

How to discretise some Optimal Transport problems with linear constraints

Pietro Siorpaes, Joint work with Marco Massa

25/03/22, Stochastic Mass Transports, BIRS

The OT problem

Setup

- \mathbb{B} separable Banach space (if $\mathbb{B} = \mathbb{R}^n$ take Euclidean $|| \cdot ||$).
- μ , ν proba. on \mathbb{B} with finite *r*-moment, $r \in [1, \infty)$.

A proba. θ on $\mathbb{B} \times \mathbb{B}$ is a *transport* from μ to ν ($\theta \in \Theta(\mu, \nu)$) if it has marginals μ, ν , i.e. if θ is the law of $(X, Y) : X \sim \mu, Y \sim \nu$. Given a cost function ν , the Optimal Transport problem is:

$$p(\mu, \nu) := \inf_{\theta \in \Theta(\mu, \nu)} \int v d\theta = \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}v(X, Y).$$
(OT)
If $v(x, y) = ||x - y||^r$ then
 $W_r(\mu, \nu) := p(\mu, \nu)^{\frac{1}{r}}$

is the Wasserstein (a.k.a. Monge-Kantorovich) distance. Often one takes v cont. and s.t. $0 \le v \le c(1 + ||x||^r + ||y||^r)$.

Variants of OT

The OT problem admits many interesting variants, e.g.:

- μ, ν defined on different spaces
- Multiple Marginals μ_1, \ldots, μ_N
- Unbalanced OT: $\mu(B) \neq \nu(B)$

Some variants impose additional (linear) constraints, e.g.:

- 1. OT with capacity contraints: $\frac{d\theta}{d\mathcal{L}^{2n}} \leq c$
- 2. Invariant OT: $\theta = \theta \circ g^{-1} \forall g \in G$, G group acting on $\mathbb{B} \times \mathbb{B}$
- 3. Martingale OT: $\mathbb{E}^{\theta}[Y|X] = X$.
- 4. Causal OT: $\mathbb{P}((Y_1, \ldots, Y_t) \in B \mid X_1, \ldots, X_N) = \mathbb{P}((Y_1, \ldots, Y_t) \in B \mid X_1, \ldots, X_t)$ for all meas. B

See respectively e.g.: Kormal and McCann ('14), Zaev ('15), Beiglböck, Henry-Labordère, Penkner ('13), Backhoff, Beiglböck, Lin and Zalashko ('17).

Discretisation of measures

How can one approximate μ with *finitely supported* $\hat{\mu}$? The Optimal *r*-Quantisation problem of order *k*:

 $\inf\{W_r(\mu, \hat{\mu}) : \hat{\mu} \text{ proba } : \# \text{ supp } (\hat{\mu}) \le k\}$ (OQ)

Discretisation which satisfy additional constraints often exist:

Tchakaloff ('57), Beiglböck, Nutz ('14) If $\mathbb{B} = \mathbb{R}^n$, given $f \in L^1(\mu; \mathbb{R}^m)$ there exists proba. $\hat{\mu}$ s.t.

$$\# supp(\hat{\mu}) \leq b_n^m$$
, supp $\hat{\mu} \subseteq$ supp μ , $\int f d\mu = \int f d\hat{\mu}$. (C)

Let $\mathcal{M}(x_0)$ be the family of laws of martingales (M_0, \ldots, M_K) s.t. $M_0 = x_0$. If $\mu \in \mathcal{M}(x_0)$ then $\exists \hat{\mu} \in \mathcal{M}(x_0)$ s.t. (C) holds.

Discretisation of the OT problem

Applications of discretisation to OT?

If μ , ν have *finite support*, then (OT) is a finite-dimensional LP, so it can be solved numerically (with great efficiency if an entropic regularisation is considered).

To compute $p(\mu, \nu)$, construct fin. sup. proba. $(\hat{\mu}^k, \hat{\nu}^k) \rightarrow (\mu, \nu)$ such that $p(\mu, \nu) = \lim_k p(\hat{\mu}^k, \hat{\nu}^k)$. Then easily compute $p(\hat{\mu}^k, \hat{\nu}^k)$, so get $p(\mu, \nu)$.

