

Building 3D quasi-geology models and predicting mineral resources using joint inversion and open-source code

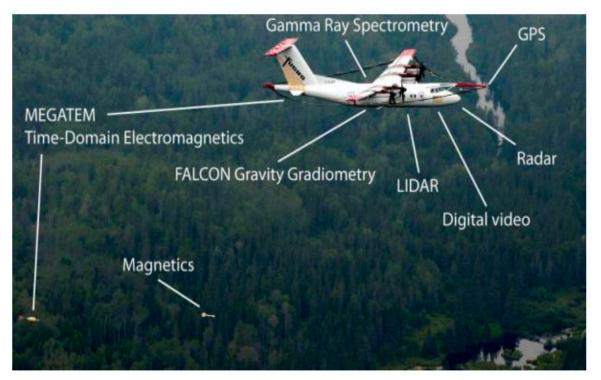
Xiaolong Wei^{1,2} & Jiajia Sun¹ ¹University of Houston, USA. ² Stanford University, USA

July 29th, 2023

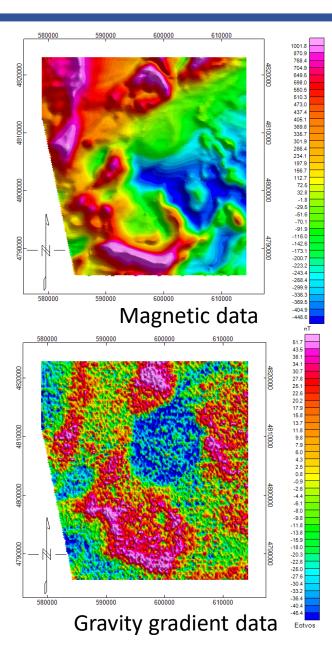
OUTLINE

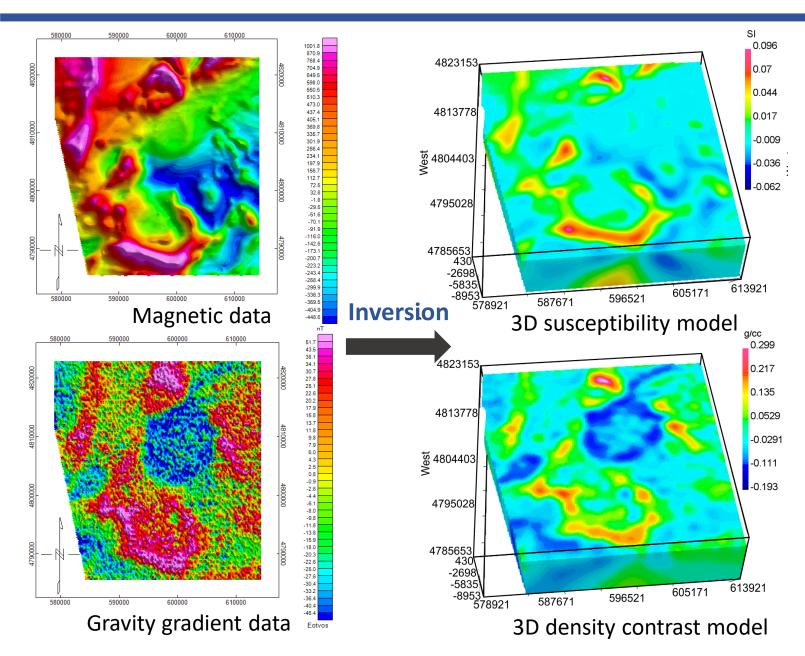
- Introduction
- Part I: Building probabilistic quasi-geology model
- Part II: Predicting mineral resources
- Discussions
- Conclusions

- Widely use airborne geophysical survey
- Collect multiple data sets
- Construct reliable subsurface models

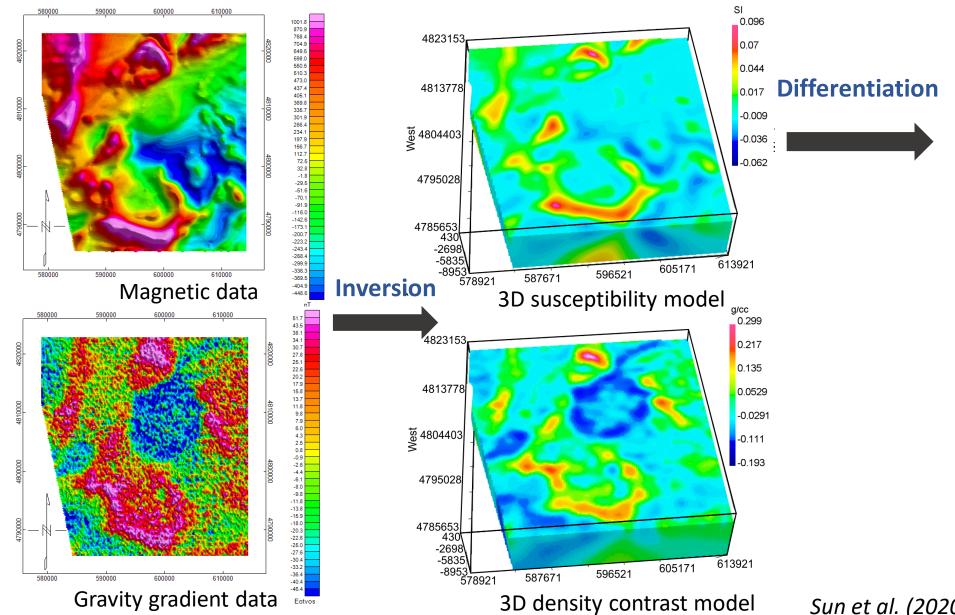


Multi-sensor airborne platform (Wilson et al., 2011)

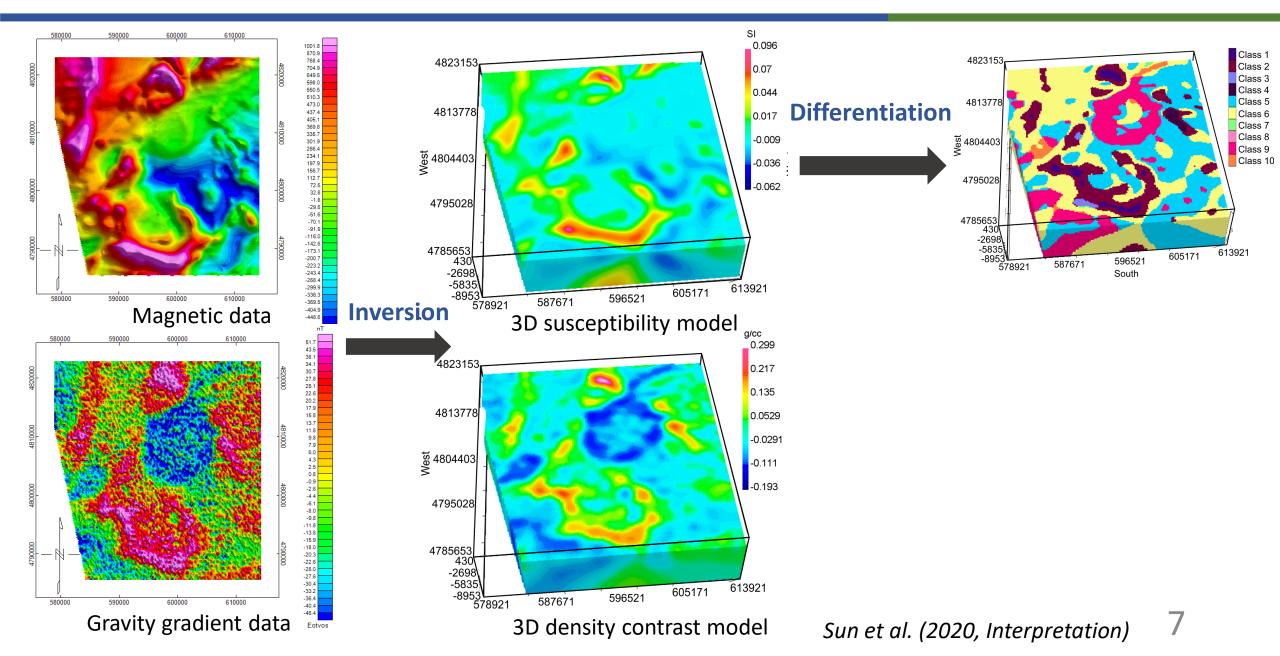


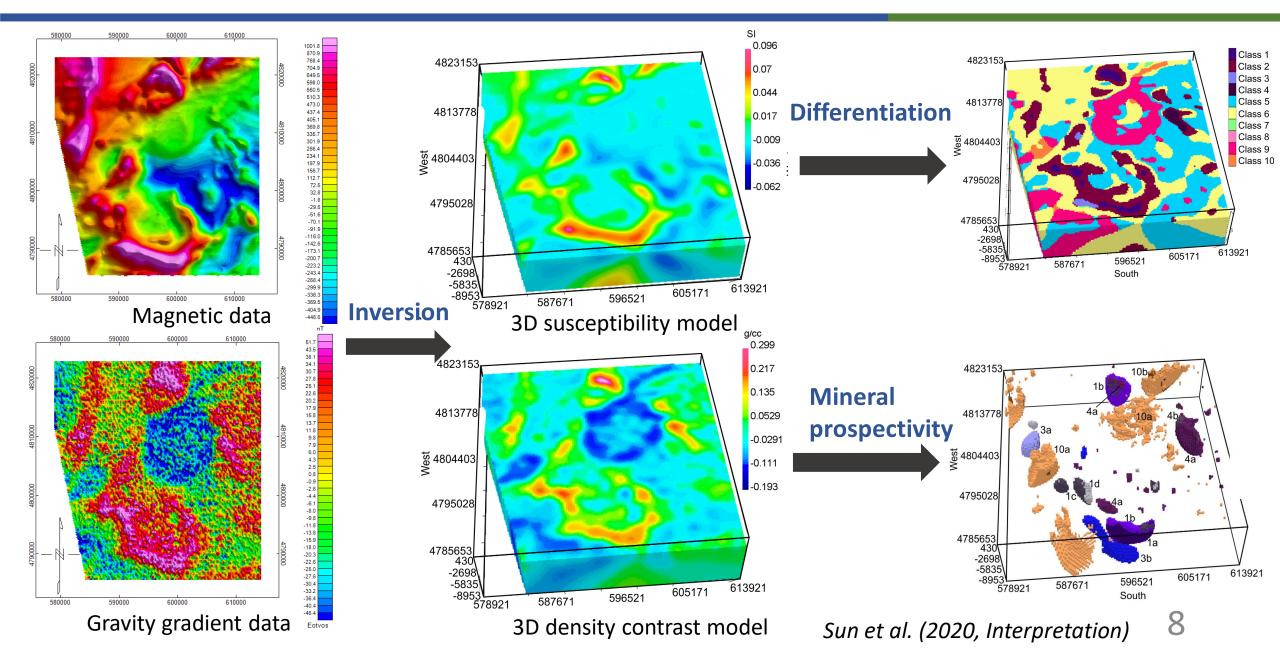


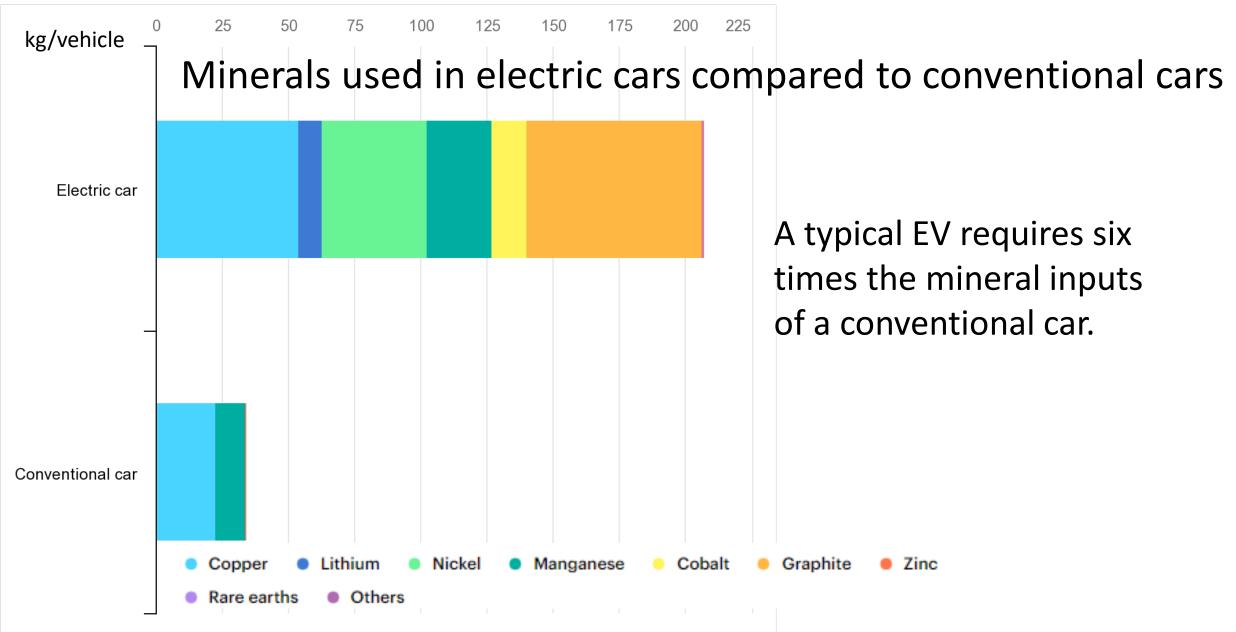
Sun et al. (2020, Interpretation) 5



Sun et al. (2020, Interpretation) 6







https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions/executive-summary

OUTLINE

- Introduction
- Part I: Building probabilistic quasi-geology model
 - Methodology
 - Geological setting and geophysical data
 - Probabilistic geology differentiation
- Part II: Predicting mineral resources
- Discussions
- Conclusions

