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Objective

Study large scale optimization problems that have permutation symmetries.

-

e Exploiting symmetries allow taking limits of the size of optimization problems.
For n € N, consider minimizing the following interaction energy V,,: R" — R

n

1 1 2
Vi(z) = w2 i(mi - zj)
. =1
o Starting from {X; o}, R po, one can perform a gradient flow:

1 .
dXie = —— _z;(x“ —X;)dt, VYi€[n],t>0.
=
o Notice that V,, is essentially a function of the empirical measure of its inputs!

Vi(z) = Var(Emp,, (z)) .

Can we approximate this problem by lifting it over the space of probability measures? )
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Motivation Particle systems

Particle System to Measures

o If a function V,,: R™ — R is invariant under permutations of its input,
then it can be extended to a function on its empirical measure, and perhaps to a
function V: P(R) — R.

Gradient flows on Graphons March 22, 2022 3/28



Particle systems

Particle System to Measures

o If a function V,,: R™ — R is invariant under permutations of its input,
then it can be extended to a function on its empirical measure, and perhaps to a
function V: P(R) — R.

o For the interaction energy V,,, we know that V(p) = Var(p) for p € P(R).

o Notice that for all n € N,

min V,, = min Var .
Rn P(R)

@ One can solve the latter using Wasserstein gradient flows!

e One may also add a noise term.
1 ,
dXip=—— > (Xiw = Xj0) +V/28dBiy, Vi€[n], t>0,
j=1

where B; is the standard Brownian motion on R"™, and 5 > 0.

o This SDE captures the Wasserstein gradient flow of Var + SEnt: P(R) — R, the
entropy-regularized optimization.

Benefits

Approximations and universal limits.

= =i = — Ty
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Optimization on Large Graphs

Q. What about optimization over dense unlabeled (weighted) graphs?
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Large unlabeled Graphs

Optimization on Large Graphs

Q. What about optimization over dense unlabeled (weighted) graphs?

Triangle density
Let G be a finite simple graph with n vertices,

ha(G) = Number of triangles in G .

n3

For a graph with adjacency matrix A one can define

Number of triangles in G = Z H Ap(i),80) -
¢: [B]=V(G) {i,j}€E(G)

The above formula works even when A is a symmetric matrix of real edge weights.
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Large unlabeled Graphs

Optimization on Large Graphs

Scalar Entropy

For a graph G with adjacency matrix A, let h(p) = plogp + (1 — p) log(1 — p),

E(G) = QZh

4,j=1

e Scalar Entropy is 0 for all unweighted graphs.
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Large unlabeled Graphs

Optimization on Large Graphs

Scalar Entropy
For a graph G with adjacency matrix A, let h(p) = plogp + (1 — p) log(1 — p),

E(G) = QZh

4,j=1

e Scalar Entropy is 0 for all unweighted graphs.

A Problem on Statistics of Exponential Random Graphs
Consider minimizing ha + E over the set of all graphs. J

See Diaconis and Janson 2008, Chatterjee & Varadhan 2011, Lovasz 2012, Lubetzky
and Zhao 2015 etc.
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Large unlabeled Graphs

Is there a symmetry?

o Notice that unlabeled graphs have a symmetry under vertex relabeling.

ST

Figure: Symmetry in unlabeled graphs.

o le., for an unlabeled graph G with n vertices.
If A'is its adjacency matrix, so is Ax = (Ar(i) (), ;-

=Ar.

= o = O
— o
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OO ==
o R S

0
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1

o This makes these graphs exchangeable under this symmetry. See Aldous ’81, ’82,
and Austin 08, ’12.

o= O =
[en)
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Motivation Large unlabeled Graphs

Neural Networks: Another Example

d
ZU ijTog), A€ R™*¢ Ry (A) = Ex vy~ u[l(Y, §(X))] -

A Mean Field View of the Landscape of Two-Layer Neural Networks - Mei, Montanari &
Nguyen, 2018

On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal
Transport - Chizat & Bach, 2018
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What we need?

@ A common embedding that contains all unlabeled graphs

A suitable topology of ‘graph convergence’

Completion under a metric

o A notion of ‘differentiable structure’ to define ‘gradient flow’ on this space.
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ation/Preliminaries Embedding

Kernels and Graphons

Kernels W

A kernel is a measurable function W: [0,1]* — [~1, 1] such that W (z,y) = W (y, z).

