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* Global existence of classical solutions for 2D Euler v/

* Qualitative behaviour of 2D Euler for long times X
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Some remarkable examples:

Ucly)=y, Up(y)=y? Uk(y)=sin(y)

Vro(Ix]) = x| + x| ", Vg(r) = e~
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Arnold’s stability

Any steady Euler flow v = V14 satisfies
Vi - VA =0.
Hence, if
Ay = F(y), FeC,
then ) is a steady solution.
Arnold’s stability (1960’s):
-M(D)< F'(¢) <0

— nonlinearly (Lyapunov) stable in L?
0 < F'(v) < +o00

F(y) = (cte) = nonlinearly (Lyapunov) stable in L*>

Couette and Taylor-Couette flows are stable in L*°.
Pouseville flow is stable in L2.
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Are these shear/radial flows un/stable?

We consider the ansatz
v(x,t) := (U(y),0) +u(x, ).
Then,
du+ (u-Viu+ Vp+ U(y)oxu+ (U'(y),0)u =0, V-u=0,
or equivalently
Ow + V- Vw + U(y)oxw — U'(¥)oxyp =0, A =w.

What happens at { — c0?
luollx <1 = lim [lu(®)]ly =77

shear flow 4+ perturbation — new shear
flow




Couette flow



Perturbation of the Couette flow in T x R

The equation for a perturbation of the Couette flow
v(x,t) = (y,0) + u(x, 1), w(x,t) = -1+ w(x,t),

is given by
Ow + V- Vw + ydyw = 0,
with
Yp=A0A""w= / log (cosh(y — y) — cos(x — X)) w(X, y)dxdy.

TxR



Traveling waves and stationary states

Lin-Zeng (2011). Inviscid dynamical structures near Couette flow

 Existence of nontrivial and smooth stationary states arbitrarily
close to the Couette flow in the H<2 topology.

» Nonexistence of nontrivial smooth traveling waves arbitrarily
close to the Couette flow in the H>2 topology. All steady states
near Couette in H>? are shears.

The authors work in a channel T x [0, 1] 6
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nontrivial smooth traveling wave means...

+ Traveling wave:

w(x,y,t) =w(x+ At,y).
 Nontrivial: the dependence on x is nontrivial.
* Smooth: w € Cg° but its H5-norm is large for s > 3/2.



nontrivial smooth traveling wave means...

+ Traveling wave:
w(x,y,t) =w(x+ At,y).

 Nontrivial: the dependence on x is nontrivial.
* Smooth: w € Cg° but its H5-norm is large for s > 3/2.

The support of Vw is concentrated around y = +L.
The speed of the wave satisfies

A =L+ O(e).
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Symmetries of the system

Galilean invariance:
v(ix,y,t) ~ V(x,y,t)=v(x+ Aty t)—()0)
If Vsieay (X, ¥) is @ nontrivial Lin-Zeng stationary solution then

Vtra-zveling(xa Y, t) = Vsteady(x + >\t: y) - ()\7 O)

is a nontrivial traveling wave.

From steady states to traveling waves:

vilx,y)—y=0() = Vi(x,y,t)—y=0(e) if A= O(e)

Our traveling waves satisfy vi(x, y) — y = O(¢) with A = O(1).
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Ow + L(DgOrw — OpByw) =0,  —(02+ 10, + LB =

The velocity v(x) = v'(r,0)e, + vP(r, 0)e, is recovered via
(v, v = ( Opth, —Orh).
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2D Euler in polar coordinates

8tW+ 17(89¢8rw — 8,¢89W) - 03 _(8? + 17(3’ + :7265)1;0 =w.

The velocity v(x) = v'(r,0)e, + vP(r, 0)e, is recovered via
(V" V%) = (3001, —0rt)).

Taylor-Couette flow:

LetO<rn<n<ocoandQ,,={XeR?:n <|x <n}

ve(r):Ar+$7 A BeR.




(Asymptotic) stability of a steady circular flow

» Bedrosian-Zelati-Vicol (2019): Linear inviscid damping around
radially symmetric, strictly monotone decreasing vorticity.
* lonesuc-dJia (2019): Asymptotic stability of point vortex solutions.
- Gallay-Sverak (2021): Stability of w(r) = e~"*/4 and
w(r) = (14 |r|?)~%, k > 1 for 2D Euler and NS with low regularity.