Methodology: mixed Lp norm inversion

(Fournier and Oldenburg, 2019)

Objective function:

Data misfit term:

Regularization term:

$$\Phi = \Phi_d + \beta \Phi_m$$
p and q could be same or
different values between 0 to 2
$$\Phi_d = \sum_{i=1}^N \left(\frac{d_i^{pre} - d_i^{obs}}{\sigma_i} \right)^2$$

$$\Phi_m^{pq} = \alpha_s \int \left| f_s(m) \right|^p dv + \sum_{j=x,y,z} \alpha_j \int \left| f_j(m) \right|^q dv$$

$$f_s = m, \ f_x = \frac{dm}{dx}, \ f_y = \frac{dm}{dy}, \ f_z = \frac{dm}{dz}$$

$$\begin{split} \Phi(m_1, m_2) &= \Phi_{d1}(m_1) + \beta_1 \Phi_{m1}(m_1) + \Phi_{d2}(m_2) + \beta_2 \Phi_{m2}(m_2) + \lambda \Phi_c(m_1, m_2) \\ \Phi^{pq}(\mathbf{m}_1, \mathbf{m}_2) &= \left\| \mathbf{W}_{d1}(\mathbf{d}_1^{obs} - \mathbf{d}_1^{pre}) \right\|_2^2 + \beta_1 \left\| \mathbf{W}_{m1} \mathbf{R}_1^{pq} \mathbf{m}_1 \right\|_2^2 \\ &+ \left\| \mathbf{W}_{d2}(\mathbf{d}_2^{obs} - \mathbf{d}_2^{pre}) \right\|_2^2 + \beta_2 \left\| \mathbf{W}_{m2} \mathbf{R}_2^{pq} \mathbf{m}_2 \right\|_2^2 \end{split}$$
 Different norm values $+ \lambda \Phi_c(\mathbf{m}_1, \mathbf{m}_2)$

$$\Phi_c(\mathbf{m}_1,\mathbf{m}_2) = \sum_i^m \|\nabla m_{1i} \times \nabla m_{2i}\|_2^2.$$

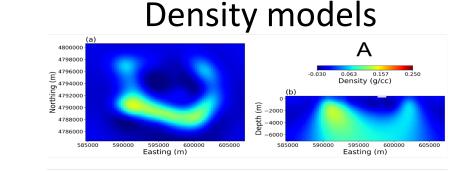
(Gallardo and Meju, 2003, 2004)

Understanding mixed Lp norm joint inversion

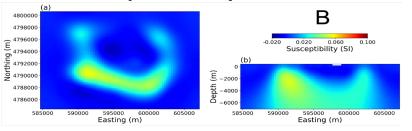
(Wei and Sun, 2021)

p=q=2

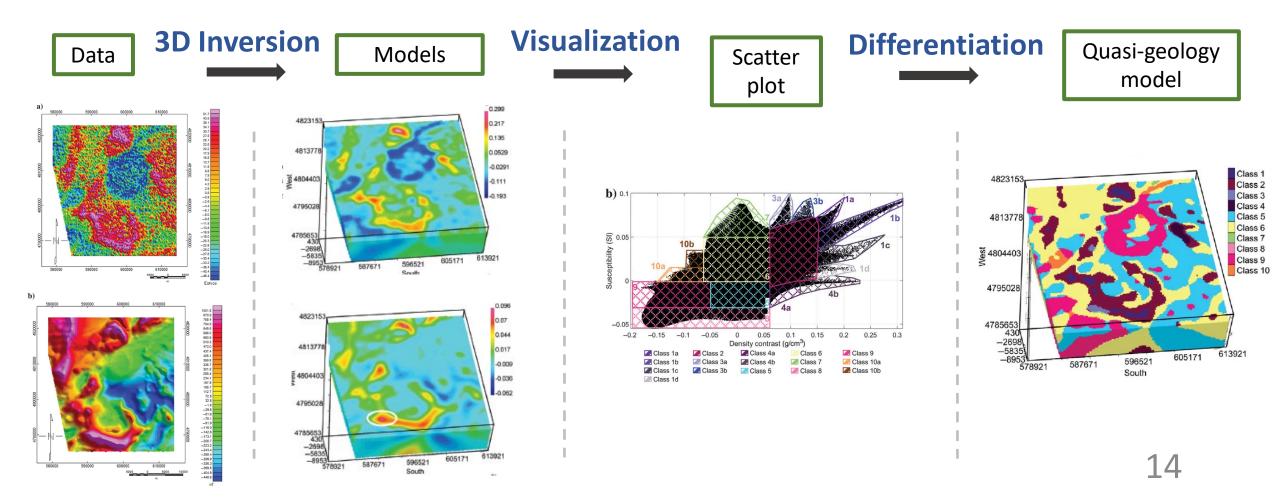
Different tuning parameters result in different model characteristics.



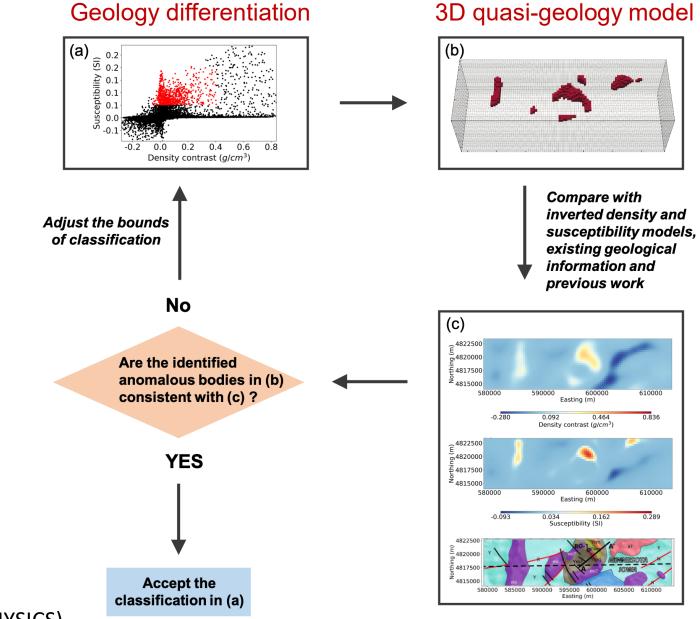
Susceptibility models



Identifying and delineating geologic units based on multiple physical property models obtained from geophysical inversions.



Geology differentiation



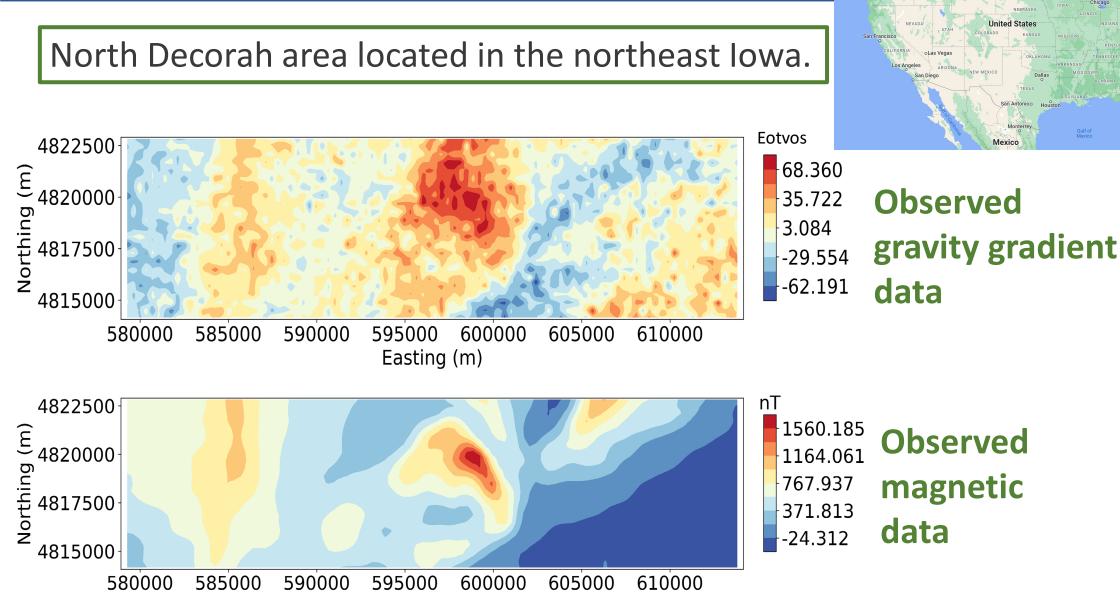
Wei and Sun (2022, GEOPHYSICS)

OUTLINE

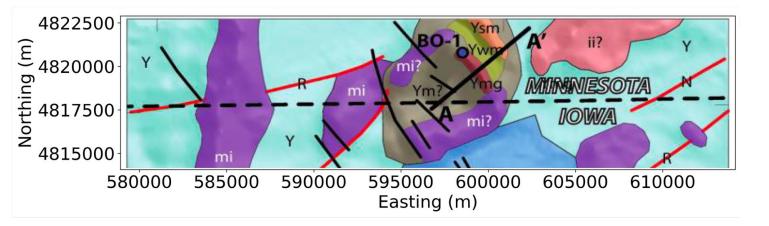
- Introduction
- Part I: Building probabilistic quasi-geology model
 - Methodology
 - Geological setting and geophysical data
 - Probabilistic geology differentiation
- Part II: Predicting mineral resources
- Discussions
- Conclusions

Geologic setting and geophysical data

Easting (m)



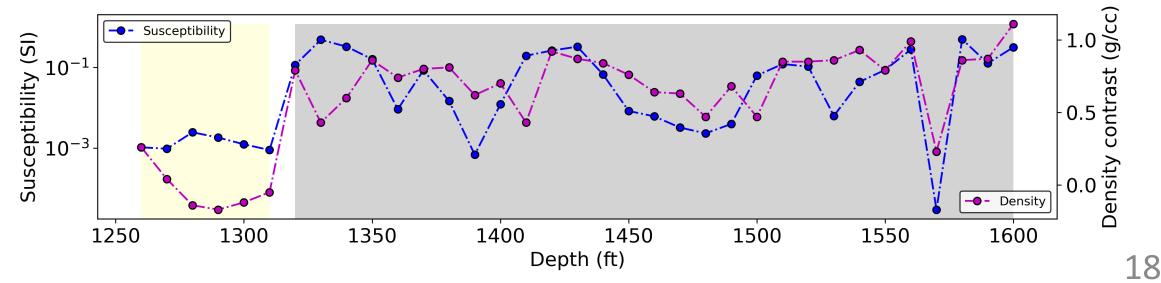
Geologic setting and geophysical data



2D geologic model (Drenth et al., 2015)

