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Measure Valued Martingales

Our primary object of study will be stochastic processes taking values in

the space of probability measures with an additional martingale
assumption. Let P be the set of Probability measures on R, then:

Definition

A (Probability) Measure Valued Martingale (MVM) is a P-valued
stochastic process & = (&;)¢>0 such that (i) is a real-valued martingale
for every ¢ € Cp.

Canonical example of MVM: Let Xt be an integrable R-valued
Fr-measurable r.v., on some filtered probability space (Q, F, (Ft)¢>0, P).
Then:

& (A) = P(XT € AlF:)

is an MVM.



Aim of the Talk

We want to consider stochastic control problems of the following form:

minimize E {/oo e_ﬁtc(ft)dt}
0

over (some specified subset of) MVMs &; with initial value &, = u. Here
¢ is some cost function.



Aim of the Talk

We want to consider stochastic control problems of the following form:

minimize E [/ e_ﬁtc(&)dt}
0
over (some specified subset of) MVMs &; with initial value &, = u. Here

c is some cost function.

In fact, will typically restrict the class of MVMs via a control p, so that
the evolution of ¢ is determined by the control p. Then we will want to
understand the value function:

v(p) := inf {E [/OO e Pte(&s, pe)dt| o (€, p) admissible control, & = u}
0



Aim of the Talk

We want to consider stochastic control problems of the following form:

minimize E {/oo e_ﬁtc(ft)dt}
0

over (some specified subset of) MVMs &; with initial value &, = u. Here
¢ is some cost function.

In fact, will typically restrict the class of MVMs via a control p, so that
the evolution of ¢ is determined by the control p. Then we will want to
understand the value function:

v(p) := inf {E [/OO e Pte(&s, pe)dt| o (€, p) admissible control, & = u}
0

Aim: Make sense of this equation!



Examples: 1(a). ‘Martingale Optimal Transport’

Find martingale M with Mt ~ p, Mo = [ x pu(dx), to max/minimise
path functional of the process, e.g. the average:

. (; /O'TMsds) F(; [ /ngwx)ds)]

where &,(A) = P(My € A|F,).

E =E

e Assume here a trivial initial law.

e Conditioning translates a terminal condition into an initial condition.



Examples: 1(b). Model-independent Option Pricing

Common financial problem: given the current prices of vanilla call
options, and with minimal assumptions about dynamics of the underlying
asset.

Canonical approach: Discounted asset price S is a martingale under
risk-neutral measure, call prices — law of S, say . Optimise over
risk-neutral models with S a martingale and St ~ i to get model
independent bounds. ~ Martingale Optimal Transport.

E.g. Asian Option pays holder a function of the average of an asset's
value between time 0 and time T: i.e. holder receives F(A7), where
Ar=1 /7S dr.



Examples: 1(b). Model-independent Option Pricing

Common financial problem: given the current prices of vanilla call
options, and with minimal assumptions about dynamics of the underlying
asset.

Canonical approach: Discounted asset price S is a martingale under
risk-neutral measure, call prices — law of S, say . Optimise over
risk-neutral models with S a martingale and St ~ i to get model
independent bounds. ~ Martingale Optimal Transport.

E.g. Asian Option pays holder a function of the average of an asset's
value between time 0 and time T: i.e. holder receives F(A7), where
Ar=1 /7S dr.

Equivalent to previous formulation!



Examples: 1(b). Model-independent Option Pricing

e In C.-Kallblad '17, it was shown that this problem can be solved
dynamically by treating the terminal condition (St ~ 1) as a state
variable.

e The (risk-neutral) martingale condition on the call prices is exactly
the constraint that the ‘state variable’, which is the conditional value
of the law of St at time t, is an MVM.

e Method generalises (with some simple modifications) to large class
of options. (e.g. Bayraktar, C., Stoev '18).

e Option payoffs may depend on future call prices (e.g. VIX-based
options), or may want to constrain dynamics of the call prices.



Examples: 2. Optimal Skorokhod Embedding Problem

Given a measure i, and Brownian motion B, the Skorokhod Embedding
problem (SEP) is to find a stopping time 7 such that B; ~ p, (Biar)e>o
is u.i..
The Optimal SEP is to maximise some path functional F over all
solutions to the SEP:

maximise E [F ((Bs)s<+)]

over stopping times 7 solving the SEP. A common sub-class of problems
is when F is invariant to time-change.



Examples: 2. Optimal Skorokhod Embedding Problem

Given a measure i, and Brownian motion B, the Skorokhod Embedding
problem (SEP) is to find a stopping time 7 such that B; ~ p, (Biar)e>o
is u.i..

The Optimal SEP is to maximise some path functional F over all
solutions to the SEP:

maximise E [F ((Bs)s<+)]

over stopping times 7 solving the SEP. A common sub-class of problems
is when F is invariant to time-change.