(Asymptotic) stability of a steady circular flow

» Bedrosian-Zelati-Vicol (2019): Linear inviscid damping around
radially symmetric, strictly monotone decreasing vorticity.

* lonesuc-dJia (2019): Asymptotic stability of point vortex solutions.
- Gallay-Sverak (2021): Stability of w(r) = e~"*/4 and
w(r) = (14 |r|?)~%, k > 1 for 2D Euler and NS with low regularity.
Some previous results for the Taylor-Couette:
« Zillinger & Zelati-Zillinger (2017,2019): Linear inviscid damping
around Taylor-Couette.

» An-He-Li (2021,2023): Enhanced dissipation and nonlinear
asymptotic stability of Taylor-Couette for 2D NS.



Perturbation of the Taylor-Couette flow in Q,, ,

The equation for a perturbation of the Taylor-Couette flow
v(r,0,t) = (O,Ar + f) +u(r,6,t), w(r,0,t)=2A+w(r,0,1),
is given by
y B
atw + 7((997,/)5,&) - 8,"11)8@0.})(4} + Ar + 7 (990.) — 0, On thrz

with 4 solving

—(OF+ 30 + 2O =w,  on Qup
¢|f:f17f2 =0.



Splitting the domain Q,, ,,

We are looking for a solution with the following structure:

0 Qinner,

smooth(t) Qp,,
w(t) = Qe Quiddle

smooth(t) Qp,,

0 Qouters

with ri < Ry < Ry < and |Qg,| = O(e), fori =1,2.




2D Euler as an equation for the level curves/sets

We assume that

Qr () ={(p+ f(p,0,1)) (cosb,sinb),p € [Ri —¢,Ri+¢€],0 € T}.
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2D Euler as an equation for the level curves/sets

We assume that

Qr () ={(p+ f(p,0,1)) (cosb,sinb),p € [Ri —¢,Ri+¢€],0 € T}.

Using the transport character of the vorticity formulation:

w(p+f(p,0,1),0,t) =w(p), (p,0) €[Ri—€Ri+exT Vt>0.

/\_/
The problem reduces to study the family of graphs (p + f(p, 0, t),0) :
(p + f(p’ 9, t))aff(p7 97 t) = a@i’[ﬂ(ﬁa 91 t)7
with o[f](p, 0, t) == ¥ (p + f(p, 6, 1),6,t) and 1 solving

—(@2 10+ FBW =w, on Q.
"/)|f:f17f2 =0.

M
|



We look for time periodic solutions of the form

f(p,0,t) :=f(p,0 + Ab).
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We look for time periodic solutions of the form
f(p,0,t) :==1(p, 6+ At).
Therefore, we have to solve the time-independent problem:
(p + ) A9t = O 0]f].
This is an equation for (A, f). Let us call
Fo M 1] = (0 + ) A0sf — B[],

Important facts:

* Note that F[\,0] =0, for all A € R.
* Recall that f is defined just over J,_; ,(Ri — €, Ri + ¢€) x T.



The function @, ,, € C>([r1, 12])

0 f1§r§R1—€,
€Pr (Rtr) Ri —e<r<R;+e,
@) = € Ri+e<r<R—e
6¢N<'7€R2) Ro—e<r<Rs+e,

0 Ro+e<r<n.

.

r

[
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0 f1§r§R1—€,
€Pr (Rtr) Ri —e<r<R;+e,
@) = € Ri+e<r<R—e
6¢N<'7€R2) Ro—e<r<Rs+e,

0 Ro+e<r<n.

.

r

[

R,- £ Ryr ¢

Note that w. o € W'*°(R) N H<*/2(R). (x is a regularizing parameter)



Crandall-Rabinowitz Theorem

Let X, Y be two Banach spaces, {0} ¢ VC Xandlet F:Rx V = Y
satisfying:

1. F[A\,0] =0 forany A € R.

2. The derivatives DyF, DiF and DiﬁfF exist and are continuous.

3. L, = DiF[)\,0]: N(£L4) and Y/R(L,) are one-dimensional.

4. D (F\., Olh, & R(L,), where N'(L,) = span{h,}.
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Let X, Y be two Banach spaces, {0} ¢ VC Xandlet F:Rx V = Y
satisfying:

1. F[A\,0] =0 forany A € R.

2. The derivatives DyF, DiF and DiﬁfF exist and are continuous.

3. L, = DiF[)\,0]: N(£L4) and Y/R(L,) are one-dimensional.

4. D (F\., Olh, & R(L,), where N'(L,) = span{h,}.
If Z is any complement of A/(L,) in X, then there is a neighborhood
U of (A\+,0) in R x X, an interval (—o9, 0p), and continuous functions
¢ (—00,00) = R, ¢ : (—00,00) = Z such that ¢(0) =0, (0) =0
and

F-'(0)nu :{(A* +¢(0),oh, +ov(0)); |o] < “0}
u{(0,0); (1,0) € U}.
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The linear operator

Let h € X. Then, we have h=}_ - hy(r) cos(nd).
The LINEAR OPERATOR can be written as

LINh =" cos(nd)Ls[Nhn

n>1
where L,[)\] is given by
La[Ag(r) := (¥, (r) + Ar) g(r)

_ Salr/m) 1 [
Sn(re/r) n J,,

with Sp(-) = sinh(nlog(+)) and . ,, solving

o r

L ($)Su(r2/5)9(8) + 5, [ 5. ()Sulr/9)g(s).

n

(410000 e on [,
q)e,li‘r:ﬁ,fg = 0



The kernel: infinity system (n > 1) — m-th mode

Note that
LINNh=0 <= LyA\h,=0 VYn>1.



The kernel: infinity system (n > 1) — m-th mode

Note that
LINNh=0 <= LyA\h,=0 VYn>1.

Fixed m > 1, we consider only h € X such that
hp,=0 for n#m

and
() = {a(r) rel[Ry —e Ry + € = I(R),
b(r) re [Rg —¢, R+ 6] =: IE(R2)



The kernel: infinity system (n > 1) — m-th mode

Note that
LINNh=0 <= LyA\h,=0 VYn>1.

Fixed m > 1, we consider only h € X such that
hp,=0 for n#m

and

() = {a(r) rel[Ry —e Ry + € = I(R),

b(r) re [Rg —¢, R+ 6] =: IE(R2)

We have reduce the problem to study

Ln[Alhn(r) = Lm[A] <Z> (=0, rel(R)UIl(Re).



The problem for \ and (a, b)

r

(@L .(r)+ Ar) a(r) + % /1?1—6 sw, .(8)Sn(r/s)a(s)ds

Sa(r/r) 1 /”1“

Sn(r2/r) N Jp,—e

Sn 1 R
-3 ((rrz//rr11))n/ﬁ sw, ,.(S)Sn(r2/s) ds=0, rel(R).
n > —€

sw, ,.(5)Sn(r2/s)a(s)ds

(L .(r)+Ar) + ,1—7 //;5 sw, ,.(8)Sn(r/s) ds

Sn(r/n)
Sn(l’g/H)

Sp(r/r) 1 [Fete
B Sn((rz//;1)) E/R sw, .(8)Sn(r2/s)b(s)ds =0, re l(R).

ol / e s .(s) [Sn(r/s)— Sn(r2/5)| a(s)ds

n H1—E

20



We pass from
[Ri— €6 R +e]U[Re — e, Ro+¢] = [-1,1]
We just have to solve

A(s) :=a(Ri +€5), B(s) := b(R2+€5)

((D’E’K(Fﬁ +€2) + ARy + €2)) A(2)

a p +1
sn((g(;/s/ﬁ)n / (B 8)2L(=)Sn(r2/(Fy + es)Als)as

_ Sn((g:(;‘/él:;/ﬁ); /_1 (Rz + €8)¢.(8)Sn(r2/(R2 + €8))B(s)ds

€

- = / (Ry + ¢8)¢.(—8)Sn((Ry + €2)/(Ry + 8))A(s)ds = 0.
=

21



We have to solve, for A and (A, B), the system

(®5..(R1) + ARy) A(z) + O(¢) = 0,
(®h...(Re) + AR2) B(z) + O(e) = 0.

22



We have to solve, for A and (A, B), the system

(®5..(R1) + ARy) A(z) + O(¢) = 0,
(®h...(Re) + AR2) B(z) + O(e) = 0.

Then, we introduce the ansatz
A(2) = Ai(2) e+ As5(2) €
B(z) = Bo(z) + Bj(2) €

together with

o (R
/\:—70’;( 1)+/\16+/\§€2
1

Urc(R1)

22



Asymptotic analysis in terms of ¢

At order O(1) we have fixed

Ao = Urc(Rh).

o, (R + e2) + MRi + €2) = ag' o] + af Mo, Al(2)e + o [Mo, Ar, Agl(2)€2
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Asymptotic analysis in terms of ¢

At order O(1) we have fixed
Ao = Urc(Rh).