Sedimentary and weathered basement

Precambrian basement



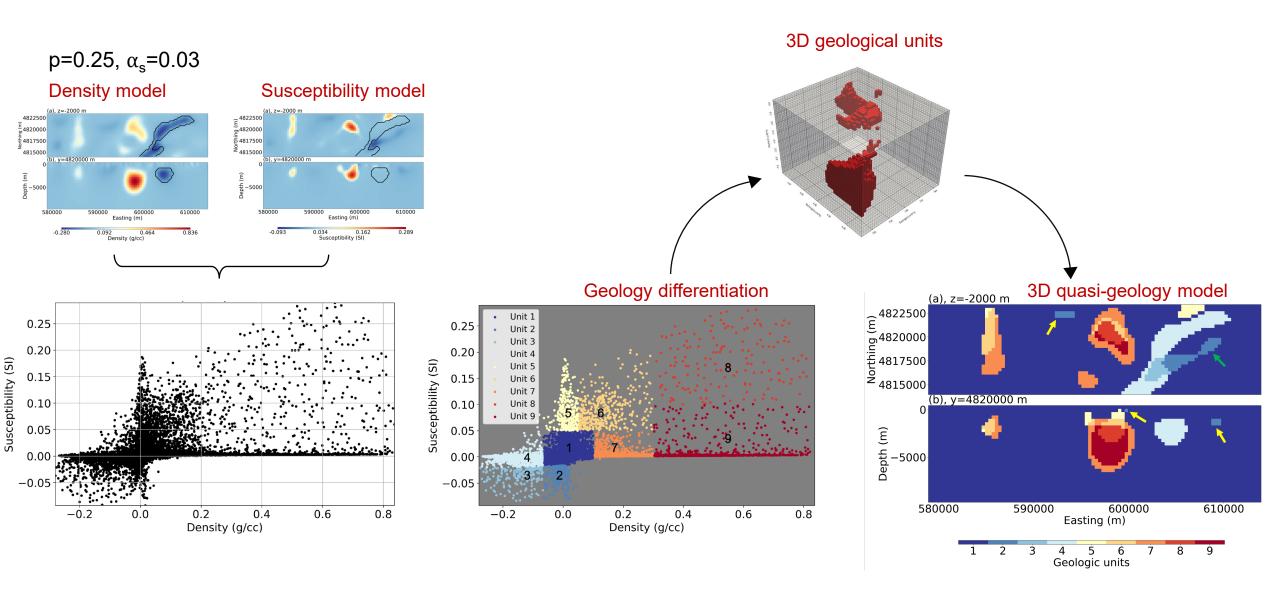
OUTLINE

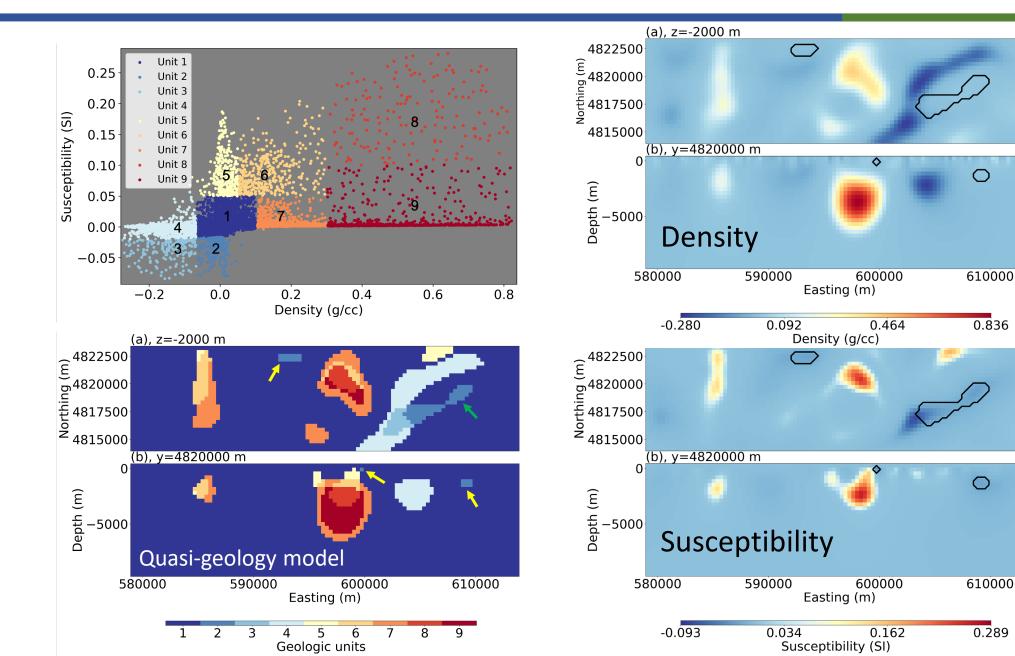
- Introduction
- Part I: Building probabilistic quasi-geology model
 - Methodology
 - Geological setting and geophysical data
 - Probabilistic geology differentiation
- Part II: Predicting mineral resources
- Conclusions

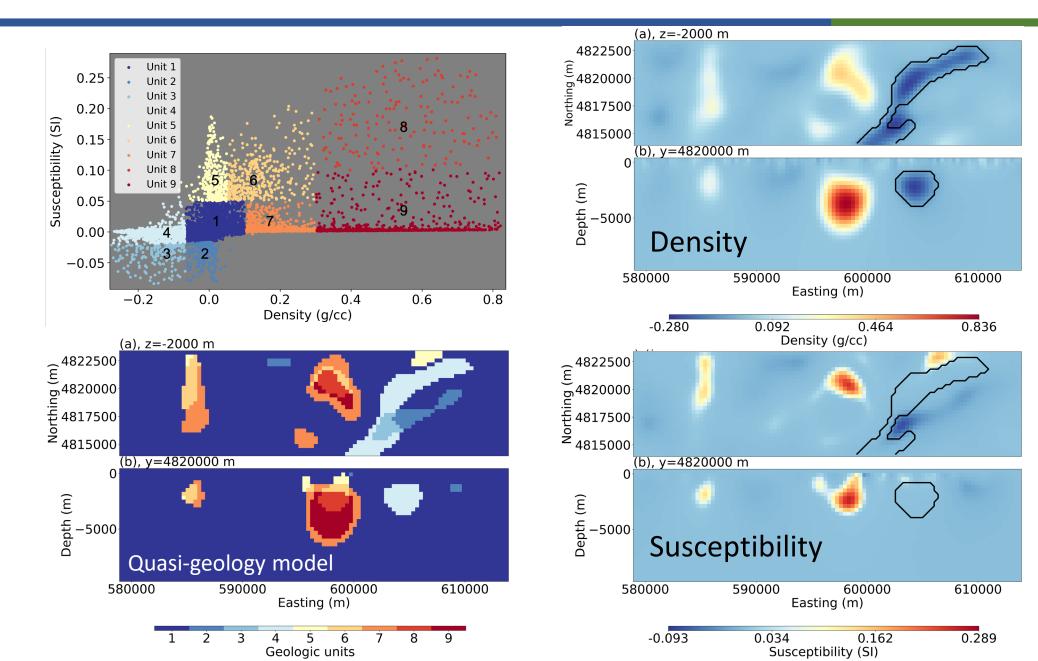
OUTLINE

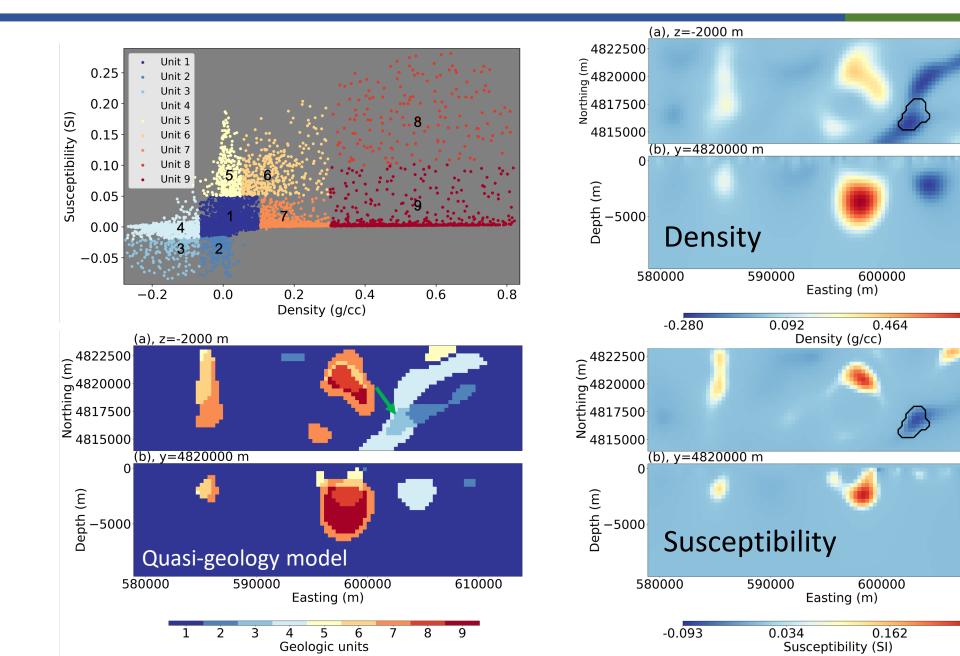
- Introduction
- Part I: Building probabilistic quasi-geology model
 - Methodology
 - Geological setting and geophysical data
 - Probabilistic geology differentiation
- Part II: Predicting mineral resources
- Conclusions