Can one adapt the above method to constrained OT ?

Discretising constrained OT

Let $\Theta_{c}(\mu, \nu)$ be the set of *constrained* transports from μ to ν . Call (μ, ν) viable if $\Theta_{c}(\mu, \nu) \neq \emptyset$.

Questions :

(Q1) If (μ, ν) viable, can find viable fin. sup. $(\hat{\mu}^k, \hat{\nu}^k) \rightarrow (\mu, \nu)$? (Q2) How can $(\hat{\mu}^k, \hat{\nu}^k)$ be computed? (Q3) Given $(\hat{\mu}^k, \hat{\nu}^k) \rightarrow (\mu, \nu)$ as in (Q1), if $p_{c}(\mu, \nu) := \inf_{\Theta_{c}(\mu, \nu)} \mathbb{E}v(X, Y)$

does $p_{\rm c}(\hat{\mu}^k, \hat{\nu}^k) \rightarrow p_{\rm c}(\mu, \nu)$?

(Q4) Can choose $(\hat{\mu}^k, \hat{\nu}^k)$ which satisfies optimality property? (Q5) Can choose $(\hat{\mu}^k, \hat{\nu}^k)$ which satisfies additional constraints ?

Martingale OT and Strassen's Thm

We focus on MOT; if (μ, ν) fin. supp. it is an LP, which can be solved efficiently with entropic regularisation, see De March ('18).

Let $\mathcal{M}(\mu, \nu) := \Theta_{c}(\mu, \nu)$ be the set of martingale transports from μ to ν , i.e. $\theta \in \mathcal{M}(\mu, \nu)$ if:

 θ law of $(X, Y) : X \sim \mu, Y \sim \nu, \mathbb{E}^{\theta}[Y|X] = X$, or equiv. if

 $\theta \in \Theta(\mu, \nu) : \int g(x)(y-x)d\theta(x, y) = 0 \quad \forall g \text{ cont. bdd.}$

Strassen's Thm ('65)

 $\mathcal{M}(\mu, \nu) \neq \emptyset \iff \mu \leq_c \nu \iff \dots$

 $\mu \leq_c \nu$ means $\int f d\mu \leq \int f d\nu$ for all $f : \mathbb{B} \to \mathbb{R}$ convex cont.

Discretisations preserving the convex order So, (Q1) and (Q2) become: given $\mu \leq_c \nu$, \exists fin. sup. proba. $(\hat{\mu}^k, \hat{\nu}^k) \rightarrow (\mu, \nu)$ s.t. $\hat{\mu}^k \leq_c \hat{\nu}^k$? How can one compute them?

Find discretisation D_k : {Proba.} \rightarrow {Proba. on k points} preserving \leq_c , take $\hat{\mu}_k = D_k(\mu)$, $\hat{\nu}_k = D_k(\nu)$. Known D_k 's:

1
$$D_k(\alpha) := \frac{1}{k} \sum_{i=1}^k \delta_{x_i(\alpha)}$$
, where $x_i(\alpha) := k \int_{\frac{i-1}{k}}^{\frac{i}{k}} F_{\alpha}^{-1}(t) dt$
Baker ('12): Considers only $\mathbb{B} = \mathbb{R}$

2 Pagès and Wilbertz ('12). Defined for $\mathbb{B} = \mathbb{R}^n$, but preserves \leq_c only for n = 1. Defined only for proba. with cpt. supp.. Does not generalise to several marginals.

Other ways?

- 3 Apply different operators to μ and ν .
- 4 Relax convex order/martingale constraint

Discretisation via Sampling and projections

Alfonsi, Corbetta, Jourdain ('19): Given given $\mu \leq_c \nu$ on \mathbb{R}^n , and arbitrary fin. sup. proba. $(\hat{\mu}^k, \hat{\nu}^k) \rightarrow (\mu, \nu)$, replace $\hat{\mu}^k$ with its W_r -projection $\hat{\alpha}^k$ on $\{\alpha : \alpha \leq_c \hat{\nu}^k\}$, then $(\hat{\alpha}^k, \hat{\nu}^k) \rightarrow (\mu, \nu)$.

