Imperial College
 London

How to discretise some Optimal Transport problems with linear constraints

Pietro Siorpaes, Joint work with Marco Massa
25/03/22, Stochastic Mass Transports, BIRS

The OT problem

Setup

- \mathbb{B} separable Banach space (if $\mathbb{B}=\mathbb{R}^{n}$ take Euclidean $\|\cdot\|$).
- μ, ν proba. on \mathbb{B} with finite r-moment, $r \in[1, \infty)$.

A proba. θ on $\mathbb{B} \times \mathbb{B}$ is a transport from μ to $\nu(\theta \in \Theta(\mu, \nu))$ if it has marginals μ, ν, i.e. if θ is the law of $(X, Y): X \sim \mu, Y \sim \nu$.

Given a cost function v, the Optimal Transport problem is:

$$
\begin{equation*}
p(\mu, \nu):=\inf _{\theta \in \Theta(\mu, \nu)} \int v d \theta=\inf _{X \sim \mu, Y \sim \nu} \mathbb{E} v(X, Y) \tag{OT}
\end{equation*}
$$

If $v(x, y)=\|x-y\|^{r}$ then

$$
W_{r}(\mu, \nu):=p(\mu, \nu)^{\frac{1}{r}}
$$

is the Wasserstein (a.k.a. Monge-Kantorovich) distance.
Often one takes v cont. and s.t. $0 \leq v \leq c\left(1+\|x\|^{r}+\|y\|^{r}\right)$.

Variants of OT

The OT problem admits many interesting variants, e.g.:

- μ, ν defined on different spaces
- Multiple Marginals μ_{1}, \ldots, μ_{N}
- Unbalanced OT: $\mu(B) \neq \nu(B)$

Some variants impose additional (linear) constraints, e.g.:

1. OT with capacity contraints: $\frac{d \theta}{d \mathcal{L}^{2 n}} \leq c$
2. Invariant $\mathrm{OT}: \theta=\theta \circ g^{-1} \forall g \in G, G$ group acting on $\mathbb{B} \times \mathbb{B}$
3. Martingale $\mathrm{OT}: \mathbb{E}^{\theta}[Y \mid X]=X$.
4. Causal OT: $\mathbb{P}\left(\left(Y_{1}, \ldots, Y_{t}\right) \in B \mid X_{1}, \ldots, X_{N}\right)=$ $\mathbb{P}\left(\left(Y_{1}, \ldots, Y_{t}\right) \in B \mid X_{1}, \ldots X_{t}\right)$ for all meas. B
See respectively e.g.: Kormal and McCann ('14), Zaev ('15), Beiglböck, Henry-Labordère, Penkner ('13), Backhoff, Beiglböck, Lin and Zalashko ('17).

Discretisation of measures

How can one approximate μ with finitely supported $\hat{\mu}$?
The Optimal r-Quantisation problem of order k :

$$
\begin{equation*}
\inf \left\{W_{r}(\mu, \hat{\mu}): \hat{\mu} \operatorname{proba}: \# \operatorname{supp}(\hat{\mu}) \leq k\right\} \tag{SQ}
\end{equation*}
$$

Discretisation which satisfy additional constraints often exist:
Tchakaloff ('57), Beiglböck, Nutz ('14)
If $\mathbb{B}=\mathbb{R}^{n}$, given $f \in L^{1}\left(\mu ; \mathbb{R}^{m}\right)$ there exists proba. $\hat{\mu}$ s.t.

$$
\begin{equation*}
\# \operatorname{supp}(\hat{\mu}) \leq b_{n}^{m}, \quad \operatorname{supp} \hat{\mu} \subseteq \operatorname{supp} \mu, \quad \int f d \mu=\int f d \hat{\mu} \tag{C}
\end{equation*}
$$

Let $\mathcal{M}\left(x_{0}\right)$ be the family of laws of martingales $\left(M_{0}, \ldots, M_{K}\right)$ s.t. $M_{0}=x_{0}$. If $\mu \in \mathcal{M}\left(x_{0}\right)$ then $\exists \hat{\mu} \in \mathcal{M}\left(x_{0}\right)$ st. (C) holds.