Geology differentiation in the north Decorah area







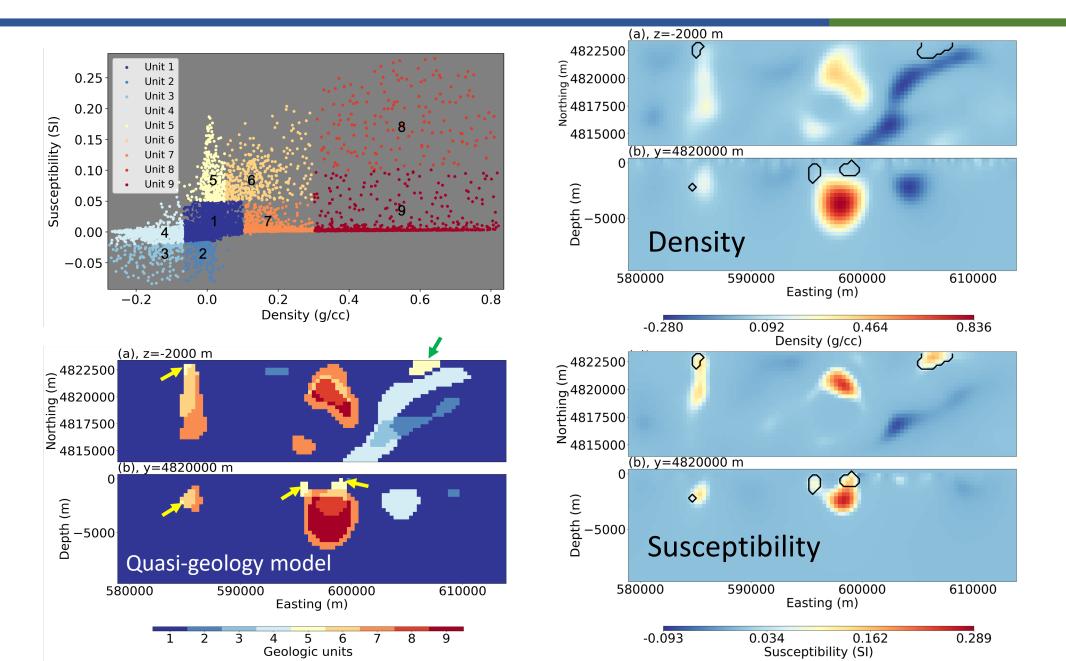


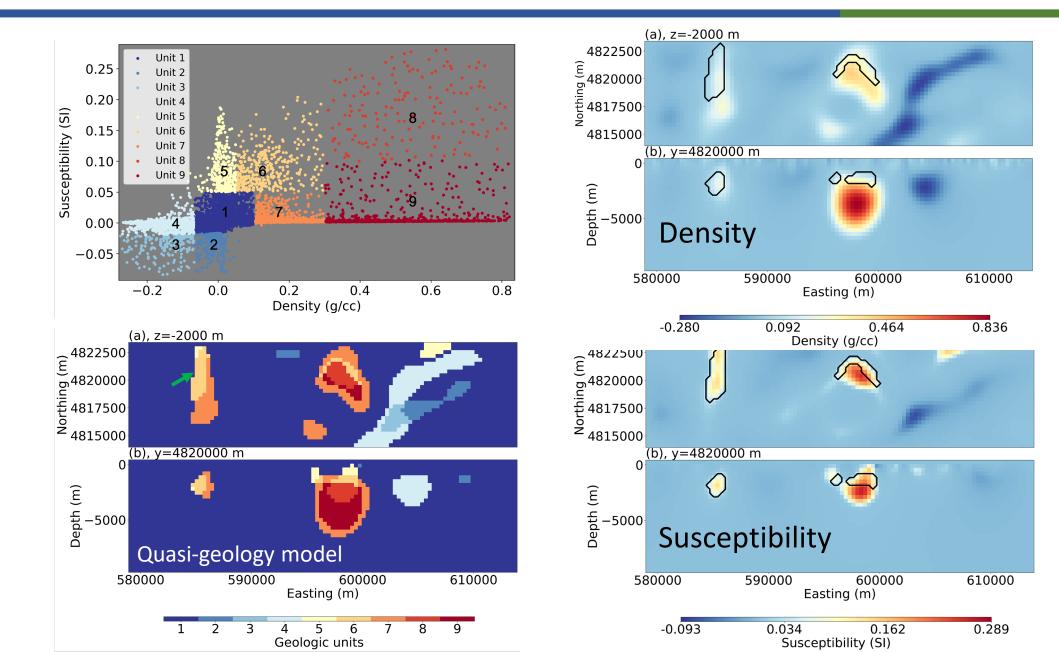
610000

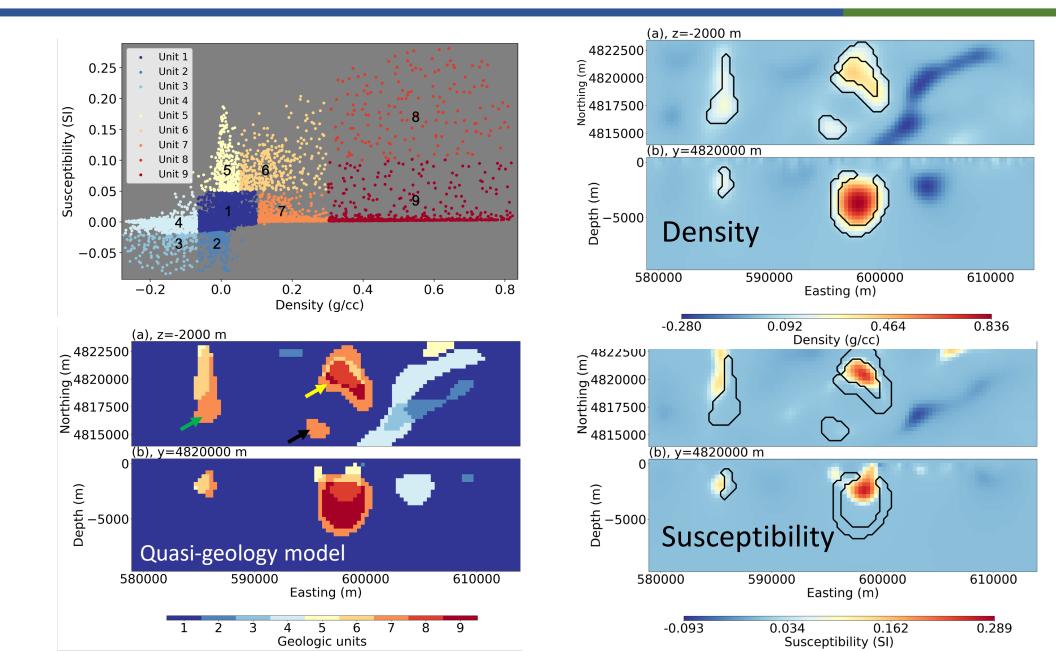
0.836

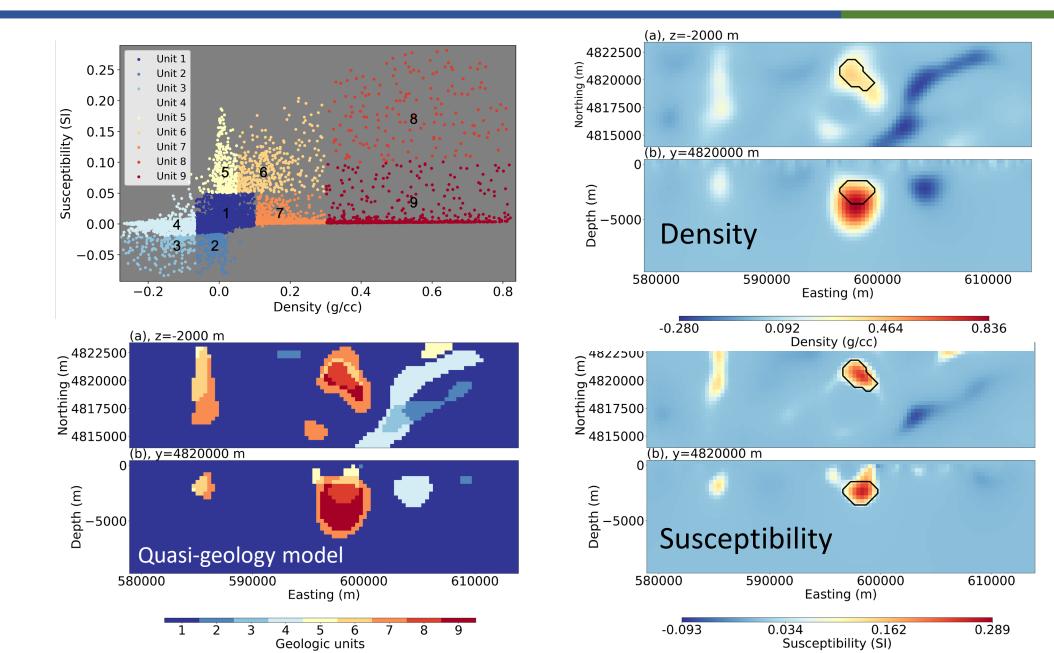
610000

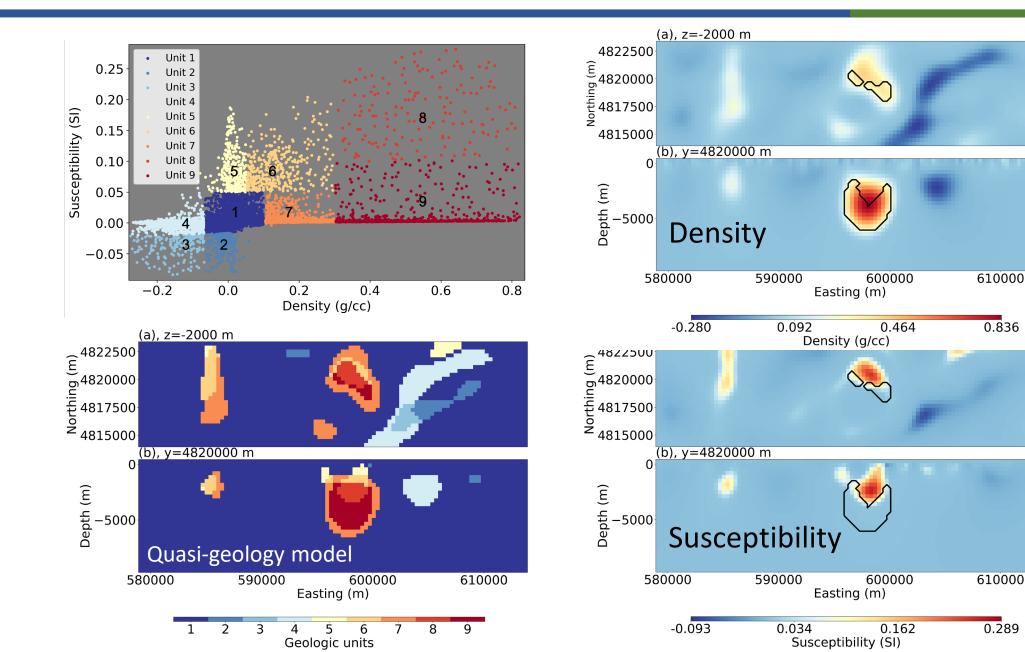
0.289







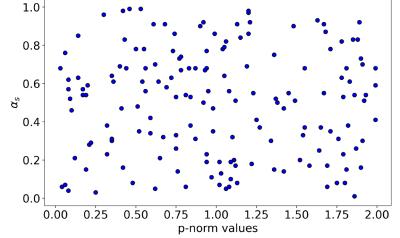




Probabilistic geology differentiation

1. Randomly sample tuning parameters (p and α_s)

2. Perform 162 mixed Lp norm joint inversions

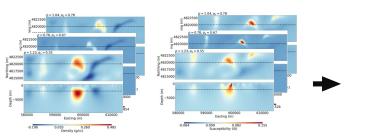


3. Obtain 162 pairs of jointly recovered density and susceptibility models

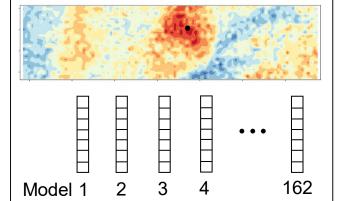
Are all models consistent with rock sample measurements?

Probabilistic geology differentiation

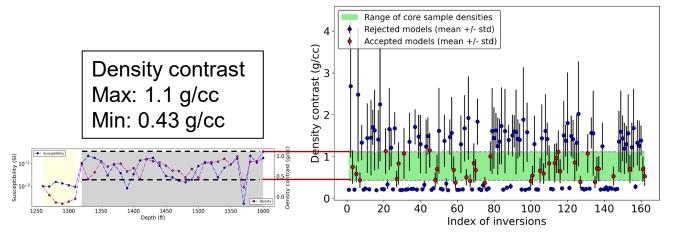
A set of jointly inverted 3D density and susc models



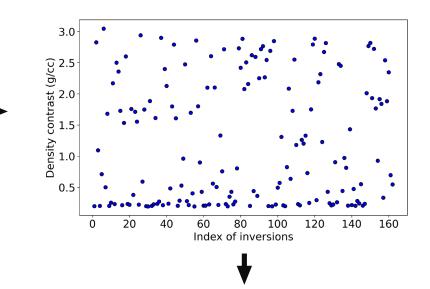
Extract inverted density values at drillhole location



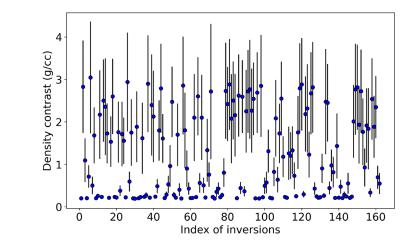
Physical property measurements on rock samples Density contrast range: [0.43, 1.1]



Compute mean density value for each model

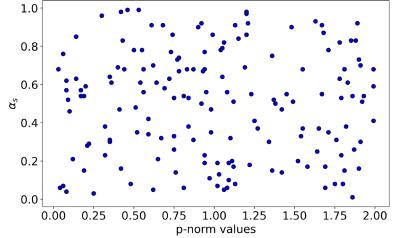


Compute standard deviation for each model



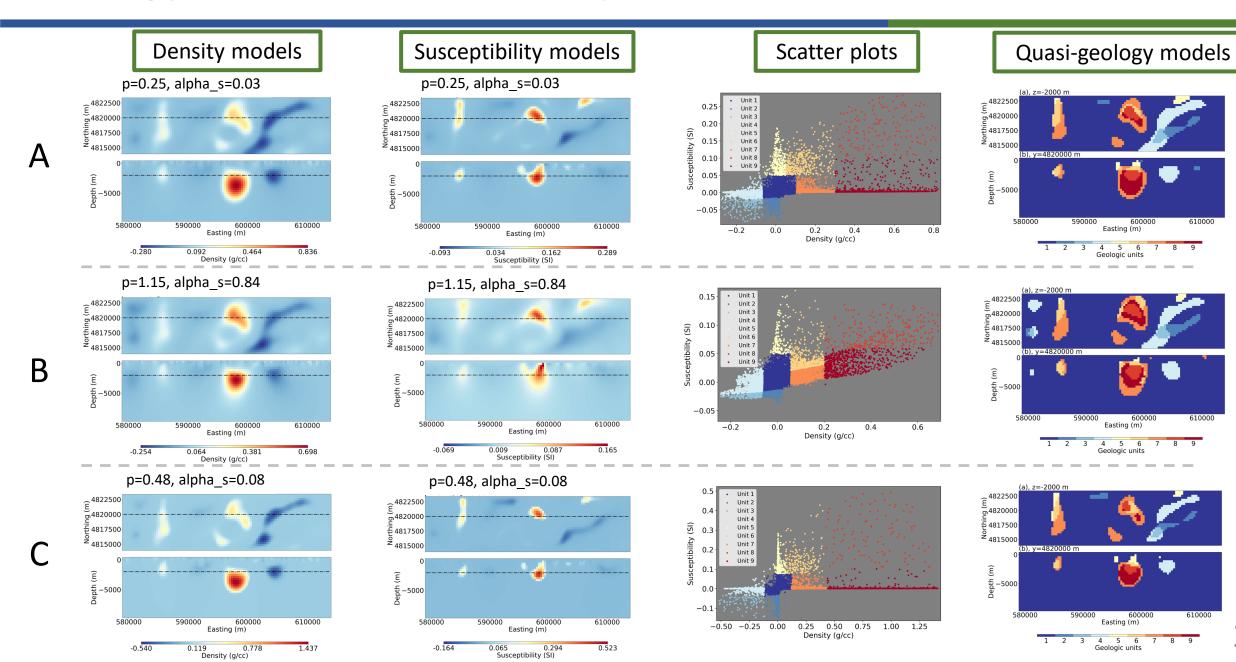
Probabilistic geology differentiation

- 1. Randomly sample tuning parameters (p and α_s)
- 2. Perform 162 mixed Lp norm joint inversions



