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Measure Valued Martingales

Our primary object of study will be stochastic processes taking values in
the space of probability measures with an additional martingale
assumption. Let P be the set of Probability measures on R, then:

Definition
A (Probability) Measure Valued Martingale (MVM) is a P-valued
stochastic process ξ = (ξt)t≥0 such that ξ(ϕ) is a real-valued martingale
for every ϕ ∈ Cb.

Canonical example of MVM: Let XT be an integrable R-valued
FT -measurable r.v., on some filtered probability space (Ω,F , (Ft)t≥0,P).
Then:

ξt(A) := P(XT ∈ A|Ft)

is an MVM.
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Aim of the Talk

We want to consider stochastic control problems of the following form:

minimize E

[∫ ∞
0

e−βtc(ξt)dt

]
over (some specified subset of) MVMs ξt with initial value ξ0 = µ. Here
c is some cost function.

In fact, will typically restrict the class of MVMs via a control ρ, so that
the evolution of ξ is determined by the control ρ. Then we will want to
understand the value function:

v(µ) := inf
{
E

[∫ ∞
0

e−βtc(ξt , ρt)dt

]
: (ξ, ρ) admissible control, ξ0 = µ

}
Aim: Make sense of this equation!
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Examples: 1(a). ‘Martingale Optimal Transport’

Find martingale M with MT ∼ µ, M0 =
∫
x µ(dx), to max/minimise

path functional of the process, e.g. the average:

E

[
F

(
1
T

∫ T

0
Ms ds

)]
= E

[
F

(
1
T

∫ T

0

∫
x ξs(dx) ds

)]

where ξt(A) = P(MT ∈ A|Ft).

• Assume here a trivial initial law.

• Conditioning translates a terminal condition into an initial condition.
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Examples: 1(b). Model-independent Option Pricing

Common financial problem: given the current prices of vanilla call
options, and with minimal assumptions about dynamics of the underlying
asset.

Canonical approach: Discounted asset price S is a martingale under
risk-neutral measure, call prices =⇒ law of ST , say µ. Optimise over
risk-neutral models with S a martingale and ST ∼ µ to get model
independent bounds. ∼ Martingale Optimal Transport.

E.g. Asian Option pays holder a function of the average of an asset’s
value between time 0 and time T : i.e. holder receives F (AT ), where
AT = 1

T

∫ T

0 Sr dr .

Equivalent to previous formulation!
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Examples: 1(b). Model-independent Option Pricing

• In C.-Källblad ’17, it was shown that this problem can be solved
dynamically by treating the terminal condition (ST ∼ µ) as a state
variable.

• The (risk-neutral) martingale condition on the call prices is exactly
the constraint that the ‘state variable’, which is the conditional value
of the law of ST at time t, is an MVM.

• Method generalises (with some simple modifications) to large class
of options. (e.g. Bayraktar, C., Stoev ’18).

• Option payoffs may depend on future call prices (e.g. VIX-based
options), or may want to constrain dynamics of the call prices.
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Examples: 2. Optimal Skorokhod Embedding Problem

Given a measure µ, and Brownian motion B, the Skorokhod Embedding
problem (SEP) is to find a stopping time τ such that Bτ ∼ µ, (Bt∧τ )t≥0

is u.i..

The Optimal SEP is to maximise some path functional F over all
solutions to the SEP:

maximise E [F ((Bs)s≤τ )]

over stopping times τ solving the SEP. A common sub-class of problems
is when F is invariant to time-change.

In C.-Källblad, showed there is a one-to-one correspondence between the
set of MVMs starting at µ which terminate, that is,
ξs → ξ∞ ∈ Ps := {µ : µ = δx , some x ∈ R} and set of uniformly
integrable martingales with terminal law µ. Can map such martingales to
stopped Brownian motion via a time-change argument → equivalence
(up to time-change) between MVMs and solutions to SEP.
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Examples: 3. Zero Sum Games with Incomplete Information

• Setup due to Cardaliaguet and Rainer (’09, ’12, . . . ), based on
earlier work of Aumann and Maschler (’95).

• Two player, zero sum game. Reward of game depends on a
parameter θ which is known to player I, unknown to player II.

• Player II has a prior belief of the parameter θ, and learns about the
parameter through the actions of player I.

• At time t, player II will update her belief about law of θ to ξt , where
ξ is then an MVM.

• Player I chooses their actions to control ξt to maximise their payoff
from the game.
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Examples: 4. Bayesian Search Problem

• Imagine a Poisson process N on R+ × R with intensity
dt × (Leb(dx) + αδy (dx)), where y is an unknown location we wish
to find, with prior distribution µ.

• At time t we can centre our search on the location yt , and we will
observe a counting process which counts each point of N with
probability γ(z − yt), where γ is a symmetric process which
decreases away from zero.