In C.-Kallblad, showed there is a one-to-one correspondence between the
set of MVMs starting at 1 which terminate, that is,

& = oo € P :={p: p=0x, some x € R} and set of uniformly
integrable martingales with terminal law p. Can map such martingales to
stopped Brownian motion via a time-change argument — equivalence
(up to time-change) between MVMs and solutions to SEP.



Examples: 3. Zero Sum Games with Incomplete Information

e Setup due to Cardaliaguet and Rainer ('09, '12, ...), based on
earlier work of Aumann and Maschler ('95).

e Two player, zero sum game. Reward of game depends on a
parameter 6 which is known to player I, unknown to player II.

e Player Il has a prior belief of the parameter 6, and learns about the
parameter through the actions of player I.

e At time t, player Il will update her belief about law of 6 to &;, where
& is then an MVM.

e Player | chooses their actions to control &; to maximise their payoff
from the game.



Examples: 4. Bayesian Search Problem

e Imagine a Poisson process N on R, x R with intensity
dt x (Leb(dx) + ad,(dx)), where y is an unknown location we wish
to find, with prior distribution .

e At time t we can centre our search on the location y;, and we will
observe a counting process which counts each point of N with
probability v(z — y:), where 7 is a symmetric process which
decreases away from zero.

e We scale the problem, increasing the rate of the Poisson process,
and scaling the signal-noise ratio « to get a meaningful limit.
Expect Brownian scaling in the limit.

e Our belief in the location of the true value y will be a controlled,
measure-valued process, &, and in fact, an MVM, with & = pu.



Examples: 4. Bayesian Search Problem

e Search is stopped at a random exponential time. Minimise the
variance of £ at stopping:

minimise/ e "Var(&,)dt
Jo

where the minimisation takes place over the class of controls, (y:).

e In the Brownian scaling, we can calculate:
dé:(f) = /f Yy = ye)ée(dy)
- [ W) [y - weday))aws

for the (controlled) dynamics of the posterior measure.
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Existing Literature

e Lots of recent work on stochastic control of McKean-Vlasov
equations, but note that the dynamics of our measures are quite
different (no spatial motion, for example). E.g. Cosso et al '21;
Burzoni et al '21; Talbi et al '21.

e Similarly, (mostly) old literature on controlled filtering equations.
(E.g. Gozzi, Swieck '00), but these seem to rely on embedding the
problem into a ‘nice’ function space via densities. Our approach
preserves the probability measure of the original state. Recent
related work: Martini, '21,'22.

e Study of measure-valued processes has a long history, e.g.
martingale measures were introduced by Dawson '93.

e Eldan '16 introduced a measure-based construction of solutions to
the SEP. Connections to Stochastic Localisation?
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Properties of MVMs

MVMs have some nice properties:

o Let P, ={ueP: [|x|Pu(dx) < oo}, equipped with Wasserstein
p-metric. If £ is an MVM with & € Pp, then & € P,. Moreover, if
¢ has weakly continuous trajectories, then the trajectories are
continuous in Pp.

e Support of MVMs are decreasing:

t>s = supp(&:) C supp(&s).

But not case that t > s — & < &!
e More generally, if £ € P, then the variance is a supermartingale:

Var(¢:) = / X2 £(dx) — (M(£L))?

where we write M(1) = [ x p(dx).
e Continuous MVMs can be localised in compact sets! [By De La
Vallée-Poussin]
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Outline of results

Main results follow ‘classical’ structure:

1. Define an appropriate class of controlled MVMs: what does ‘control’
mean’?

2. Prove the Dynamic Programming Principle for this class of controls.

3. Prove an Itd formula for MVMs: characterise martingales, setup
HJB equation. Verification for ‘smooth’ value functions.

4. Introduce appropriate notion of viscosity solution: show value
function satisfies HJB in an appropriate weak sense.

5. Prove comparison theorem for viscosity solutions: show there is a
unique viscosity solution for HJB (which is then the value function).
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Specifying the Dynamics of the MVM

Suppose ¢ is an MVM on a space whose filtration is generated by a
Brownian motion W. For any ¢ € Cp, the martingale representation
theorem yields

6o = eole) + | i)W, W

for some p. m. process o(y) with [ o5(¢)?ds < oo for all t.
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Specifying the Dynamics of the MVM

Suppose ¢ is an MVM on a space whose filtration is generated by a
Brownian motion W. For any ¢ € Cp, the martingale representation
theorem yields

6o = eole) + | i)W, W

for some p. m. process o(¢) with fo os(¢)?ds < oo for all t.

Can construct o so that o:(¢) = [ ¢(x)o¢(dx), and typically might have
ot(dx) < &(dx), and 0+(1) = O since &(1) = 1.

