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The OT problem
Setup
• B separable Banach space (if B = Rn take Euclidean || · ||).
• µ, ν proba. on B with finite r -moment, r ∈ [1,∞).

A proba. θ on B× B is a transport from µ to ν (θ ∈ Θ(µ, ν)) if it
has marginals µ, ν, i.e. if θ is the law of (X ,Y ) : X ∼ µ,Y ∼ ν.
Given a cost function v , the Optimal Transport problem is:

p(µ, ν) := inf
θ∈Θ(µ,ν)

∫
vdθ = inf

X∼µ,Y∼ν
Ev (X ,Y ). (OT)

If v (x , y ) = ||x − y ||r then

Wr (µ, ν) := p(µ, ν)
1
r

is the Wasserstein (a.k.a. Monge-Kantorovich) distance.

Often one takes v cont. and s.t. 0 ≤ v ≤ c(1 + ||x ||r + ||y ||r ).
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Variants of OT
The OT problem admits many interesting variants, e.g.:
• µ, ν defined on different spaces
• Multiple Marginals µ1, . . . , µN

• Unbalanced OT: µ(B) 6= ν(B)

Some variants impose additional (linear) constraints, e.g.:

1. OT with capacity contraints: dθ
dL2n ≤ c

2. Invariant OT: θ = θ ◦ g−1 ∀g ∈ G ,G group acting on B× B
3. Martingale OT: Eθ[Y |X ] = X .

4. Causal OT: P ((Y1, . . . ,Yt) ∈ B | X1, . . . ,XN) =
P ((Y1, . . . ,Yt) ∈ B | X1, . . .Xt) for all meas. B

See respectively e.g.: Kormal and McCann (’14), Zaev (’15),
Beiglböck, Henry-Labordère, Penkner (’13), Backhoff, Beiglböck,
Lin and Zalashko (’17).
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Discretisation of measures
How can one approximate µ with finitely supported µ̂?

The Optimal r -Quantisation problem of order k :

inf{Wr (µ, µ̂) : µ̂ proba : # supp (µ̂) ≤ k} (OQ)

Discretisation which satisfy additional constraints often exist:

Tchakaloff (’57), Beiglböck, Nutz (’14)
If B = Rn, given f ∈ L1(µ;Rm) there exists proba. µ̂ s.t.

#supp(µ̂) ≤ bm
n , supp µ̂ ⊆ supp µ,

∫
fdµ =

∫
fd µ̂. (C)

LetM(x0) be the family of laws of martingales (M0, . . . ,MK ) s.t.
M0 = x0. If µ ∈M(x0) then ∃µ̂ ∈M(x0) s.t. (C) holds.
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Discretisation of the OT problem

Applications of discretisation to OT?

If µ, ν have finite support, then (OT) is a finite-dimensional LP, so
it can be solved numerically (with great efficiency if an entropic
regularisation is considered).

To compute p(µ, ν), construct fin. sup. proba. (µ̂k , ν̂k)→ (µ, ν)
such that p(µ, ν) = limk p(µ̂k , ν̂k). Then easily compute p(µ̂k , ν̂k),
so get p(µ, ν).

Can one adapt the above method to constrained OT ?
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Discretising constrained OT

Let Θc(µ, ν) be the set of constrained transports from µ to ν.
Call (µ, ν) viable if Θc(µ, ν) 6= ∅.

Questions :

(Q1) If (µ, ν) viable, can find viable fin. sup. (µ̂k , ν̂k)→ (µ, ν) ?

(Q2) How can (µ̂k , ν̂k) be computed?

(Q3) Given (µ̂k , ν̂k)→ (µ, ν) as in (Q1), if

pc(µ, ν) := inf
Θc(µ,ν)

Ev (X ,Y )

does pc(µ̂k , ν̂k)→ pc(µ, ν)?

(Q4) Can choose (µ̂k , ν̂k) which satisfies optimality property?

(Q5) Can choose (µ̂k , ν̂k) which satisfies additional constraints ?