- 3. Obtain 162 pairs of jointly recovered density and susceptibility models
- 4. 37 pairs of density and susceptibility models consistent with the rock measurements (dens [0.43 g/cc, 1.1 g/cc], susc [0.115 SI, 0.495 SI])
- 5. 37 quasi-geology models

Geology differentiation: accepted models

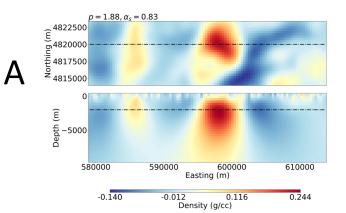


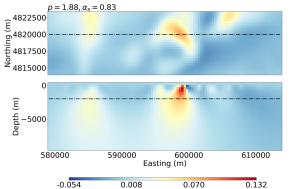
ġ

Geology differentiation: rejected models

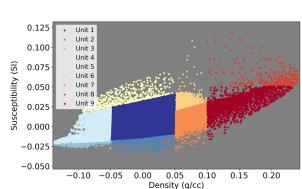
(a), z=-2000 i

Density model

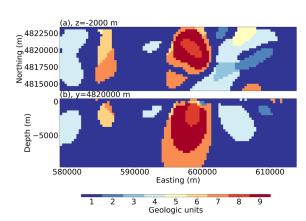




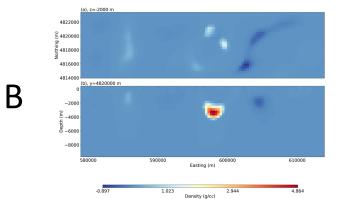
Susceptibility model

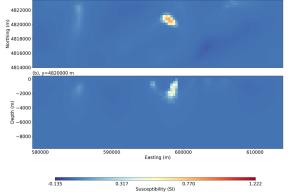


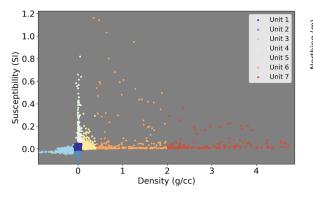
Scatter plots

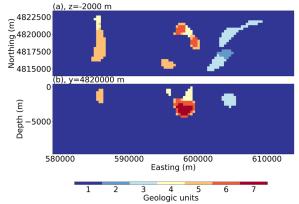


Quasi-geology model



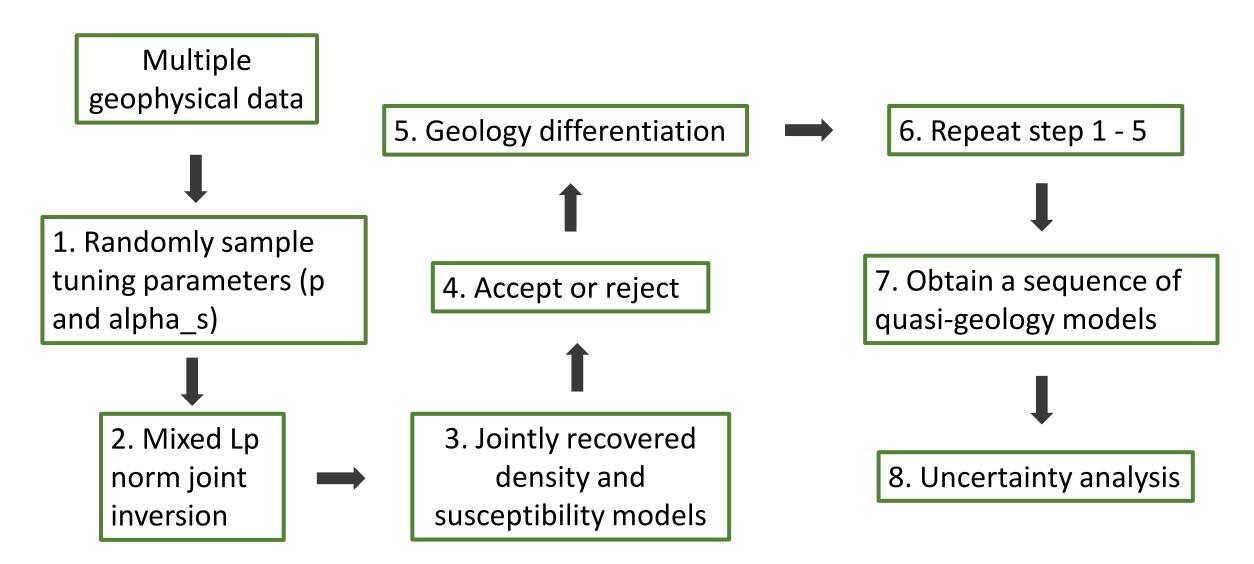




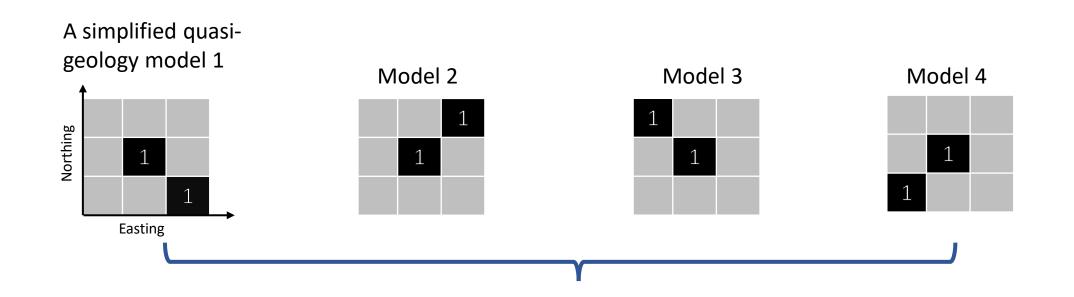


Wei and Sun (2022, GEOPHYSICS)

Workflow for probabilistic quasi-geology model



Uncertainty analysis: uncertainty of spatial distribution

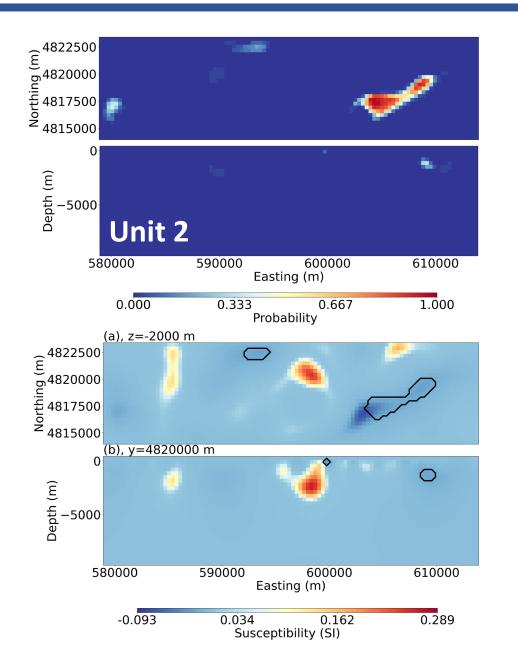


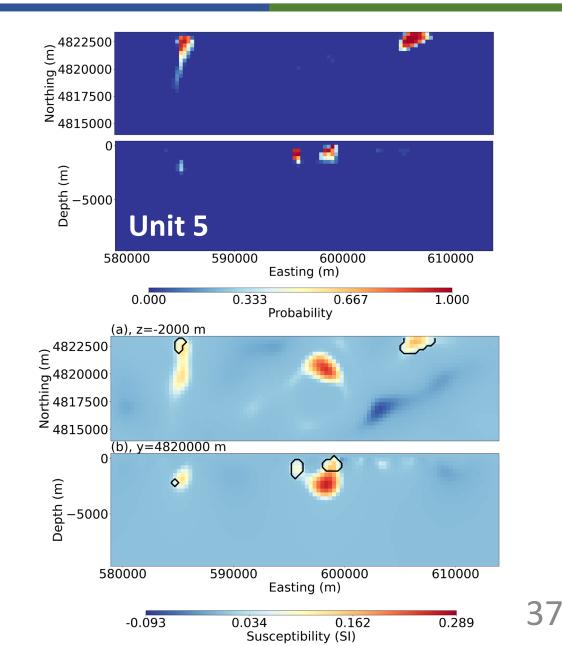
25%	0%	25%
0%	100%	0%
25%	0%	25%

Probabilistic quasi-geology model

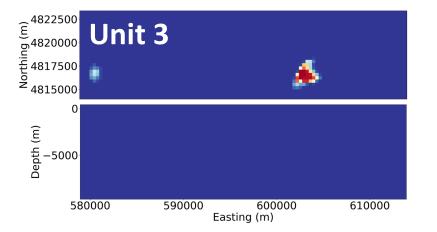
Wei and Sun (2022, GEOPHYSICS)

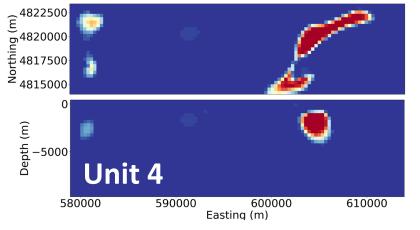
Uncertainty analysis: uncertainty of spatial distribution

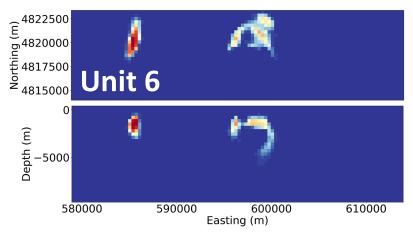


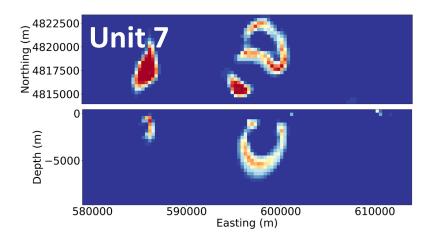


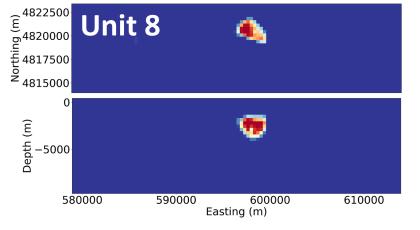
Uncertainty analysis: uncertainty of spatial distribution

