direction).

Image: A math and A

- Hilbert expansion: perturbative method.
- Singular limit ($\kappa \to 0$): use the local Maxwellian $\mu := M_{1,\varepsilon u,1}$

•
$$F^{\varepsilon} = \mu + \varepsilon f_R \sqrt{\mu} + (\text{correctors}).$$

- We ask $\lim_{\epsilon \to 0} f_R = 0$: $\frac{1}{\epsilon} \int v F^{\epsilon} = u + \int v f_R \sqrt{\mu} + \cdots$.
- Stability estimate of f_R .

- Regularity requirements for *u*:
 - Relative entropy (Saint-Raymond 2003): $\nabla_x u \in L^1_t L^{\infty}_x$ needed, $\frac{1}{c} \int v F^{\varepsilon} \to u$ weakly.
 - \tilde{L}^2 stability of f_R : $u \in L^2_t H^k_x$ needed, $\frac{1}{\varepsilon} \int v F^{\varepsilon} \to u$ strongly in L^2 .
 - H^k stability of f_R : higher regularity for u needed, stronger convergence.

- Not enough regularity: $\nabla_x u \notin L^{\infty}$.
- Singular structures only observable in stronger topology (e.g. interfaces in vortex patch)
- Solution Viscosity effect blurs singular structures.
- Large perturbation(general data): $f_R = o(1)$, but as large as possible.

- Issues 3 and 4: Incompressibility size ε^{-1} , Euler equation size ε^{0} . viscosity term - size κ .
 - Need to suppress up to size κ : (i) put viscosity term in Euler (κ -NS), or (ii) further corrector expansions (but $\kappa = \varepsilon$: too singular).
 - $f_R = o(\kappa)$ optimal: comparable to viscosity effect.
- Issues 1 and 2: approximation of u bt u^{β} (Euler solution with initial data $u_0^\beta = u_0 \star \phi_\beta$.)
 - $\phi_{\beta} \rightarrow_{\beta \rightarrow 0} \delta_0: \beta(\varepsilon) \rightarrow 0.$
 - Perturbation around $\mu^{\beta} = M_{1.\varepsilon u^{\beta},1}$, stability $u^{\beta} \to u$ in $W^{1,p}, p < \infty$.

 - $\frac{1}{\varepsilon} \int F^{\varepsilon} v dv = u^{\beta} + o(1) \rightarrow u$. u^{β} smooth, β can be adjusted: stability estimate for f_R in $H_x^2 L_v^2$.

- Issues 2 and 4: using strong topology gives a better scaling.
 - f_R equation: partially coercive, but two problems (more than L^2 required).
 - (i) perturbation around local Maxwellian higher moment.
 - (ii) nonlinearity $Q(f_R \mu^{\beta}, f_R \mu^{\beta})$ integral with rapidly decaying multiplier: only lacks integrability in x.
 - $H_x^2 L_v^2$ and interpolation $L^{\infty} \subset H^2$ treats (ii). (i): small prefactor.
 - Scaling: $f_R \sim o(\kappa), \partial_x f_R \sim o(\sqrt{\kappa}), \partial_x^2 f_R \sim o(1).$
- Issues 2 and 3: new expansion designed.
 - Scales of various terms tractable as only one is (mostly) used.

Theorem (Kim, L. 2022)

For a singular solution u of 2D Euler equation ($\omega \in L^p$, $\|\omega\|_{L^p} = \Theta(p)$), there exists a sequence of Boltzmann solutions

$$F^{arepsilon} = \mu_{eta} + O(\kappa arepsilon)$$

such that $\frac{1}{\varepsilon} \int v F^{\varepsilon} dv = u^{\beta} + O(\kappa) \rightarrow u$ in $W^{1,p}$. Moreover, u^{β} solves Euler equation as well.

• EX: u vortex patch $\rightarrow u^{\beta}$ smooth Euler, a patch with β -thick layer.