J

e Symmetric matrices can be converted into a kernel.

-16 —15 —-12 -7
1 |-15 —-14 —-11 1 !
16 |—-12 —-11 -6 4
-7 1 4 9

Symmetric matrix A Kernel representation of A

o (Weighted) Graphs < adjacency matrix < kernel.

1 7 000000111111
000000011111

2 3 000000001111
000000000111

3 9 000000000011
000000000001

4 10 100000000000
110000000000

5 11 111000000000
111100000000

6 12 111110000000
111111000000

Figure: Example 4.1.6, Graph Theory and Additive Combinatorics, Zhao

Oh, Pal, hi (UW)
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Embedding

Graphons

o Identify two kernels if one can be obtained by ‘permuting’ the other.

o Wi = W if there is a measure preserving transform ¢: [0,1] — [0, 1] such that

WY (x,y) = Wi(e(x), ¢(y)) = Wa(z,y) .

Space of Graphons w (Lovéasz & Szegedy, 2006)

W::W/% .

e For finite labeled graphs, the corresponding graphons are the equivalent classes
for identification modulo graph isomorphisms.

o Compare with a measure given by two different pushforwards 71,7%: [0,1] — R.
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Embedding

Invariant functions on Kernels = functions on graphons

o Recall the triangle density function

__ Number of triangles in G 1

ha(G) DY I Aswrem-

n3
¢: [B]=V(@) {i,j}eE(G)

e For a kernel W, the triangle density can be defined as

hA(W) = W($1,$2)W(1‘2,1’3)W($37501)dml d{EQ d$3 .
[0,1]3

@ ha is a function on the corresponding graphon. That is,
ha (V) =ha(W),

if V' can be obtained from W by vertex permutations.
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ion/Preliminaries Topology

Convergence of Graph(ons)

(a) Half Graph (Kernel)

00

1

(b) Limit of Half Graph

Graph Theory and Additive Combinatorics, Yufei Zhao
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ion/Preliminaries Topology

Convergence of Graph(ons)

N W
N BN

8
(a) Checkerboard

Q. Where does this sequence of

graphons converge?
(a) Half Graph (Kernel)

00

1

(b) Limit of Half Graph

Graph Theory and Additive Combinatorics, Yufei Zhao
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ion/Preliminaries Topology

Convergence of Graph(ons)

N W
N BN

8

(a) Checkerboard

Q. Where does this sequence of

graphons converge?
(a) Half Graph (Kernel)

0 1 1 5

0 2 6
3 7
4 8

(b) Checkerboard after vertex relabeling

1

(b) Limit of Half Graph

Graph Theory and Additive Combinatorics, Yufei Zhao
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ion/Preliminaries Topology

Convergence of Graph(ons)

N W
N BN

% 8
(a) Checkerboard
Q. Where does this sequence of

graphons converge?
(a) Half Graph (Kernel

1 5
2 6
3 7
4 8
(b) Checkerboard after vertex relabeling

A. Both (a) and (b) are the same
(b) Limit of Half Graph graphon, but two different kernel
representations.

Graph Theory and Additive Combinatorics, Yufei Zhao
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Preparation/Preliminaries Topology

Metrics on Graphons

o Recall: W1 2 W if there is a measure preserving transform ¢: [0,1] — [0, 1]
such that

WY (x,y) = Wi(e(x), ¢(y)) = Wa(z,y) .

o How to define metrics for graphon convergence?

A general recipe

Start with any norm || - || on functions [0,1]?> — [~1,1]. Define § as

8(Wh, Wa) = inf [ W) = Wal.
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Preparation/Preliminaries Topology

Cut Metric:

Wil = sup
s,T

W(z,y)dzdy| .
SxXT

Cut metric (Frieze & Kannan, 1999) metrizes graph convergence (Lovész &

Szegedy, 2006).
o (Gn),, converges in og if
lim (G

exists for all simple graphs F' € {—, A, A, N, U, O, K, x, X, ...}

(17\1\, o) is compact.”

Analogous to the weak topology over probabilities.