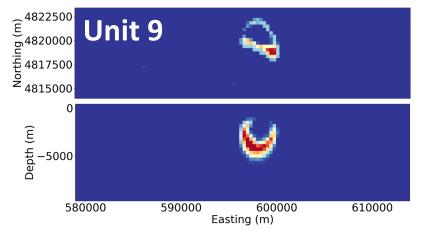


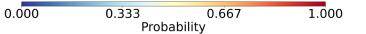




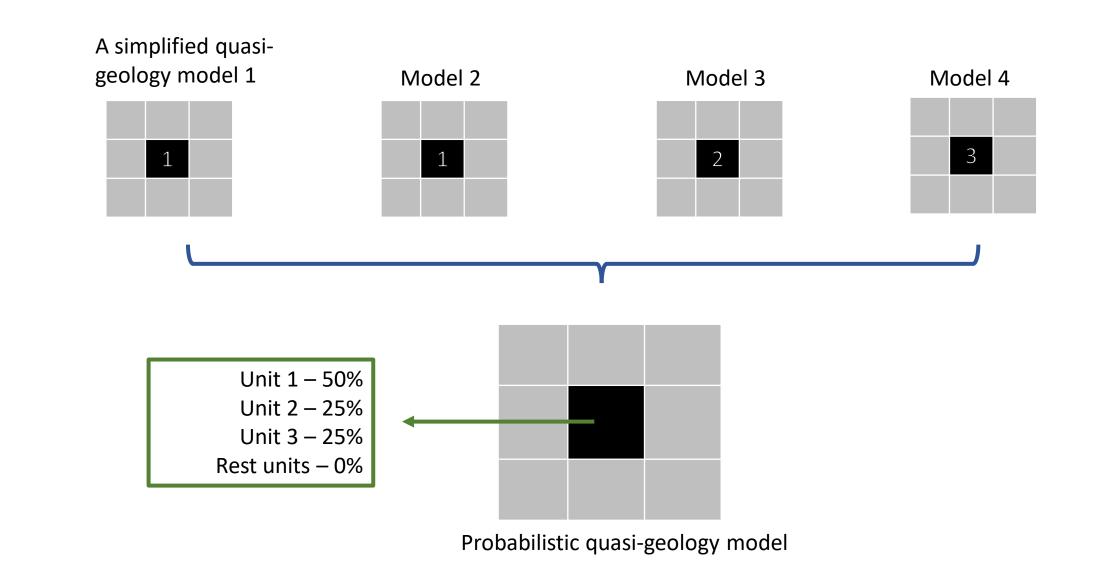




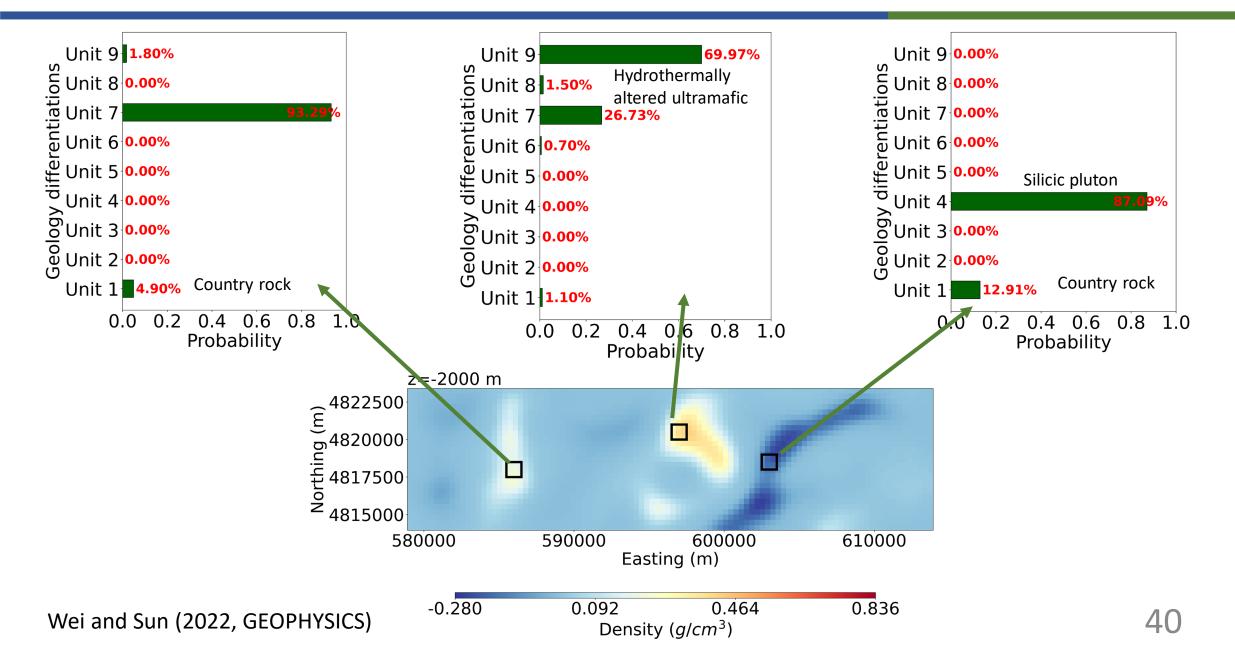




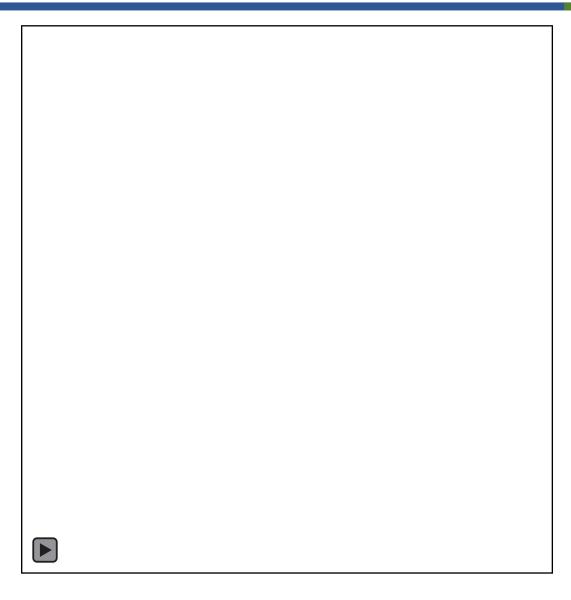
Uncertainty analysis: probability of lithologic types



Uncertainty analysis: probability of lithologic types



3D probabilistic quasi-geology model



OUTLINE

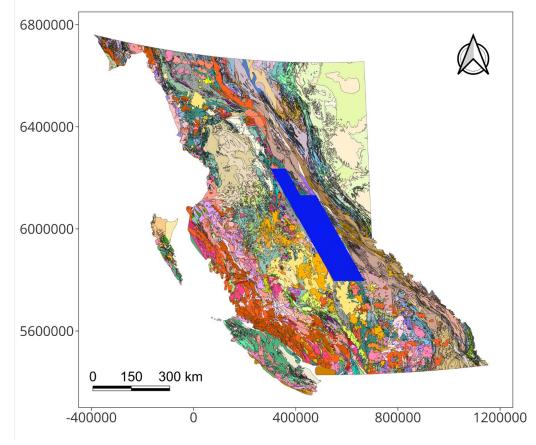
- Introduction
- Part I: Building probabilistic quasi-geology model
 - Methodology
 - Geological setting and geophysical data
 - Probabilistic geology differentiation
- Part II: Predicting mineral resources
- Conclusions

OUTLINE

- Introduction
- Part I: Building probabilistic quasi-geology model
 - Methodology
 - Geological setting and geophysical data
 - Probabilistic geology differentiation
- Part II: Predicting mineral resources
- Conclusions

Research background

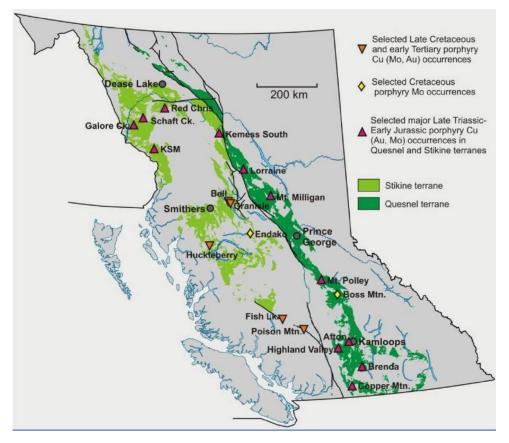
- QUEST area, British Columbia, Canada
- Plenty of mineral resources



Cui et al. (2017, BC Digital Geology)

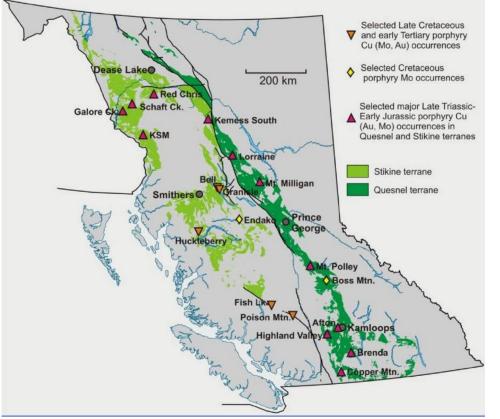
Research background

- QUEST area, British Columbia, Canada
- Plenty of mineral resources



Research background

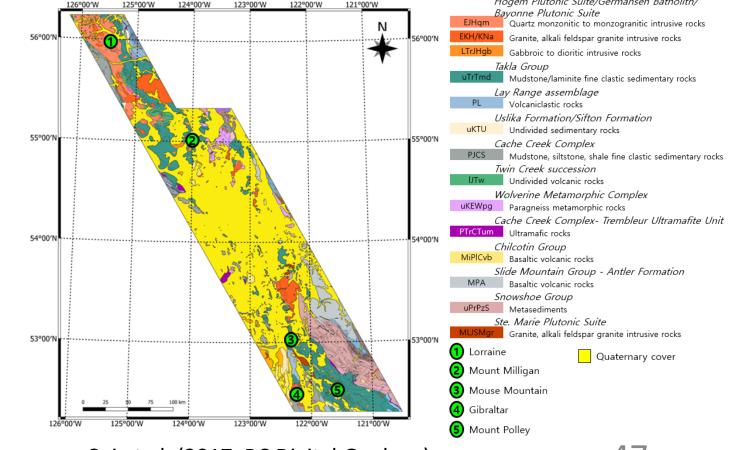
- QUEST area, British Columbia, Canada
- Plenty of mineral resources



Logan & Schiarizza (2011, BCGS talk)

Challenge: a thick layer of Quaternary glacial sediments (yellow area)

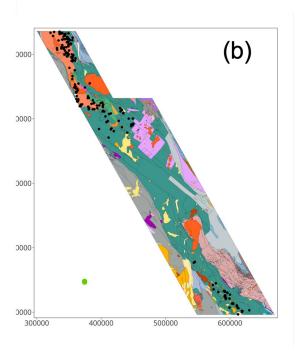
Hogem Plutonic Suite/Germansen Batholith/

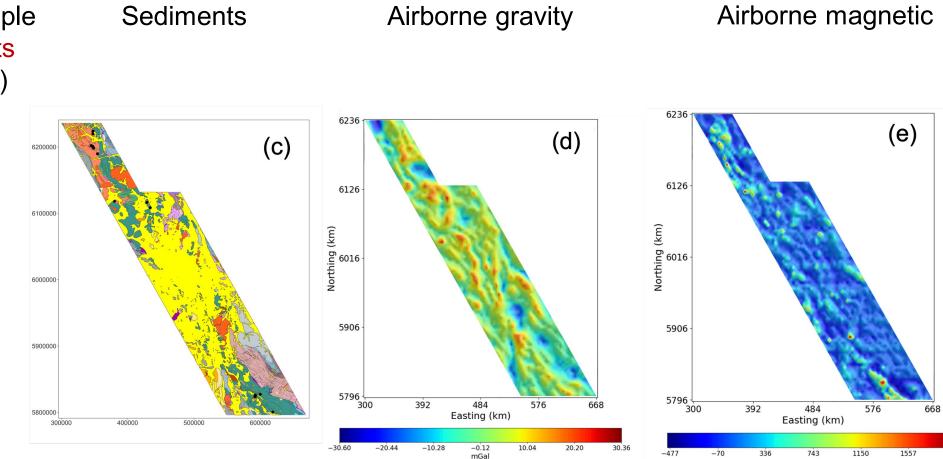


Cui et al. (2017, BC Digital Geology)

An overview of data

Bedrock map & rock sample measurements (black dots are copper-gold porphyry)





nT

Geology & geophysical response of porphyry copper-gold deposits

Bedrock maps

6130000

6125000

6120000

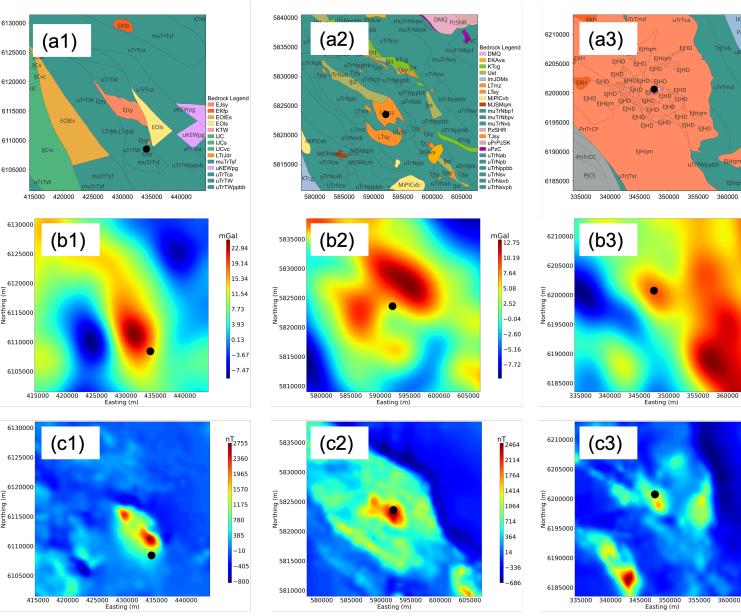
6115000

6110000

6105000

Gravity

Magnetic



Wei et al. (2023, to be submitted)