5 / 15



Martingale OT and Strassen’s Thm

We focus on MOT; if (µ, ν) fin. supp. it is an LP, which can be
solved efficiently with entropic regularisation, see De March (’18).

LetM(µ, ν) := Θc(µ, ν) be the set of martingale transports from
µ to ν, i.e. θ ∈M(µ, ν) if:

θ law of (X ,Y ) : X ∼ µ,Y ∼ ν, Eθ[Y |X ] = X , or equiv. if

θ ∈ Θ(µ, ν) :
∫
g(x)(y − x)dθ(x , y ) = 0 ∀g cont. bdd.

Strassen’s Thm (’65)
M(µ, ν) 6= ∅ ⇐⇒ µ ≤c ν ⇐⇒ . . .

µ ≤c ν means
∫
fdµ ≤

∫
fdν for all f : B→ R convex cont.
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Discretisations preserving the convex order
So, (Q1) and (Q2) become: given µ ≤c ν, ∃ fin. sup. proba.
(µ̂k , ν̂k)→ (µ, ν) s.t. µ̂k ≤c ν̂

k? How can one compute them?

Find discretisation Dk : {Proba.} → {Proba. on k points}
preserving ≤c , take µ̂k = Dk(µ), ν̂k = Dk(ν). Known Dk ’s:

1 Dk(α) := 1
k

∑k
i=1 δxi (α), where xi(α) := k

∫ i
k

i−1
k
F−1
α (t)dt

Baker (’12): Considers only B = R

2 Pagès and Wilbertz (’12). Defined for B = Rn, but preserves
≤c only for n = 1. Defined only for proba. with cpt. supp..
Does not generalise to several marginals.

Other ways?

3 Apply different operators to µ and ν.

4 Relax convex order/martingale constraint



Discretisation via Sampling and projections

Alfonsi, Corbetta, Jourdain (’19):
Given given µ ≤c ν on Rn, and arbitrary fin. sup. proba.
(µ̂k , ν̂k)→ (µ, ν), replace µ̂k with its Wr -projection α̂k on
{α : α ≤c ν̂

k}, then (α̂k , ν̂k)→ (µ, ν).

Analog.: can replace ν̂k with its Wr -projection β̂k on
{β : µ̂k ≤c β}, then (µ̂k , β̂k)→ (µ, ν).

β̂k cannot be computed. If µ̂k is the empirical meas. 1
k

∑k
i=1 δXi

with Xi ∼ µ IDD, and analog. ν̂k , then α̂k can be computed
numerically, and (α̂k , ν̂k)→ (µ, ν) a.s..

Guo and Obłój (’19):
Although E[Y |X ] = X , only ask that ||E[Y k |X k ]− X k ||L1 → 0
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Our approach: discretise martingales !
Instead of (Q1),(Q2), consider the analog. statement for rv:

Given X ,Y ∈ L1(P;B) such that E[Y |X ] = X , how to build finitely
valued X k ,Y k ∈ L1(P;B) s.t.

E[Y k |X k ] = X k , (X k ,Y k)→ (X ,Y ) in L1?

Idea: given C (k) partition of B with k elements and s.t.
Bk := σ(C (k)) ↑ B(B), let

X k := E[X |σk(X )], Y k := E[Y |σk(X ,Y )];

σk(X ) = X−1(Bk) is the smallest σ-alg. s.t. X is Bk-meas
(resp. σk(X ,Y ) = (X ,Y )−1(Bk × Bk)...(X ,Y ) is Bk × Bk-meas).

Proof: Clearly #Im(X k) ≤ k and #Im(Y k) ≤ k2. The tower
property gives E[Y k |X k ] = X k . Since σk(X ) ↑ σ(X ) and
σk(X ,Y )) ↑ σ(X ,Y ), by martingale convergence thm
(X k ,Y k)→ (X ,Y ) in L1.
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Evaluating our approach

Pros:
• simple proof
• works for infinite dimensional B
• explicit expression of X k ,Y k

• can easily be computed numerically by evaluating integrals
• outputs non-random (µ̂k , ν̂k)

Cons:
• Needs a θ ∈M(µ, ν) as an input. Only µ, ν are given, but
one such θ can be calculated: if B = R in many ways, if
B = Rn by extending Bass’ construction (Henry-Labordère)
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Optimality: link with Voronoi’s quantisation

Theorem
If B = Rn, ∃B̄k = σ(C̄ (k)) which minimises ||X − X k ||L2, and it is
given by the optimal Voronoi 2-quantisation of µ or order k .