Discretisation of the OT problem

Applications of discretisation to OT?
If μ, ν have finite support, then (OT) is a finite-dimensional LP, so it can be solved numerically (with great efficiency if an entropic regularisation is considered).

To compute $p(\mu, \nu)$, construct fin. sup. proba. $\left(\hat{\mu}^{k}, \hat{\nu}^{k}\right) \rightarrow(\mu, \nu)$ such that $p(\mu, \nu)=\lim _{k} p\left(\hat{\mu}^{k}, \hat{\nu}^{k}\right)$. Then easily compute $p\left(\hat{\mu}^{k}, \hat{\nu}^{k}\right)$, so get $p(\mu, \nu)$.

Can one adapt the above method to constrained OT ?

Discretising constrained OT

Let $\Theta_{c}(\mu, \nu)$ be the set of constrained transports from μ to ν.
Call (μ, ν) viable if $\Theta_{\mathrm{c}}(\mu, \nu) \neq \emptyset$.
Questions:
(Q1) If (μ, ν) viable, can find viable fin. sup. $\left(\hat{\mu}^{k}, \hat{\nu}^{k}\right) \rightarrow(\mu, \nu)$?
(Q2) How can $\left(\hat{\mu}^{k}, \hat{\nu}^{k}\right)$ be computed?
(Q3) Given $\left(\hat{\mu}^{k}, \hat{\nu}^{k}\right) \rightarrow(\mu, \nu)$ as in (Q1), if

$$
p_{c}(\mu, \nu):=\inf _{\Theta_{c}(\mu, \nu)} \mathbb{E} v(X, Y)
$$

does $p_{c}\left(\hat{\mu}^{k}, \hat{\nu}^{k}\right) \rightarrow p_{c}(\mu, \nu)$?
(Q4) Can choose ($\hat{\mu}^{k}, \hat{\nu}^{k}$) which satisfies optimality property?
(Q5) Can choose $\left(\hat{\mu}^{k}, \hat{\nu}^{k}\right)$ which satisfies additional constraints?

Martingale OT and Strassen's Thm

We focus on MOT; if (μ, ν) fin. supp. it is an LP, which can be solved efficiently with entropic regularisation, see De March ('18).
Let $\mathcal{M}(\mu, \nu):=\Theta_{c}(\mu, \nu)$ be the set of martingale transports from μ to ν, i.e. $\theta \in \mathcal{M}(\mu, \nu)$ if:
θ law of $(X, Y): X \sim \mu, Y \sim \nu, \mathbb{E}^{\theta}[Y \mid X]=X$, or equiv. if
$\theta \in \Theta(\mu, \nu): \int g(x)(y-x) d \theta(x, y)=0 \quad \forall g$ cont. bdd.
Strassen's Thm ('65)
$\mathcal{M}(\mu, \nu) \neq \emptyset \Longleftrightarrow \mu \leq_{c} \nu \Longleftrightarrow \ldots$
$\mu \leq_{c} \nu$ means $\int f d \mu \leq \int f d \nu$ for all $f: \mathbb{B} \rightarrow \mathbb{R}$ convex cont.