Example: Almost surely, random graph G(n,1/2) converges to constant graphon

Wiz,y) =1/2, Y (z,y) € [0,1]*.

Luses Szemerédi’s regularity lemma
Oh, Pal, Somani & Tripathi (UW) Gradient flows on Graphons March 22, 2022 14 /28




ICHWAS ISR Metric over Graphons

Invariant L? metric &9

For ||| = [ -l 12((0,12), We get the Invariant L? metric §s.

e Stronger than the cut metric (i.e., 0g < d2).

Gromov-Wasserstein distance between the metric measure spaces
([0,1],Leb, W1) and ([0, 1], Leb, W3).

Provides geodesic metric structure on W.

o Allows notion of geodesic convexity.

Analogous to the Wasserstein-2 metric over measures.

Borgs, Chayes, Lovasz, Sés & Vesztergombi, 2008
Gradient flows on Graphons March 22, 2022
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Differentiable structure

What is a ‘gradient flow’ on a metric space?

On R?
The ‘gradient flow’ u of a function
F:R? - R is given by solutions of

u'(t) = =V F(u(t)) ,
—F(u(t)) = (' (), VF(u(t)))

712 1 2
> f5|uy (1)~ S IVE (o)

A curve u is a gradient flow of F' if

) < —31W/1°(8) = 3IVF(u) . J

Gradient Flows in Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli
& Savaré, 2005
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Differentiable structure

What is a ‘gradient flow’ on a metric space?

On R? On (W, d2)
The ‘gradient flow’ u of a function Consider a curve w and a function F on W.
F:R? - R is given by solutions of
) . o ,
W) = —VE(u(t) @ Speed of w: Metric derivative ||
d . P
EF < VF(u(t))) Metric Derivative of w
. O2(we, ws)
1, 42 1 (1) = lim ———2—22
> f§|u/’ (t) — 5\VF(u(t))|2 . [ ®) sot |t — s8]
o Gradient of F': Fréchet-like derivative
A curve u is a gradient flow of I if Fréchet-like derivative of F: DF'
LPut)) < —%|u’|2(t) — LVE(u@®))?. J Provides a local linear approximation of FJ

A curve u is a gradient flow of F' if

T Fw®) < =3Iw'*(t) = 3IDF (). J

Gradient Flows in Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli
& Savaré, 2005
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LSRRI Differentiable structure

Fréchet-like derivative and existence of gradient flow

Theorem [OPST ’21]
If F
o has a Fréchet-like derivative,
@ is geodesically semiconvex in dgz,

then starting from any W, € )7\7, there exists a unique gradient flow curve (W)
for F.
The curve satisfies ODE

teR

t
W, =Wy —/ DF(Ws)ds ,
0

inside W. At the boundary of 17\/\, add constraints to contain it.
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LSRRI Differentiable structure

Gradient flows on graphons

o For the triangle density function ha,

hA(W) = W(ach:cz)W(xg,mg)W(xg,xl)dxl d:Cz d..T37
[0,1]*

its Fréchet-like derivative is

(Dha)(W)(z,y) = 3 / Wz, )W (2,5) dz

o Example of “potential energy”. Similarly, one has interaction energy and
internal energy.
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SIS LD ERT T WA ST PEPIERSTCEN Differentiable structure

Example

e For the scalar entropy function

) = [ nW (e p)dedy, hp) = ploa(p) + (1 —p) og(1 —p),

if 0 < W < 1, its Fréchet-like derivative is

(DE)(W)(z,y) = log(%) '

o Gradient flow ]
Wi(z,y) = —(DE)(Wi)(z,y) ,

converges to the constant W =1/2.
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LSRRI Differentiable structure

Example

o Given Dhr and DE, we can now perform a gradient flow to minimize ha + E
on the space of graphons.
e Given initial conditions, one needs to solve for all z,y € [0, 1],

Wi (z,y) = — {3 /01 Wz, z2)W(z,y)dz + log(%)} :

0 W(0.0) 0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
“8%0 025 os0  om 100 O

0

Figure: Gradient flow of ha + 10~ 1E
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Euclidean Gradient flow and Gradient flow on )7\/\

Consider a function F': W — R that has following gradient flow

W(t) = Wo — /t DF(W(s))ds .