Mt. Milligan

49

Bedrock Legend

EJHD

EJHqm EKH

IKcg

PJCS

PnTrCC

PnTrCP

PL

TrJTgs TrJTvb

uKTU

uTrJTst uTrTca

uTrTmd

uTrTWppbb

mGal

14.78

11.09

7.39

3.70

0.01

-3.68

-7.37

-11.06

-14.75

nT

2786

2390

1995

1599

1203

807

411

15

-380

Lorraine

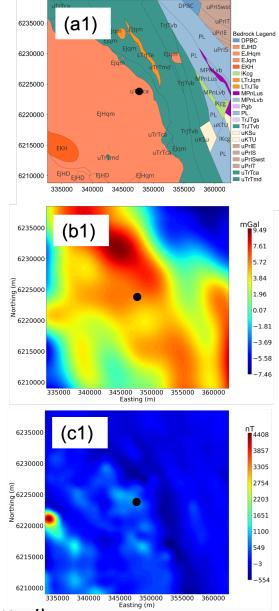
I Tr Hur

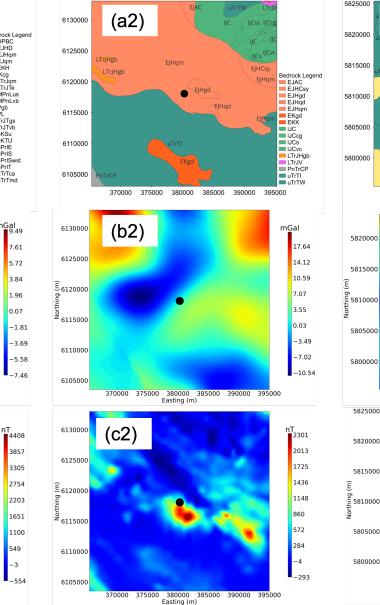
Geology & geophysical response of porphyry copper-gold deposits

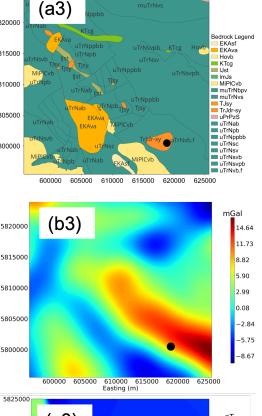
Bedrock maps

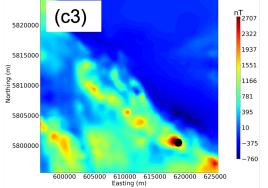
Gravity

Magnetic



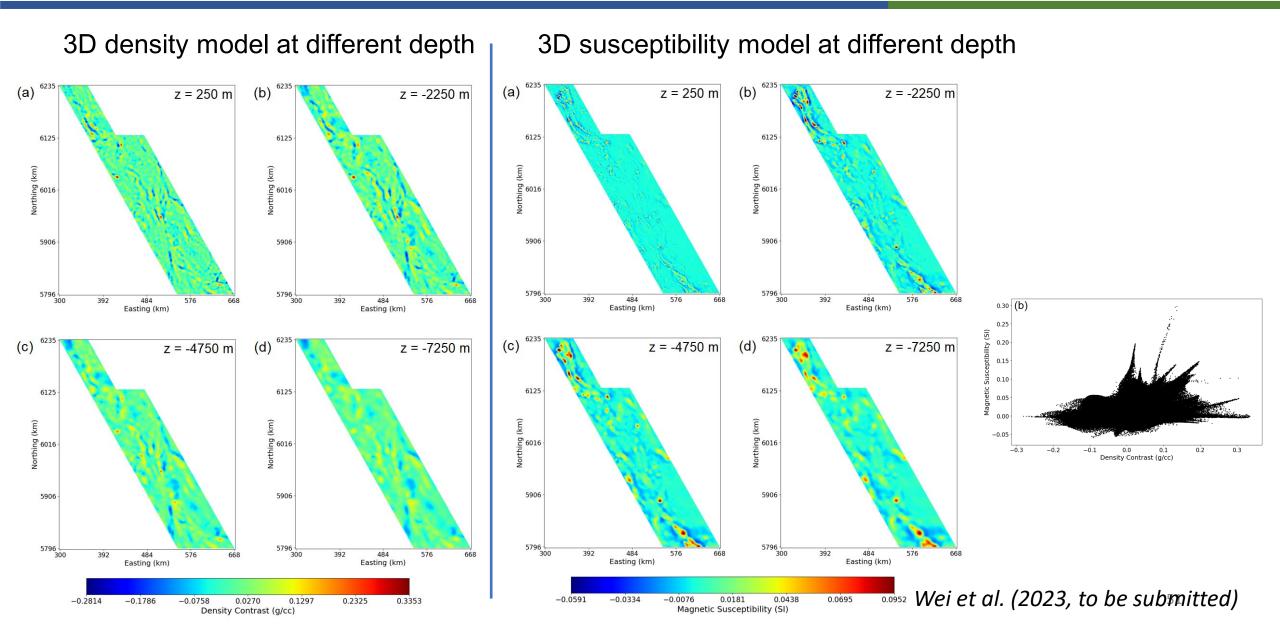






Wei et al. (2023, to be submitted)

3D joint inversion for whole area (over 12 million model parameters)



Mapping mineral resources

2000.000

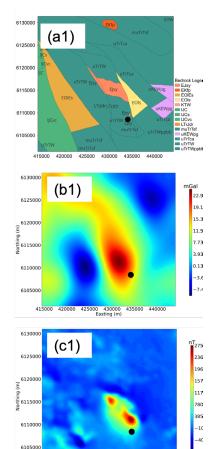
0.000

Depth (m) -2000.000

-4000.000

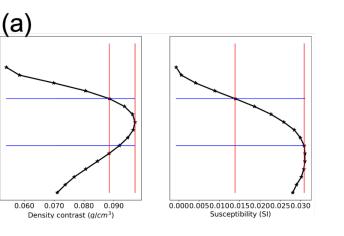
-6000.000

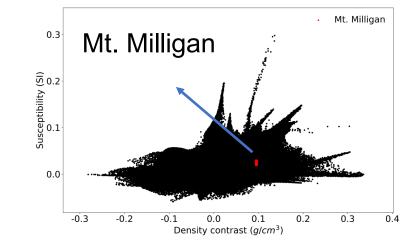
Mt. Milligan (Intermedia gravity and lower magnetic signals)

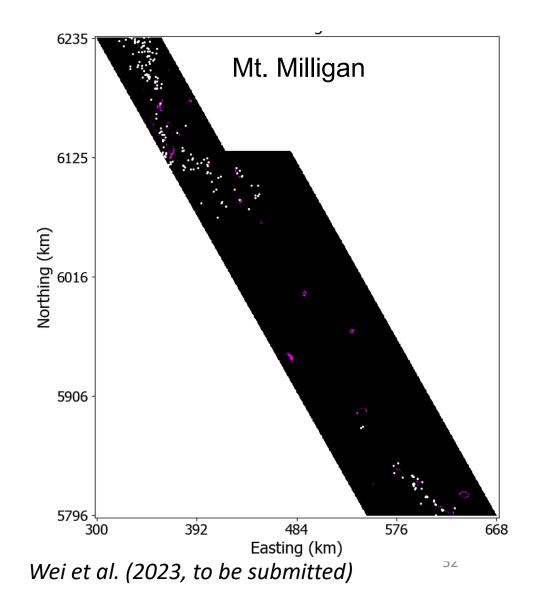


415000 420000 425000 430000 435000

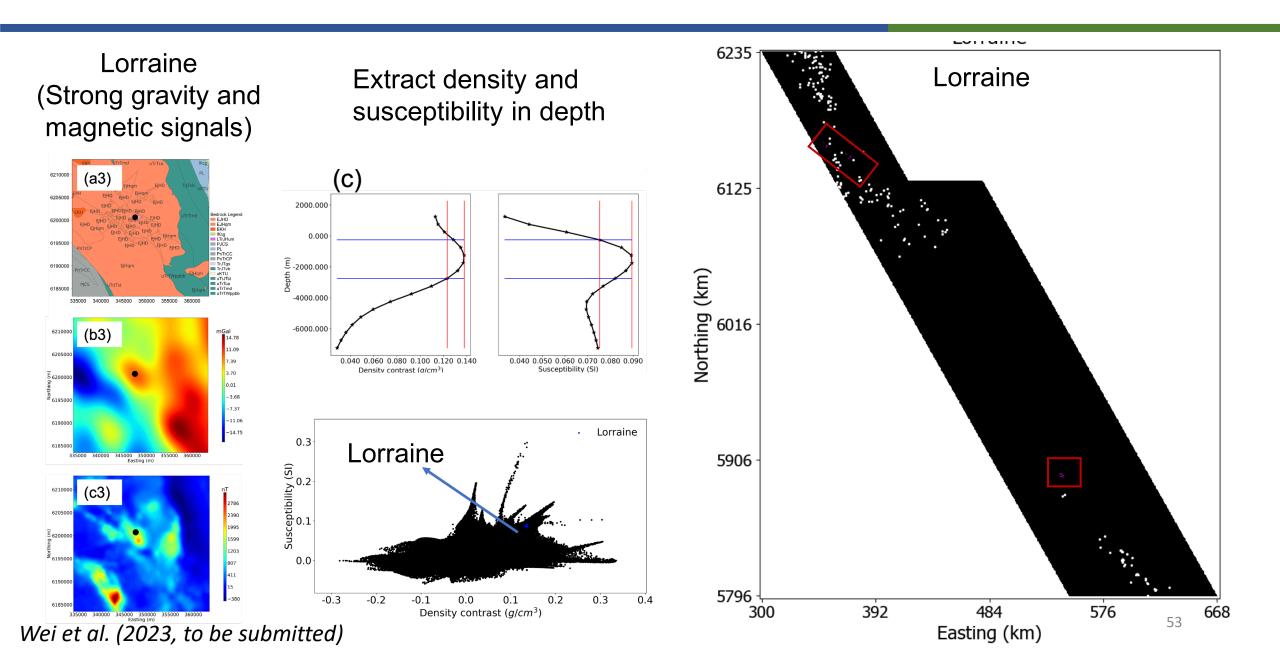
Extract density and susceptibility in depth