Discretisations preserving the convex order

 So, (Q1) and (Q2) become: given $\mu \leq_{c} \nu, \exists$ fin. sup. proba. $\left(\hat{\mu}^{k}, \hat{\nu}^{k}\right) \rightarrow(\mu, \nu)$ s.t. $\hat{\mu}^{k} \leq_{c} \hat{\nu}^{k}$? How can one compute them?Find discretisation $D_{k}:\{$ Proba. $\} \rightarrow\{$ Proba. on k points $\}$ preserving \leq_{c}, take $\hat{\mu}_{k}=D_{k}(\mu), \hat{\nu}_{k}=D_{k}(\nu)$. Known D_{k} 's:
$1 D_{k}(\alpha):=\frac{1}{k} \sum_{i=1}^{k} \delta_{x_{i}(\alpha)}$, where $\quad x_{i}(\alpha):=k \int_{\frac{i-1}{k}}^{\frac{i}{k}} F_{\alpha}^{-1}(t) d t$ Baker ('12): Considers only $\mathbb{B}=\mathbb{R}$

2 Pagès and Wilbertz ('12). Defined for $\mathbb{B}=\mathbb{R}^{n}$, but preserves \leq_{c} only for $n=1$. Defined only for proba. with cpt. supp.. Does not generalise to several marginals.

Other ways?
3 Apply different operators to μ and ν.
4 Relax convex order/martingale constraint

Discretisation via Sampling and projections

Alfonsi, Corbetta, Jourdain ('19):
Given given $\mu \leq_{c} \nu$ on \mathbb{R}^{n}, and arbitrary fin. sup. proba. $\left(\hat{\mu}^{k}, \hat{\nu}^{k}\right) \rightarrow(\mu, \nu)$, replace $\hat{\mu}^{k}$ with its W_{r}-projection $\hat{\alpha}^{k}$ on $\left\{\alpha: \alpha \leq_{c} \hat{\nu}^{k}\right\}$, then $\left(\hat{\alpha}^{k}, \hat{\nu}^{k}\right) \rightarrow(\mu, \nu)$.
Analog.: can replace $\hat{\nu}^{k}$ with its W_{r}-projection $\hat{\beta}^{k}$ on $\left\{\beta: \hat{\mu}^{k} \leq_{c} \beta\right\}$, then $\left(\hat{\mu}^{k}, \hat{\beta}^{k}\right) \rightarrow(\mu, \nu)$.
$\hat{\beta}^{k}$ cannot be computed. If $\hat{\mu}^{k}$ is the empirical meas. $\frac{1}{k} \sum_{i=1}^{k} \delta x_{i}$ with $X_{i} \sim \mu$ IDD, and analog. $\hat{\nu}^{k}$, then $\hat{\alpha}^{k}$ can be computed numerically, and $\left(\hat{\alpha}^{k}, \hat{\nu}^{k}\right) \rightarrow(\mu, \nu)$ a.s..

Guo and Obłój ('19):
Although $\mathbb{E}[Y \mid X]=X$, only ask that $\left\|\mathbb{E}\left[Y^{k} \mid X^{k}\right]-X^{k}\right\|_{L^{1}} \rightarrow 0$

Our approach: discretise martingales ! Instead of (Q1), (Q2), consider the analog. statement for rv:

Given $X, Y \in L^{1}(\mathbb{P} ; \mathbb{B})$ such that $\mathbb{E}[Y \mid X]=X$, how to build finitely valued $X^{k}, Y^{k} \in L^{1}(\mathbb{P} ; \mathbb{B})$ s.t.

$$
\mathbb{E}\left[Y^{k} \mid X^{k}\right]=X^{k}, \quad\left(X^{k}, Y^{k}\right) \rightarrow(X, Y) \text { in } L^{1} ?
$$

Idea: given $C(k)$ partition of \mathbb{B} with k elements and s.t. $\mathcal{B}^{k}:=\sigma(C(k)) \uparrow \mathcal{B}(\mathbb{B})$, let

$$
X^{k}:=\mathbb{E}\left[X \mid \sigma^{k}(X)\right], \quad Y^{k}:=\mathbb{E}\left[Y \mid \sigma^{k}(X, Y)\right] ;
$$