Analog.: can replace $\hat{\nu}^k$ with its W_r -projection $\hat{\beta}^k$ on $\{\beta : \hat{\mu}^k \leq_c \beta\}$, then $(\hat{\mu}^k, \hat{\beta}^k) \to (\mu, \nu)$.

 $\hat{\beta}^k$ cannot be computed. If $\hat{\mu}^k$ is the empirical meas. $\frac{1}{k} \sum_{i=1}^k \delta_{X_i}$ with $X_i \sim \mu$ IDD, and analog. $\hat{\nu}^k$, then $\hat{\alpha}^k$ can be computed numerically, and $(\hat{\alpha}^k, \hat{\nu}^k) \rightarrow (\mu, \nu)$ a.s..

Guo and Obłój ('19): Although $\mathbb{E}[Y|X] = X$, only ask that $||\mathbb{E}[Y^k|X^k] - X^k||_{L^1} \to 0$

Our approach: discretise martingales ! Instead of (Q1),(Q2), consider the analog. statement for rv:

Given $X, Y \in L^1(\mathbb{P}; \mathbb{B})$ such that $\mathbb{E}[Y|X] = X$, how to build finitely valued $X^k, Y^k \in L^1(\mathbb{P}; \mathbb{B})$ s.t.

$$\mathbb{E}[Y^k|X^k] = X^k, \quad (X^k, Y^k) \to (X, Y) \text{ in } L^1?$$

Idea: given C(k) partition of \mathbb{B} with k elements and s.t. $\mathcal{B}^k := \sigma(\mathcal{C}(k)) \uparrow \mathcal{B}(\mathbb{B}),$ let $X^k := \mathbb{E}[X|\sigma^k(X)], \quad Y^k := \mathbb{E}[Y|\sigma^k(X,Y)];$ $\sigma^k(X) = X^{-1}(\mathcal{B}^k)$ is the smallest σ -alg. s.t. X is \mathcal{B}^k -meas (resp. $\sigma^k(X, Y) = (X, Y)^{-1}(\mathcal{B}^k \times \mathcal{B}^k)...(X, Y)$ is $\mathcal{B}^k \times \mathcal{B}^k$ -meas). **Proof:** Clearly $\#Im(X^k) < k$ and $\#Im(Y^k) < k^2$. The tower property gives $\mathbb{E}[Y^k|X^k] = X^k$. Since $\sigma^k(X) \uparrow \sigma(X)$ and $\sigma^k(X, Y)$ $\uparrow \sigma(X, Y)$, by martingale convergence thm $(X^k, Y^k) \rightarrow (X, Y)$ in L^1 .

Evaluating our approach

Pros:

- simple proof
- works for infinite dimensional ${\mathbb B}$
- explicit expression of X^k , Y^k
- can easily be computed numerically by evaluating integrals
- outputs non-random $(\hat{\mu}^k, \hat{\nu}^k)$

Cons:

Needs a θ ∈ M(μ, ν) as an input. Only μ, ν are given, but one such θ can be calculated: if B = R in many ways, if B = Rⁿ by extending Bass' construction (Henry-Labordère)

Optimality: link with Voronoi's quantisation

Theorem

If $\mathbb{B} = \mathbb{R}^n$, $\exists \overline{\mathcal{B}}^k = \sigma(\overline{\mathcal{C}}(k))$ which minimises $||X - X^k||_{L^2}$, and it is given by the optimal Voronoi 2-quantisation of μ or order k.

Sketch of Proof: $S_k := \{f : \mathbb{B} \to \mathbb{B} : \#Im(f) \le k\}$ *k*-simple fns.

$$S_k = \{S_C^b(x) := \sum_{i=1}^k b^i 1_{C^i}(x), C := (C^i)_{i=1}^k k$$
-partition of $\mathbb{B}\}.$

Call $b^i \in \mathbb{B}$ 'point', and $C^i \subseteq \mathbb{B}$ 'cell'. Fix $b = (b^i)^i$. Clearly the Voronoi partition

$$\bar{C}_i(b) := \{x : ||x - b^i|| = \min_j ||x - b^j||\}$$

minimizes $||S_c^b(x) - x||$ at each x over all k-partitions; in partic. $\overline{C}(b)$ minimizes $||S_c^b(X) - X||_{L^r}$.