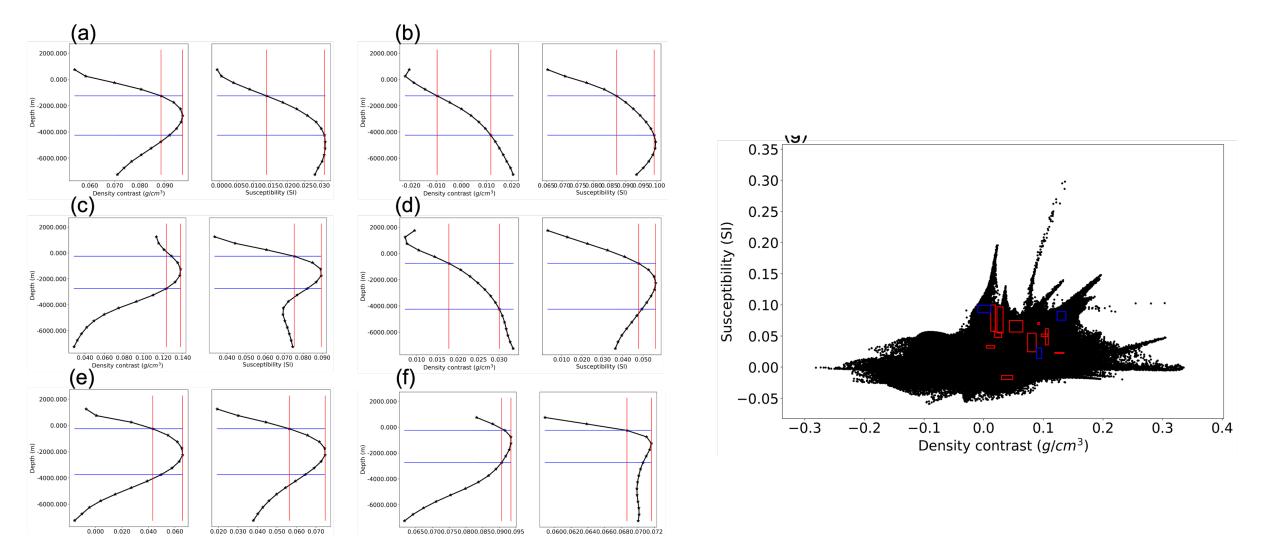




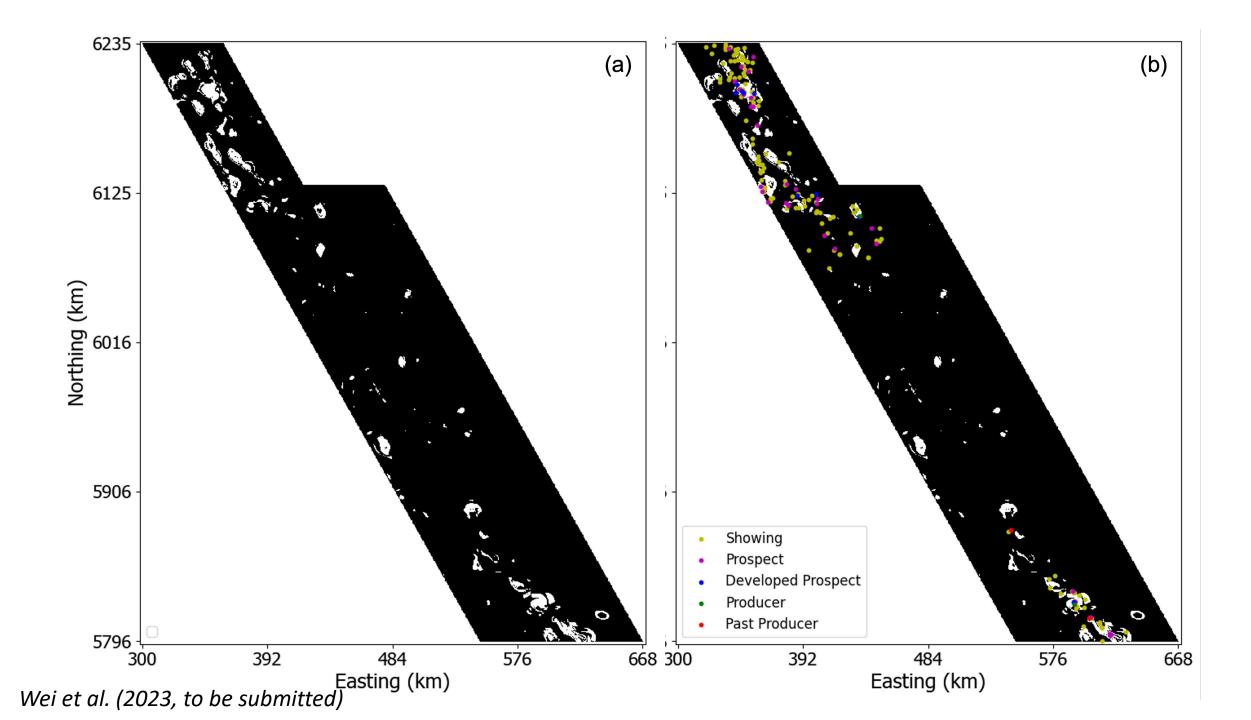
Mapping mineral resources



Mapping mineral resources



Wei et al. (2023, to be submitted)

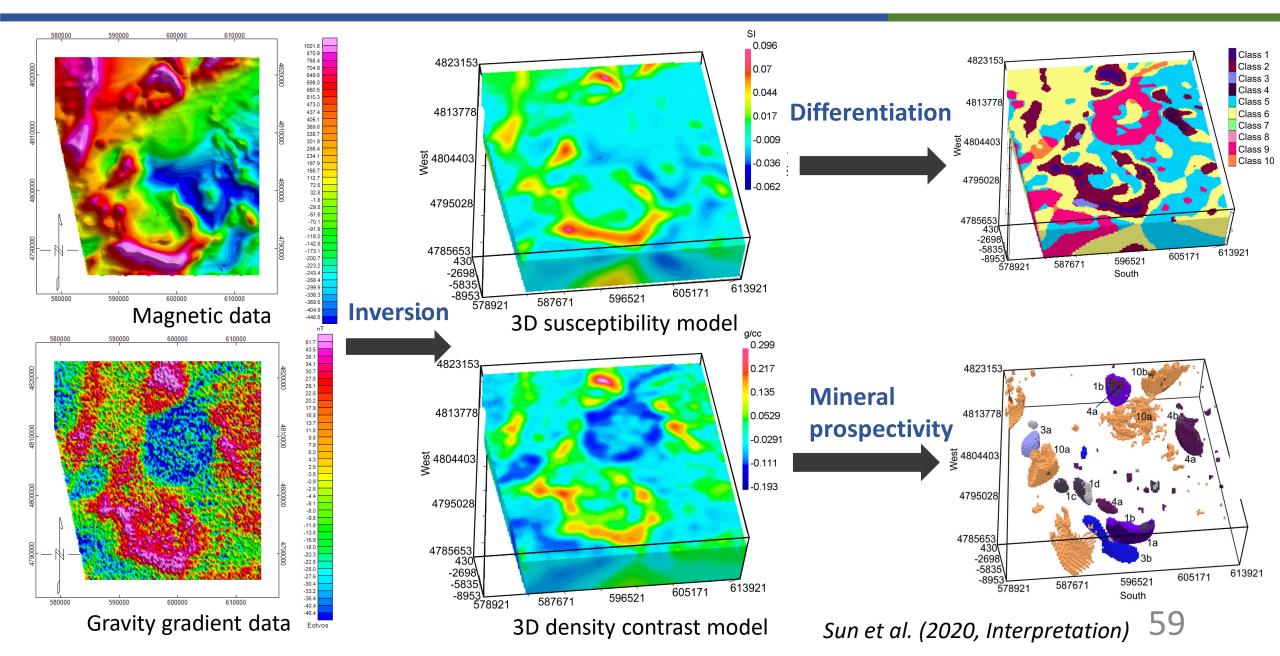


- Our differentiation and prediction work is based on regularized inversions of geophysical data.
- Therefore, it is fundamentally limited by the spatial resolution of geophysical data and regularization.
- Some of the features might be due to smoothing.
- Machine learning methods can be useful for automating and improving the results.

- Develop an empirical method to construct 3D probabilistic quasi-geology models.
- Physical property measurements used to accept and reject inverted models.
- Analyze uncertainties of spatial distribution for geologic units.
- Quantify uncertainties of lithologic types at any location in research area.
- Uncertainty provides new constraints for interpretations and should always be considered

- Extract geophysical signatures from randomly selected sites (training set).
- Make predictions of potential mineral resources (test set).
- Represent testable hypotheses and provide guidance for future drilling activities and geophysical data acquisition.
- Building quasi-geology models and predicting mineral resources help extract more information from geophysical data and maximize its value.

Conclusions



ACKNOWLEDGMENTS

- Benjamin Drenth for making core sample measurements available for our work in the Decorah area.
- The SimPEG team for developing the open source package upon which we built our work.
- HPE Data Science Institute at University of Houston for the computing resources.

THANKS FOR YOUR ATTENTION!

QUESTIONS?

Existing methods for uncertainty analysis

MC sampling

Mosegaard and Tarantola, 1995; Sambridge, 1995; Malinverno, 2002; Bodin, 2009; Agostinetti and Malinverno, 2010; Piana Agostinetti et al., 2015; Zhang et al., 2018, 2020.

Model covariance matrix

Alumbaugh and Newman, 2000; Duet and Sinoquet, 2006; Osypov et al., 2013; Zhu et al., 2016; Eliasson and Romdhane, 2017

Null space shuttles

Deal and Nolet, 1996; Munoz and Rath, 2006; De Wit et al., 2012; Fichtner and Zunino, 2019

Varying initial models or reference models

Kelbert et al., 2012; Maag-Capriotti and Li, 2019

Physical property models

Computational time

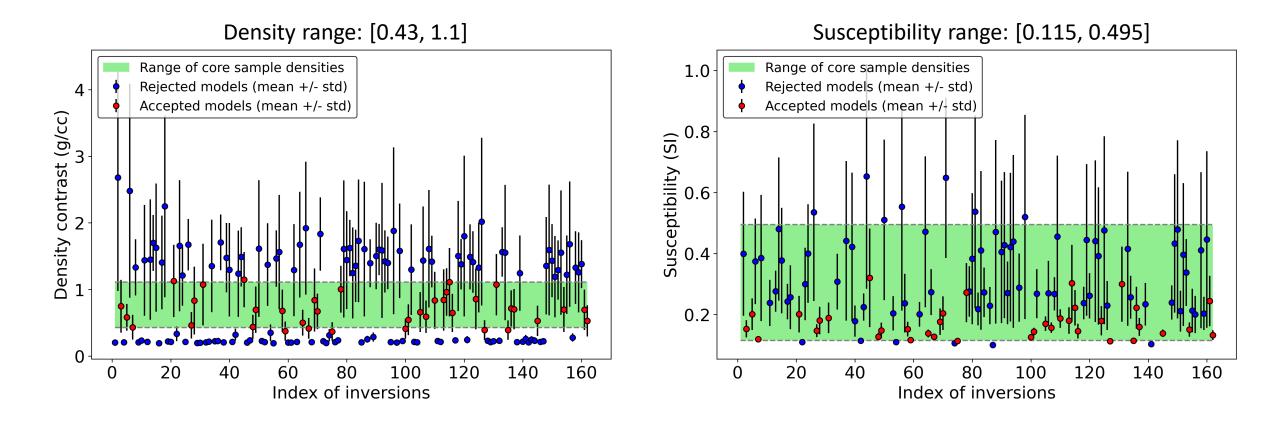
	Our method	MC sampling
Unknown parameters	287100	Up to few thousand
Computational time	Less than 1 month (12 cores and 256 Gb memory)	Few weeks to months

Mixed Lp norm joint inversion is time consuming, but it is manageable!

Why 162 inversions

Wei and Sun (2020) noted that the 30 accepted models are enough to analyze uncertainties. We kept performing inversions until we obtained over 30 accepted models.

How to determine 37 accepted models



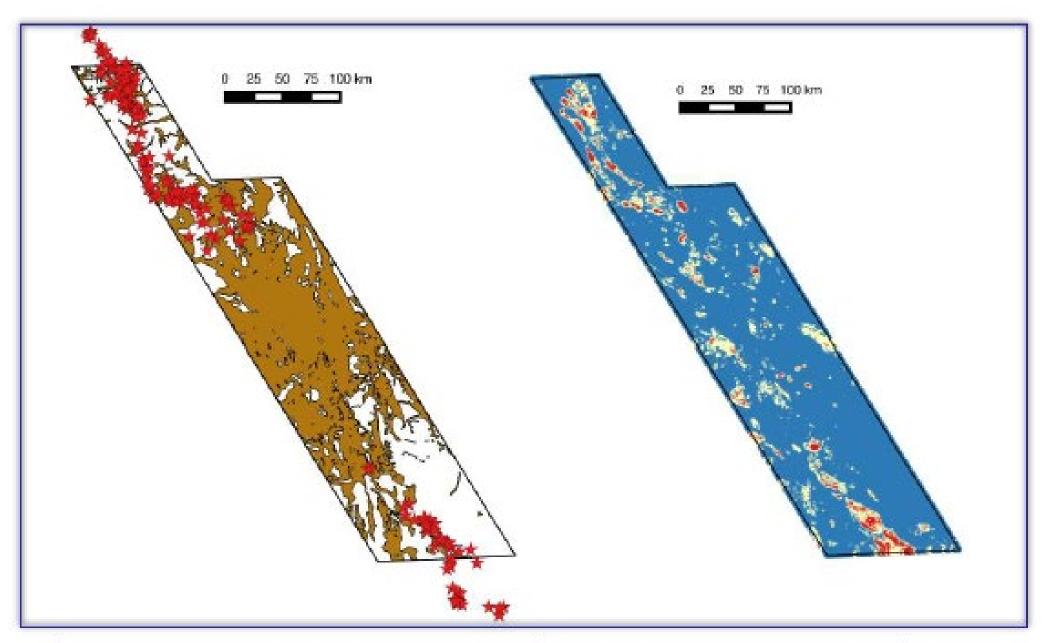
Can machine learning classify geologic units?

No,

- We don't have enough labels for supervised machine learning in our research area
- If we have labels (drillhole sample measurements), the inverted values are still different with rock sample measurements. We need to shift the inverted values (more research need here).

Yes,

Geology differentiation by applying unsupervised machine learning to multiple independent geophysical inversions (Melo and Li, 2021)



Left: Known mineralization & overburden Right: Predicted mineral potential (red is high)