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How to transport µ to ν?

Let (Yt)t≥0 be the Langevin dynamics:

dYt = ∇ log

(
dν

dx

)
(Yt)dt + dBt , Y0 ∼ µ,

with (Bt)t≥0 a Brownian motion in Rd .

Let (Qt) be the Langevin

semigroup: Qtη(x) = E [η(Yt)|Y0 = x ], and let ρt := Qt

(
dµ
dν

)
dν

so that the path of measures (ρt)t≥0 interpolates between ρ0 = µ

to ρ∞ = ν.

2



How to transport µ to ν?

Let (Yt)t≥0 be the Langevin dynamics:

dYt = ∇ log

(
dν

dx

)
(Yt)dt + dBt , Y0 ∼ µ,

with (Bt)t≥0 a Brownian motion in Rd . Let (Qt) be the Langevin

semigroup: Qtη(x) = E [η(Yt)|Y0 = x ],

and let ρt := Qt

(
dµ
dν

)
dν

so that the path of measures (ρt)t≥0 interpolates between ρ0 = µ

to ρ∞ = ν.

2



How to transport µ to ν?

Let (Yt)t≥0 be the Langevin dynamics:

dYt = ∇ log

(
dν

dx

)
(Yt)dt + dBt , Y0 ∼ µ,

with (Bt)t≥0 a Brownian motion in Rd . Let (Qt) be the Langevin

semigroup: Qtη(x) = E [η(Yt)|Y0 = x ], and let ρt := Qt

(
dµ
dν

)
dν

so that the path of measures (ρt)t≥0 interpolates between ρ0 = µ

to ρ∞ = ν.

2



The continuity equation

The Langevin path (ρt)t≥0 satisfies the continuity equation

∂tρt +∇(Vtρt) = 0,

where

Vt(x) = −∇ log

(
dρt
dν

)
(x) = −∇ logQt

(
dµ

dν

)
(x)

(because ∂tQtη = ∆Qtη + 〈∇Qtη,∇ log
(
dν
dx

)
〉).
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Transportation along Langevin semigroups

Define the family of diffeomorphisms St : Rd → Rd by

∂tS t(x) = Vt(S t(x)), S0(x) = x .

S t transports µ = ρ0 to ρt and T t := S−1t transports ρt to ρ0 = µ.

The transport maps along Langevin semigroups are defined as

SLVN := lim
t→∞

S t transports µ = ρ0 to ρ∞ = ν,

T LVN := lim
t→∞

T t transports ν = ρ∞ to ρ0 = µ.
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Warm-up

Theorem (Mikulincer, S)

• If ν = γd and µ = κ-log-concave (i.e.,

−∇2 log
(
dµ
dx (x)

)
� κId), for κ > 0, then T LVN is

1√
κ

-Lipschitz. The result is sharp and already follows from

results of Kim and E. Milman.

• If ν = γd and µ = log-concave and β-log-convex (i.e.,

−∇2 log
(
dµ
dx (x)

)
� βId), for β > 0, then SLVN is

√
β-Lipschitz. The result is sharp.

The theorem parallels the analogous results for the optimal

transport map.
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Semi-log-concave measures with bounded support

Theorem (Mikulincer, S)

• If ν = γd and µ is κ-log-concave with diam(supp(µ)) ≤ R,

and κR2 < 1, then T LVN is e
1−κR2

2 R-Lipschitz.

• In particular, if µ is log-concave (so κ = 0) with

diam(supp(µ)) ≤ R, then T LVN is e1/2R-Lipschitz. The order

of the Lipschitz constant is sharp.

The question (due to Kolesnikov) of whether the optimal transport

map from γd to µ which is log-concave with diam(supp(µ)) ≤ R

is O(R)-Lipschitz, is open.
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Gaussian mixtures with bounded mixing measure

Theorem (Mikulincer, S)

If ν = γd and µ = γd ?m with diam(supp(m)) ≤ R, then T LVN

is e
R2

2 -Lipschitz. The order of the Lipschitz constant is sharp.

The theorem leads to improved log-Sobolev inequalities for

mixtures of Gaussians.
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Further Lipschitz properties

Theorem (Kim, E. Milman)

If ν = measures with sufficient symmetries (e.g Gaussian γd) and

µ = more log-concave than ν, then T LVN is 1-Lipschitz.