This implies (Yor '85, '12) existence of a function p such that

a(p) = &t(wpe) — Ee(9)Ee(pr) for all p € Cp.
With the notation Cov,,(p,v) = u(ev) — u(@)u(?), (1) becomes

Ee(p) = &olp) + /0 Cove, (¢, ps)dWs. (MVM-SDE)

We take the process p to be the control of the MVM.
14



Weak solutions to MVM-SDE

We now need to discuss what we mean by a solution of the control
problem. We work with weak formulations:

Definition

A weak solution of (MVM-SDE) is a tuple (2, F, (F¢)e>0,P, W, &, p),
where (Q, F, (Ft)e>o0, P) is a filtered probability space, W is a standard
Brownian motion on this space, ¢ is a continuous MVM, and p is a

progressively measurable function on Q x R, x R such that for every
p € Cp, P®dt-ae.,

t
&ellpel) < oo, / Blorie () B < 5
JO

and (MVM-SDE) holds, that is,

() = &ole) +/0 Cove, (i, ps)dWs.
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Admissible Controls

We fix p > 0, g € [0, p] and a Polish space H of measurable, real
functions which will contain the control. Then we say:

Definition
An admissible control is a weak solution (&, p) of (MVM-SDE) such that
pe(-w) e H

and, P ® dt-a.e.,

/Ot (/R(l + [x[9)|ps(x) — €s(ps)§5(dx)>2 ds < co.

NB: Can guarantee second conditions by placing growth bounds on H.

Can also have suitable state-dependent restriction on the control.
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Control Problem and DPP

We consider the following control problem. In addition to the action
space H, fix a measurable cost function

c: Pp x H— RU {+o0}

and a discount rate 8 > 0. For p € P, the value function is given by
v(p) = inf {E [/ eﬁtc(ft,pt)dt} : (&, p) admissible control, & = ;1,} .
0

Theorem (Dynamic Programming Principle)

Let T be a bounded stopping time on C(Ry,P,). For any u € P,, the
value function v satisfies

v = inf E
Q (&:p)

7(£)
eiﬁT(g)V(gT(ﬁ)) +/ eﬂtc(gtvpt)dt‘| )
0

where the infimum extends over all admissible controls (&, p) with & = p.

Proof: Using general framework of Zitkovi¢ '14.
17



Existence of non-trivial solutions

One important question is: given a choice of the control p, does
(MVM-SDE) have a solution? This is non-trivial, but the answer is yes!

Theorem (Global Existence of solutions)

For any measurable function p: R — R and any i1 € P, there exists a
weak solution (&, p) of (MVM-SDE) such that &, = v and p: = p for all
t.

Proof via a careful construction argument.
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Towards an 1t6 formula: derivatives of functions of measures

Next want to consider measure-valued functions, and their derivatives:

Definition (C.f. Carmona and Delarue '18)

Let p > 0. A function f: P, — R is said to belong to C}(P,) if there is
a continuous function (x, i) — g—;(x,u) from R x P, to R, called (a
version of) the derivative of f, with the following properties.

e locally uniform p-growth: for every compact set K C Pp, there is a
constant cx such that for all x € R and i € K,

of
’au(x,u)’ < c(L+ xI?),

o fundamental theorem of calculus: for every p,v € Pp,
Lorof
1) =) = [ [ 5o+ (1= ) — (e
o JrOp

Similar definition for C2, etc. 1



I1t6 formula for MV Ms

Theorem (Itd’s Formula)

Let (&, p) be a weak solution of (MVM-SDE), where £ takes values in P,
for some fixed p > 0. Let q € [0, p] and assume that, P ® dt-a.e.,

/ot (/R“ + [x])]ps(x) - 5s(ps)§s(dx))2 ds < oo.

Then, for every f in C?>(P,) we have the It6 formula

F(&) = Flgo) + / [ 2 xepos(amam

82f
/ /]R R 8,“ (x,y,&)os(dx)os(dy)ds,

where we write os(dx) = (ps(x) — &s(ps))Es(dx).
Proof: See Sigrid's talk.
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HJB Formulation

We expect v to be a solution (in some sense) of the following HJB

equation:
Bu(p) + Sgﬁ{—C(um) — Lu(p, p)} =0, w€Pp\P°
P
u(p) =c(x)/B,  p=0x€P*
where

() = inf c(3.p)

and the operator L is given by
1 O*f
Lf(p, p =f/ 5 (%, ¥, p)o(dx)o(dy
()2RX]R0M2( Jo(dx)o(dy)
with o(dx) = (p(x) — u(p))p( k).
The boundary condition can be understood as follows: since an MVM
starting at a Dirac measure 0, stays there, v must satisfy

v(8x) = c(x)/B.