$\sigma^{k}(X)=X^{-1}\left(\mathcal{B}^{k}\right)$ is the smallest σ-alg. s.t. X is \mathcal{B}^{k}-meas (resp. $\sigma^{k}(X, Y)=(X, Y)^{-1}\left(\mathcal{B}^{k} \times \mathcal{B}^{k}\right) \ldots(X, Y)$ is $\mathcal{B}^{k} \times \mathcal{B}^{k}$-meas).
Proof: Clearly $\# \operatorname{Im}\left(X^{k}\right) \leq k$ and $\# \operatorname{Im}\left(Y^{k}\right) \leq k^{2}$. The tower property gives $\mathbb{E}\left[Y^{k} \mid X^{k}\right]=X^{k}$. Since $\sigma^{k}(X) \uparrow \sigma(X)$ and $\left.\sigma^{k}(X, Y)\right) \uparrow \sigma(X, Y)$, by martingale convergence thm $\left(X^{k}, Y^{k}\right) \rightarrow(X, Y)$ in L^{1}.

Evaluating our approach

Pros:

- simple proof
- works for infinite dimensional \mathbb{B}
- explicit expression of X^{k}, Y^{k}
- can easily be computed numerically by evaluating integrals
- outputs non-random $\left(\hat{\mu}^{k}, \hat{\nu}^{k}\right)$

Cons:

- Needs a $\theta \in \mathcal{M}(\mu, \nu)$ as an input. Only μ, ν are given, but one such θ can be calculated: if $\mathbb{B}=\mathbb{R}$ in many ways, if $\mathbb{B}=\mathbb{R}^{n}$ by extending Bass' construction (Henry-Labordère)

Optimality: link with Voronoi's quantisation

Theorem

If $\mathbb{B}=\mathbb{R}^{n}, \exists \overline{\mathcal{B}}^{k}=\sigma(\bar{C}(k))$ which minimises $\left\|X-X^{k}\right\|_{L^{2}}$, and it is given by the optimal Voronoi 2-quantisation of μ or order k.

Sketch of Proof: $\mathcal{S}_{k}:=\{f: \mathbb{B} \rightarrow \mathbb{B}: \# \operatorname{Im}(f) \leq k\} k$-simple fns.

$$
\mathcal{S}_{k}=\left\{S_{C}^{b}(x):=\sum_{i=1}^{k} b^{i} 1_{C^{i}}(x), C:=\left(C^{i}\right)_{i=1}^{k} k \text {-partition of } \mathbb{B}\right\} .
$$

Call $b^{i} \in \mathbb{B}$ 'point', and $C^{i} \subseteq \mathbb{B}$ 'cell'. Fix $b=\left(b^{i}\right)^{i}$. Clearly the Voronoi partition

$$
\bar{c}_{i}(b):=\left\{x:\left\|x-b^{i}\right\|=\min _{j}\left\|x-b^{j}\right\|\right\}
$$

minimizes $\left\|S_{C}^{b}(x)-x\right\|$ at each x over all k-partitions; in partic.
$\bar{C}(b)$ minimizes $\left\|S_{C}^{b}(X)-X\right\|_{L^{r}}$.

Proof of optimal Voronoi quant. $=$ optimal mart.

quant.

Let \bar{b} minimize

$$
f(b):=\min _{C}\left\|S_{C}^{b}(X)-X\right\|_{L^{r}} ;
$$

then $S_{\bar{C}}^{\bar{C}}$ solves $\inf _{f \in \mathcal{S}_{k}}\|f(X)-X\|_{L^{r}}$, which solves (OQ) if $X \sim \mu$ has density. $S_{\bar{C}}^{\bar{b}}$ is the optimal Voronoi quantisation.

Let us instead first fix C and minimise over b; if $r=2$ then the 'martingale quantisation' $\mathbb{E}[X \mid \sigma(C)]$ equals

$$
\min _{b}\left\|S_{C}^{b}(X)-X\right\|_{L^{r}}, \text { solved by } \tilde{b}^{i}=\operatorname{bar} \mu\left(\cdot \mid C^{i}\right) .
$$

The optimal martingale quantisation is given by \tilde{C} which minimizes $\|\mathbb{E}[X \mid \sigma(C)]-X\|_{L^{r}}$. Since $\inf _{b} \inf _{C}=\inf _{C} \inf _{b}$ we get $\tilde{C}=\bar{C}, \tilde{b}=\bar{b}$, i.e. optimal Voronoi quant.=optimal mart. quant.