o Note that the function F' can be regarded as a function on symmetric matrices
F.: M,, — R. Suppose that F,, has a gradient flow. It is then given by

t
v (1) = v —/ o (V<”>(s)> ds .
0

Question? J

Are the curves V(™ and W close (if n is large)?
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Convergence of Euclidean Gradient flows

Euclidean Gradient and Fréchet-like derivative

Fréchet-like derivative [OPST ’21]

A symmetric measurable function ¢ € L>°([0,1]?) is said to be Fréchet-like derivative
DF(W) of F at W € W if

F(U)=FW) ={($,U = W) 20012 _

li 0.
e 0 —WT,
|TU-=W]3—0
y
o Recall that F': W — R can be regarded as a function Fj,: M, — R.
o Let V, F, be Euclidean derivative of F,,: M, — R.
lim,, s 0o N>V, F (W) = DF(W) as graphons. )
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Convergence of Euclidean Gradient flows

Scalings of derivatives

Scaling derivatives for mean

F, (iZ‘S) N
i=1 i=1

VF, =11
n
F(p) = /wdu
VwF(u) =1.
lim nVF, = VwF(u).

n—o0

Scaling derivatives for edge density

1 n n ] )
FalAn) = 5 373" A(ing)
i=1 j=1
vr - L1
n
(W) = W(z,y)dzdy
[0,1]2
DF(W)=1
lim n’VF, = DF
n—oo
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Convergence of Euclidean Gradient flows

Euclidean gradient flow and gradient flow on Graphons

Gradient flow on 17\/\ Gradient flow on M,,
d d
W) = ~DF(W () V() = ~VaF(V(1)
= —n’V, F(W(t))

o The curve W(t) := V(n?t) satisfies

%W(t) — RV F(W () = —DF(W () .
e That is, it is reasonable to expect that the gradient flow on Graphons can be
obtained by a scaling limit of Euclidean gradient flows.
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Convergence of Euclidean Gradient flows

Convergence of Euclidean Gradient Flow

Theorem [OPST ’21]

e Let F': W — R be a function with gradient flow W (t), t > 0.
o Consider the Euclidean gradient flow of F),: M,, — R starting at VD(">, ie.,

t
V() = Vi - / Vo F, (V(")(s)) ds,
0

with adjustments at the boundary.
o Set W™ () = V(™ (n2t).

1f W™ B W, then

5
wm B, w as n — oo,

uniformly over compact time intervals in [0, c0).
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Simulations

o By Turén’s theorem: The n-vertex triangle-free graph with the maximum
number of edges is a complete bipartite graph.

W(0.0) "
0.8

0.6

0.4

0.2

i 0.50 0.75 1.00 00

.00 0.25

1.0
0.8
0.6
0.4
0.2
g
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Simulations

o By Turén’s theorem: The n-vertex triangle-free graph with the maximum
number of edges is a complete bipartite graph.

Q. Can one hope to recover this theorem through an optimization problem on
graphons?

W(0.0) "
0.8

0.6

0.4
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Simulations

o By Turén’s theorem: The n-vertex triangle-free graph with the maximum
number of edges is a complete bipartite graph.

Q. Can one hope to recover this theorem through an optimization problem on
graphons?

Lo W(0.0) .
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
“0 02 om0 oo Lo

0

(a) Gradient flow of 10ha — h_
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Simulations

o By Turén’s theorem: The n-vertex triangle-free graph with the maximum
number of edges is a complete bipartite graph.

Q. Can one hope to recover this theorem through an optimization problem on
graphons?

Lo W(0.0) .
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
“0 02 om0 oo Lo

0

W(4.9)

(a) Gradient flow of 10ha — h_ (b) Approximate complete bipartite graphon
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Ongoing and Future directions

e Study convergence of stochastic gradient descent with and without added noise.
e Specialize the theory on optimization over multiple layer NNs.

o Limiting curves for other “mean-field interactions” on graphs.
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e Optimization on graphs is hard due to discreteness.

o However, gradient flows exist on graphons, their infinite limiting space.

Analysis is similar to calculus in Wasserstein-2 spaces.

e Approximated by finite dimensional gradient flows on matrices.

Thank you!

o ArXiv version: https://arxiv.org/abs/2111.09459
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