Sketch of Proof: Sk := {f : B→ B : #Im(f ) ≤ k} k-simple fns.

Sk = {Sb
C (x) :=

∑k
i=1 b

i1C i (x),C := (C i)k
i=1 k-partition of B}.

Call bi ∈ B ‘point’, and C i ⊆ B ‘cell’. Fix b = (bi)i . Clearly the
Voronoi partition

C̄i(b) := {x : ||x − bi || = min
j
||x − bj ||}

minimizes ||Sb
C (x)− x || at each x over all k-partitions; in partic.

C̄ (b) minimizes ||Sb
C (X )− X ||Lr .
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Proof of optimal Voronoi quant.= optimal mart.
quant.

Let b̄ minimize

f (b) := min
C
||Sb

C (X )− X ||Lr ;

then S b̄
C̄ solves inf f ∈Sk ||f (X )− X ||Lr , which solves (OQ) if X ∼ µ

has density. S b̄
C̄ is the optimal Voronoi quantisation.

Let us instead first fix C and minimise over b; if r = 2 then the
‘martingale quantisation’ E[X |σ(C )] equals

min
b
||Sb

C (X )− X ||Lr , solved by b̃i = barµ(·|C i).

The optimal martingale quantisation is given by C̃ which
minimizes ||E[X |σ(C )]− X ||Lr . Since infb infC = infC infb we get
C̃ = C̄ , b̃ = b̄, i.e. optimal Voronoi quant.=optimal mart. quant.
�
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Generalisation of martingale discretisation

More generally: take any finitely valued Y k → Y in L1, define
X k := E[Y k |σk(X )], then

(X k ,Y k)→ (X ,Y ) in L1, E[Y k |X k ] = X k .

Useful if want Y k to have fewer than k2 values; however, link to
optimal quantisation is lost.

Could be useful to satisfy additional constraints, since if B = Rn

and f : Rn → Rm then we know ∃Y k s.t. Ef (Y ) = Ef (Y k);
however, we don’t normally know how to compute such Y k .

Analog, given g : R2n → Rm we know ∃(X k ,Y k) in L1 s.t.
Eg(X ,Y ) = Eg(X k ,Y k) and E[Y k |X k ] = X k ...but we don’t know
how to compute (X k ,Y k).
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Stability of Martingale OT
Backhoff-Veraguas and Pammer (’19):
If (µk , νk)→ (µ, ν) and v k → v ≥ 0 uniformly then

inf
M(µk ,νk )

Ev k(X ,Y )→ inf
M(µ,ν)

Ev (X ,Y ) (1)

holds if B = R, and ‘We think that our approach can also be
adapted to cover higher dimensions.’

Remark
Let πk be a martingale law with πk → π∗ and with marginals
(µk , νk), then

Eπ∗(v (X ,Y )) ≥ lim inf
k

inf
M(µk ,νk )

Ev k(X ,Y ) ≥ inf
M(µ,ν)

Ev (X ,Y )

so (1) holds along minimising subsequence if
π∗ ∈ argminπ∈M(µ,ν)Eπ(v (X ,Y ))
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Summary

1. Given µ ≤c ν, we found simple construction of fin. sup.
proba. (µ̂k , ν̂k)→ (µ, ν) s.t. µ̂k ≤c ν̂

k . This construction
admits several variants.

2. (µ̂k , ν̂k) can be chosen to satisfy some optimality property,
e.g. µ̂k is the Voronoi quantisation of µ and so it minimises
W2(·, µ) over {µ̂ : #suppµ̂ ≤ k}.

3. We are working on satisfying additional constraints and
optimality properties. Once done, we’ll submit.
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