Proof of optimal Voronoi quant.= optimal mart. quant.

Let \overline{b} minimize

$$f(b) := \min_{C} ||S_{C}^{b}(X) - X||_{L^{r}};$$

then $S_{\bar{C}}^{\underline{b}}$ solves $\inf_{f \in S_k} ||f(X) - X||_{L^r}$, which solves (OQ) if $X \sim \mu$ has density. $S_{\bar{C}}^{\underline{b}}$ is the optimal Voronoi quantisation.

Let us instead first fix C and minimise over b; if r = 2 then the 'martingale quantisation' $\mathbb{E}[X|\sigma(C)]$ equals

$$\min_{b} ||S^b_C(X) - X||_{L^r}, \text{ solved by } \tilde{b}^i = \text{bar}\mu(\cdot|C^i).$$

The optimal martingale quantisation is given by \tilde{C} which minimizes $||\mathbb{E}[X|\sigma(C)] - X||_{L^r}$. Since $\inf_b \inf_C = \inf_C \inf_b$ we get $\tilde{C} = \bar{C}, \tilde{b} = \bar{b}$, i.e. optimal Voronoi quant.=optimal mart. quant.

Generalisation of martingale discretisation

More generally: take any finitely valued $Y^k \to Y$ in L^1 , define $X^k := \mathbb{E}[Y^k | \sigma^k(X)]$, then

$$(X^k, Y^k) \rightarrow (X, Y)$$
 in L^1 , $\mathbb{E}[Y^k | X^k] = X^k$.

Useful if want Y^k to have fewer than k^2 values; however, link to optimal quantisation is lost.

Could be useful to satisfy additional constraints, since if $\mathbb{B} = \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}^m$ then we know $\exists Y^k$ s.t. $\mathbb{E}f(Y) = \mathbb{E}f(Y^k)$; however, we don't normally know how to compute such Y^k .

Analog, given $g : \mathbb{R}^{2n} \to \mathbb{R}^m$ we know $\exists (X^k, Y^k)$ in L^1 s.t. $\mathbb{E}g(X, Y) = \mathbb{E}g(X^k, Y^k)$ and $\mathbb{E}[Y^k|X^k] = X^k$...but we don't know how to compute (X^k, Y^k) .

Stability of Martingale OT

Backhoff-Veraguas and Pammer ('19): If $(\mu^k, \nu^k) \to (\mu, \nu)$ and $\nu^k \to \nu \ge 0$ uniformly then $\inf_{\mathcal{M}(\mu^k, \nu^k)} \mathbb{E}\nu^k(X, Y) \to \inf_{\mathcal{M}(\mu, \nu)} \mathbb{E}\nu(X, Y)$ (1)

holds if $\mathbb{B}=\mathbb{R},$ and 'We think that our approach can also be adapted to cover higher dimensions.'

Remark

Let π^k be a martingale law with $\pi^k \to \pi^*$ and with marginals $(\mu^k, \nu^k),$ then

$$\mathbb{E}^{\pi^*}(v(X,Y)) \geq \liminf_{k} \inf_{\mathcal{M}(\mu^k,\nu^k)} \mathbb{E}v^k(X,Y) \geq \inf_{\mathcal{M}(\mu,\nu)} \mathbb{E}v(X,Y)$$

so (1) holds along minimising subsequence if $\pi^* \in \operatorname{argmin}_{\pi \in \mathcal{M}(\mu,\nu)} \mathbb{E}^{\pi}(v(X, Y))$

Summary

- 1. Given $\mu \leq_c \nu$, we found simple construction of fin. sup. proba. $(\hat{\mu}^k, \hat{\nu}^k) \rightarrow (\mu, \nu)$ s.t. $\hat{\mu}^k \leq_c \hat{\nu}^k$. This construction admits several variants.
- (μ̂^k, ν̂^k) can be chosen to satisfy some optimality property,
 e.g. μ̂^k is the Voronoi quantisation of μ and so it minimises W₂(·, μ) over {μ̂ : #suppμ̂ ≤ k}.
- 3. We are working on satisfying additional constraints and optimality properties. Once done, we'll submit.