At order O(¢) we obtain a closed system for Ay and A+, By:
+1
ol ol A (2) — / Gh(s)Ba(s)ds =0,
+1
af o, M](2)Bo(2) — / £.(5)Bo(s)ds = 0.
—1

At higher order O(e?) we have a CONTRACTION for A5 and As, B:.

o, (R + e2) + MRi + €2) = ag' o] + af Mo, Al(2)e + o [Mo, Ar, Agl(2)€2
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Solving the system at order O(¢)

o DolA (z)—/:1 P (s)Bo(s)ds =0 —> A= m /j ¢ (5)Bo(s)ds
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Solving the system at order O(¢)

o DolA (z)—/:1 P (s)Bo(s)ds =0 —> A= m /j ¢ (5)Bo(s)ds

C

1
oo M@)B(2) — [ (s)Ba(e)ds =0 — B = Ao Nl

Finally, one finds that

1 /
1(;)/ _ Pe(S) 4
-1 a;?[Ao, M](s)
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Solving the system at order O(¢)

a01[)\0]A1(Z) /+ 90,4 )BO( )dS— == A= F"w [)\0] / gO,Q(S Bo( )d

C

1
oo M@)B(2) — [ (s)Ba(e)ds =0 — B = Ao Nl

Finally, one finds that
r+1 /
1(;)/ _ Pe(S) 4
—1 a12[)\o,>\1](3)

N € Rsolving (x) = Bo(z) = Ai.
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Solving the system at order O(¢)

o DolA (z)—/:1 P (8)Bo(S)ds =0 —> Ay — Om/T ¢.(5)Bo()ds

C

Finally, one finds that

) ©(8)
i / Do MI(8)

N € Rsolving (x) = Bo(z) = Ai.

24



The condition on R; and R>

Using the above argument, we get time-periodic solutions with
N B U-rc(R1) or \= UTC(R2).
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The condition on R; and R

Using the above argument, we get time-periodic solutions with
N B U-rc(R1) or \= UTC(Rg).

Up to here, Ry, R> € (1, r2) are free parameters. We need to impose

U, ®)

R, B

Note that Urc(R1) = A = Urc(Re) = dim(Ker(£[A])) > 1. 25



The co-kernel

Now, we have to prove that dim(Y /L[« m](X)) = 1.
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The co-kernel

Now, we have to prove that dim(Y /L[« m](X)) = 1.
The idea is to use the Fredholm structure of the linear operator
L[Ae,x,m] = Lo[Aewm] + K
with
Lo[Ae ., m] : isomorphism,
K : compact operator
Two facts:

+ Index of Fredholm remains unchanged under compact pert.
* An isomorphism is Fredholm of zero index.

Then
index = dim(A/(£)) —dim(Y/R(L))
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Fixed 1 < M < co. There exist ¢o(M), xo(M) such that, for every
0<e<e,0<r<koand meN, m< M, there exist (A7, m, 7, )
satisfying,

we n[/\e K,Mm> ‘e n,m] = 07

parameterize by o. These solutions satisfy:

1. 12, m(r,0)is ——periodic on 6.

2. The branch
fSK m = Uhg,n,m +0(o),
and the speed of the rotation is
)‘gfcm )‘€7H7m+0(1)'

3. fZ . m(r,0) depends on ¢ in a non-trivial way.
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Theorem (continuation).

In addition, vorticity w¢ . ,, given implicitly by
W o m(p + 12 m(p,0),0) = @e x(p),

and extended to [r1, r2] x T by e and 0, yields a traveling way solution
for 2D Euler in the sense that

m(r: 0+ Ao mt)

satisfies perturbed 2D Euler.
Importantly, w?,. (r, ) depends nontrivially on 6.
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Pouseville flow




Work in progress

Pouseville flow Up(y) = y? —1in T x [-1,1] :

w4+ Ve - Vw + U(y)oxw — | U (y)0xy | = 0, A = w.
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Work in progress

Pouseville flow Up(y) = y? —1in T x [-1,1] :

w4+ Ve - Vw + U(y)oxw — | U (y)0xy | = 0, A = w.
5 2
AY ,l ~‘ [ 2/
¥ H Wy =2
{ < R 2
—-UZ +UZ, +1
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Desingularization

L‘lm‘ljc;nj cose £=0 CQQQ £>0

IV
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Thank you for your attention!
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