21



Main Result I: Viscosity Characterisation

Theorem

Fix a set of actions Hl, a discount rate 3 > 0, and a cost function
c:Pp,xH—RU{oo}. Assume that

1. there is a constant € (0, 00) such that |p(x)| < k(1 + |x|P) holds
for all x € R and p € HN C(R);

2. p—> c(u, p) is upper semi-continuous for every p € HN C.(R);

3. for every u € P, and every f € C3(Py),

sup{—c(u,p) — Lf(p,p)} = sup  {—c(u, p) — Lf (1, p)};
peH peHNC(R)

Then the value function v: P, — R is a viscosity solution of the HJB
equation.
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Viscosity Solutions |: Restricting limits

Since MVMs have decreasing support, define a partial order < on P, by

p=v <= supp(u) C supp(v).

Note that MVMs are decreasing with respect to this order. So effective
state space for an MVM starting at a measure i € Pp, is the set

Dp =A{p € Pp: pp =X i}

In particular, for any u: P, — R, the restriction of u to Dj has

semicontinuous envelopes given by

(ulp)* (1) = limsup u(v)
v, v

(ulpy)«(p) = liminf u(v)
v, VI

for all p < i

23



Viscosity Solutions I: Definition

For any test function f € C*(Pg), define H(-; f): P, — R by
H(u; £) = Bf(n) + Sgﬁ{—C(u,p) — Lf(p, p)} -
p

We can now state the definition of viscosity solution.
Definition
Consider a function u: P, — R.

e u is a viscosity subsolution if

liminf H(u; f) <0

P>y WS

holds for all i € P, \ P* and f € C?(P,) such that
f(i) = limsup,, .z <z u(p) and f(p) > u(p) for all p < fi.

24



Viscosity Solutions I: Definition

For any test function f € C?(Py), define H(+; f): P, — R by

H(u; £) = Bf(n) + ;gg{—f(“’f)) — Lf(p, p)}

We can now state the definition of viscosity solution.
Definition
Consider a function u: P, — R.

e u is a viscosity supersolution if

limsup H(p;f) >0
P>y WS

holds for all i € P, \ P* and f € C3(P,) such that
f(p) =liminf, 5 .=z u(p) and f(p) < u(p) for all p < fi.
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Viscosity Solutions I: Definition

For any test function f € C?(P,), define H(+;f): P, — R by

H(p; f) = Bf () + Sugﬂ{—C(/w) —Lf(p,p)}-

pE
We can now state the definition of viscosity solution.
Definition

Consider a function u: P, — R.

e u is a viscosity solution if it is both a viscosity subsolution and a
viscosity supersolution.

Lemma: Every classical solution is a viscosity solution.
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Main Result Il: Comparison

Need to show that viscosity solutions are unique:

Theorem
Let B > 0, and suppose that the cost function ¢ and the action space H
satisfy the following conditions:

1. p— c(p, p) is continuous on P({x1,...,xn}) uniformly in p € H for
any N € N and x1,...,xy € R;

2. the set {p(x) — p(0): p € H} is bounded for every x € R.

Let u,v € C(Pp) be a viscosity sub- and supersolution, respectively. If
u<von?P then u <v onPp.

Value function is uniquely characterised as the viscosity
solution of the HJB equation!
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e Can incorporate state dependent constraints by modifying the cost.
Let A C P, x H be the state constraint, so we require (&, pt) € A,
and suppose A is open. Then we can set the cost function to +oo
on AC to recover a constrained problem.

e Problem generalises to MVMs on R¢.

e Open questions: how general is the requirement that the MVM
solves (MVM-SDE)?
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Example: Explicitly solvable control problems

Example
Fix p > 4, g = 1, a state dependent set of actions

H(u) := {p € H: Var,(p) < Var(u)}
for some Hl such that id € H, and a discount rate 5 > 0. Define
c(, p) = 2Var(p)? — BM(p)?.

Then the value function is the unique continuous viscosity solution of the
HJB equation and is given by

M(p)? = inf {E [/ e*ﬁtc(ﬁt,pt)dt : (&, p) admissible control, { = ,LL} .
0

Moreover, there exists an optimal control (£*, p*) satisfying

£ (p3) =M(&) for a.e. s > 0 (e.g. pi(x) = x).

This solution already appeared in the context of the SEP in Eldan '16.
27



Conclusions

e Consider Stochastic Control problems in the space of MVMs: can
describe a wide range of interesting control problems.

e Develop stochastic representation for the controlled process, with
corresponding 1t6 formula.

e Construct appropriate notion of viscosity solution, show value
function is unique viscosity solution to the HJB equation.

e Can derive optimal behaviour in some simple control problems.

28