Theorem (Klartag, Putterman)

If ν = µ ? γd and µ = log-concave, then T LVN is 1-Lipschitz.

Theorem (Neeman)

If ν = γd and µ = e−Udγd where U∗ ≤ U ≤ U ∗+c with U∗

convex and c a constant, then T LVN is ec -Lipschitz.
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Transport along Langevin semigroups vs. Brownian transport

map

• The order of the Lipschitz constants of both transport maps is

roughly the same but with some differences.

• The Brownian transport map has the “Lipschitz on averaged”

property for log-concave measures (crucial for the

Kannan-Lovász-Simonovits conjecture) which is not known for

any finite-dimensional transport map (including transport

along Langevin semigroups).

• Since the transport map along the Langevin semigroup is a

finite-dimensional map it can be used to prove dimensional

functional inequalities (e.g. eigenvalues comparison, see

later), unlike the Brownian transport map.

• There are some similarities in the proof techniques for both

transport maps.
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Transport of functional inequalities

Suppose there exist an L-Lipschitz map T : Rd → Rd which

transports γd to µ.

Then µ satisfies a Poincaré inequality with constant L2:

Varµ(f ) = Varγd (f ◦ T ) ≤ Eγd
[
|∇(f ◦ T )|2

]
≤ Eγd

[
|DT |2|∇f (T )|2

]
≤ L2Eγd

[
|∇f (T )|2

]
= L2Eµ

[
|∇f |2

]
.
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Eigenvalue comparisons (à la E. Milman)

Denote by λi (µ) and λi (γd) the eigenvalues of the Langevin

semigroup operators ∆ +
〈
∇,∇ log dµ

dx

〉
and ∆ +

〈
∇,∇ log dγd

dx

〉
,

respectively.

Corollary

• If ν = γd and µ is κ-log-concave with diam(supp(µ)) ≤ R,

and κR2 < 1, then

λi (µ) ≥ 1

e1−κR2R2
λi (γd).

• If ν = γd and µ = γd ?m with diam(supp(m)) ≤ R, then

λi (µ) ≥ 1

eR2 λi (γd).
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Isoperimetric inequalities

Gaussian isoperimetric inequality: For any ε ≥ 0,

γd(K + εBd) ≥ Φ(Φ−1(γd(K )) + ε)

where Bd ⊂ Rd is unit ball and Φ is cumulative distribution

function of one-dimensional standard Gaussian.

Corollary

If µ is log-concave with diam(supp(µ)) ≤ R, then

µ(K + εBd) ≥ Φ
(

Φ−1(γd(K )) +
ε

e1/2R

)
.
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Waist inequalities

Gromov: Let 1 ≤ ` ≤ d and f : Rd → R` continuous. There exists

t ∈ R` such that, for all ε > 0, γd(f −1(t) + εBd) ≥ γ`(εB`).

Klartag (localization technique): If K ⊂ Rd convex body and

f : Rd → R` continuous, then

sup

t∈ R`
Voln−`(f

−1(t)) ≥ Voln(K )

supE :dimE=`Vol`(K ∩ E )
.

Combining transport method (due to Klartag) with our above

Lipschitz properties, we can show the weaker result

sup

t∈ R`
Voln−`(f

−1(t)) ≥ 1

c`
Voln(K )

diam(K )`
.

13



Waist inequalities

Gromov: Let 1 ≤ ` ≤ d and f : Rd → R` continuous. There exists

t ∈ R` such that, for all ε > 0, γd(f −1(t) + εBd) ≥ γ`(εB`).

Klartag (localization technique): If K ⊂ Rd convex body and

f : Rd → R` continuous, then

sup

t∈ R`
Voln−`(f

−1(t)) ≥ Voln(K )

supE :dimE=`Vol`(K ∩ E )
.

Combining transport method (due to Klartag) with our above

Lipschitz properties, we can show the weaker result

sup

t∈ R`
Voln−`(f

−1(t)) ≥ 1

c`
Voln(K )

diam(K )`
.

13



Waist inequalities

Gromov: Let 1 ≤ ` ≤ d and f : Rd → R` continuous. There exists

t ∈ R` such that, for all ε > 0, γd(f −1(t) + εBd) ≥ γ`(εB`).