Generalisation of martingale discretisation

More generally: take any finitely valued $Y^{k} \rightarrow Y$ in L^{1}, define $X^{k}:=\mathbb{E}\left[Y^{k} \mid \sigma^{k}(X)\right]$, then

$$
\left(X^{k}, Y^{k}\right) \rightarrow(X, Y) \text { in } L^{1}, \quad \mathbb{E}\left[Y^{k} \mid X^{k}\right]=X^{k} .
$$

Useful if want Y^{k} to have fewer than k^{2} values; however, link to optimal quantisation is lost.

Could be useful to satisfy additional constraints, since if $\mathbb{B}=\mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ then we know $\exists Y^{k}$ s.t. $\mathbb{E} f(Y)=\mathbb{E} f\left(Y^{k}\right)$; however, we don't normally know how to compute such Y^{k}.

Analog, given $g: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{m}$ we know $\exists\left(X^{k}, Y^{k}\right)$ in L^{1} s.t. $\mathbb{E} g(X, Y)=\mathbb{E} g\left(X^{k}, Y^{k}\right)$ and $\mathbb{E}\left[Y^{k} \mid X^{k}\right]=X^{k} \ldots$ but we don't know how to compute (X^{k}, Y^{k}).

Stability of Martingale OT

Backhoff-Veraguas and Pammer ('19): If $\left(\mu^{k}, \nu^{k}\right) \rightarrow(\mu, \nu)$ and $v^{k} \rightarrow v \geq 0$ uniformly then

$$
\begin{equation*}
\inf _{\mathcal{M}\left(\mu^{k}, \nu^{k}\right)} \mathbb{E} v^{k}(X, Y) \rightarrow \inf _{\mathcal{M}(\mu, \nu)} \mathbb{E} v(X, Y) \tag{1}
\end{equation*}
$$

holds if $\mathbb{B}=\mathbb{R}$, and 'We think that our approach can also be adapted to cover higher dimensions.'

Remark

Let π^{k} be a martingale law with $\pi^{k} \rightarrow \pi^{*}$ and with marginals $\left(\mu^{k}, \nu^{k}\right)$, then
$\mathbb{E}^{\mathbb{N}^{*}}(v(X, Y)) \geq \liminf _{k} \inf _{\mathcal{M}\left(\mu^{k}, \nu^{k}\right)} \mathbb{E} v^{k}(X, Y) \geq \inf _{\mathcal{M}(\mu, \nu)} \mathbb{E} v(X, Y)$
so (1) holds along minimising subsequence if
$\pi^{*} \in \operatorname{argmin}_{\pi \in \mathcal{M}(\mu, \nu)} \mathbb{E}^{\pi}(v(X, Y))$

Summary

1. Given $\mu \leq_{c} \nu$, we found simple construction of fin. sup. proba. $\left(\hat{\mu}^{k}, \hat{\nu}^{k}\right) \rightarrow(\mu, \nu)$ s.t. $\hat{\mu}^{k} \leq_{c} \hat{\nu}^{k}$. This construction admits several variants.
2. $\left(\hat{\mu}^{k}, \hat{\nu}^{k}\right)$ can be chosen to satisfy some optimality property, e.g. $\hat{\mu}^{k}$ is the Voronoi quantisation of μ and so it minimises $W_{2}(\cdot, \mu)$ over $\{\hat{\mu}: \# \operatorname{supp} \hat{\mu} \leq k\}$.
3. We are working on satisfying additional constraints and optimality properties. Once done, we'll submit.