Klartag (localization technique): If K ⊂ Rd convex body and

f : Rd → R` continuous, then

sup

t∈ R`
Voln−`(f

−1(t)) ≥ Voln(K )

supE :dimE=`Vol`(K ∩ E )
.

Combining transport method (due to Klartag) with our above

Lipschitz properties, we can show the weaker result

sup

t∈ R`
Voln−`(f

−1(t)) ≥ 1

c`
Voln(K )

diam(K )`
.

13



Waist inequalities

Gromov: Let 1 ≤ ` ≤ d and f : Rd → R` continuous. There exists

t ∈ R` such that, for all ε > 0, γd(f −1(t) + εBd) ≥ γ`(εB`).

Klartag (localization technique): If K ⊂ Rd convex body and

f : Rd → R` continuous, then

sup

t∈ R`
Voln−`(f

−1(t)) ≥ Voln(K )

supE :dimE=`Vol`(K ∩ E )
.

Combining transport method (due to Klartag) with our above

Lipschitz properties, we can show the weaker result

sup

t∈ R`
Voln−`(f

−1(t)) ≥ 1

c`
Voln(K )

diam(K )`
.

13



High level idea of proofs

Recall

∂tS t(x) = Vt(S t(x)), S0(x) = x ,

so

∂t∇S t(x) = ∇Vt(S t(x))∇S t(x).

Lemma

• The Lipschitz constant of T LVN is at most

exp
(∫∞

0 supx λmax(−∇Vt(x))dt
)
.

• The Lipschitz constant of SLVN is at most

exp
(
−
∫∞
0 infx λmin(−∇Vt(x))dt

)
.
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Transport along Langevin semigroups vs. optimal transport

(1/2)

Recall

∂t∇S t(x) = ∇Vt(S t(x))∇S t(x).

If {∇Vt(S t(x))}t commute then

∇S t(x) = exp

(∫ t

0
∇Vs(S s(x))ds

)
.

Hence, ∇S is positive-semidefinite so that St is a gradient of

convex function. It follows that T LVN = optimal transport map.

The above argument, due to Kim and Milman, shows that in

dimension 1, the transport map along Langevin semigroups is

identical to the optimal transport map.
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Transport along Langevin semigroups vs. optimal transport

(2/2)

The above argument, due to Kim and Milman, shows that in

dimension 1, the transport map along Langevin semigroups is

identical to the optimal transport map.

What about dimension > 1?

Question was left open by Kim and Milman but was solved by

Tanana who showed that, in general, the two maps are not the

same. Specifically, take ν and µ to be Gaussian measures with

non-identity covariance matrices.
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Back to high level idea of proofs

Recall

∂tS t(x) = Vt(S t(x)), S0(x) = x ,

so

∂t∇S t(x) = ∇Vt(S t(x))∇S t(x).

Lemma

• The Lipschitz constant of T LVN is at most

exp
(∫∞

0 supx λmax(−∇Vt(x))dt
)
.

• The Lipschitz constant of SLVN is at most

exp
(
−
∫∞
0 infx λmin(−∇Vt(x))dt

)
.

17



Proofs: upper bounds

The key is to control λmax(−∇Vt(x)). We construct explicit

functions F ,G such that:

Lemma

If diam(supp(µ)) ≤ R then

sup
x
λmax(−∇Vt(x)) ≤ F (t,R).

If µ is κ-log-concave

sup
x
λmax(−∇Vt(x))

≤ G (t, κ)

for all t ∈ [0, 1] if κ ≥ 0,

for all t ∈
[
0, 12 log

(
κ−1
κ

)]
if κ ≥ 0.
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.

• When t is small, F is bad but G is good. When t is large, F

is good and G is bad.

• To prove Lemma represent ∇Vt(x) as covariance matrix and

then use Brascamp-Lieb inequality. 19



Proofs: lower bounds

The key is to control λmin(−∇Vt(x)).

Lemma

If µ is β-semi-log-convex then

inf
x
λmin(−∇Vt(x))

≥ corresponding term when µ is a Gaussian measure

with covariance
1

β
Id .
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Thank You
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