• We scale the problem, increasing the rate of the Poisson process,
and scaling the signal-noise ratio α to get a meaningful limit.
Expect Brownian scaling in the limit.

• Our belief in the location of the true value y will be a controlled,
measure-valued process, ξt , and in fact, an MVM, with ξ0 = µ.
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Examples: 4. Bayesian Search Problem

• Search is stopped at a random exponential time. Minimise the
variance of ξ at stopping:

minimise
∫ ∞

0
e−κtVar(ξt) dt

where the minimisation takes place over the class of controls, (yt).

• In the Brownian scaling, we can calculate:

dξt(f ) = α
(∫

f (y)γ(y − yt)ξt(dy)

−
∫

f (y)ξt(dy)

∫
γ(y − yt)ξt(dy)

)
dWt

for the (controlled) dynamics of the posterior measure.
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Existing Literature

• Lots of recent work on stochastic control of McKean-Vlasov
equations, but note that the dynamics of our measures are quite
different (no spatial motion, for example). E.g. Cosso et al ’21;
Burzoni et al ’21; Talbi et al ’21.

• Similarly, (mostly) old literature on controlled filtering equations.
(E.g. Gozzi, Świeck ’00), but these seem to rely on embedding the
problem into a ‘nice’ function space via densities. Our approach
preserves the probability measure of the original state. Recent
related work: Martini, ’21,’22.

• Study of measure-valued processes has a long history, e.g.
martingale measures were introduced by Dawson ’93.

• Eldan ’16 introduced a measure-based construction of solutions to
the SEP. Connections to Stochastic Localisation?
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Properties of MVMs

MVMs have some nice properties:

• Let Pp = {µ ∈ P :
∫
|x |p µ(dx) <∞}, equipped with Wasserstein

p-metric. If ξ is an MVM with ξ0 ∈ Pp, then ξt ∈ Pp. Moreover, if
ξ has weakly continuous trajectories, then the trajectories are
continuous in Pp.

• Support of MVMs are decreasing:

t ≥ s =⇒ supp(ξt) ⊆ supp(ξs).

But not case that t ≥ s =⇒ ξt � ξs !
• More generally, if ξ0 ∈ P2, then the variance is a supermartingale:

Var(ξt) =

∫
x2 ξt(dx)− (M(ξt))2

where we write M(µ) =
∫
x µ(dx).

• Continuous MVMs can be localised in compact sets! [By De La
Vallée-Poussin]
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Outline of results

Main results follow ‘classical’ structure:

1. Define an appropriate class of controlled MVMs: what does ‘control’
mean?

2. Prove the Dynamic Programming Principle for this class of controls.

3. Prove an Itô formula for MVMs: characterise martingales, setup
HJB equation. Verification for ‘smooth’ value functions.

4. Introduce appropriate notion of viscosity solution: show value
function satisfies HJB in an appropriate weak sense.

5. Prove comparison theorem for viscosity solutions: show there is a
unique viscosity solution for HJB (which is then the value function).
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Specifying the Dynamics of the MVM

Suppose ξ is an MVM on a space whose filtration is generated by a
Brownian motion W . For any ϕ ∈ Cb, the martingale representation
theorem yields

ξt(ϕ) = ξ0(ϕ) +

∫ t

0
σs(ϕ)dWs (1)

for some p. m. process σ(ϕ) with
∫ t

0 σs(ϕ)2ds <∞ for all t.

Can construct σ so that σt(ϕ) =
∫
ϕ(x)σt(dx), and typically might have

σt(dx)� ξt(dx), and σt(1) = 0 since ξt(1) = 1.

This implies (Yor ’85, ’12) existence of a function ρ such that

σt(ϕ) = ξt(ϕρt)− ξt(ϕ)ξt(ρt) for all ϕ ∈ Cb.

With the notation Covµ(ϕ,ψ) = µ(ϕψ)− µ(ϕ)µ(ψ), (1) becomes

ξt(ϕ) = ξ0(ϕ) +

∫ t

0
Covξs (ϕ, ρs)dWs . (MVM-SDE)

We take the process ρ to be the control of the MVM.
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Weak solutions to MVM-SDE

We now need to discuss what we mean by a solution of the control
problem. We work with weak formulations:

Definition
A weak solution of (MVM-SDE) is a tuple (Ω,F , (Ft)t≥0,P,W , ξ, ρ),
where (Ω,F , (Ft)t≥0,P) is a filtered probability space, W is a standard
Brownian motion on this space, ξ is a continuous MVM, and ρ is a
progressively measurable function on Ω× R+ × R such that for every
ϕ ∈ Cb, P ⊗ dt-a.e.,

ξt(|ρt |) <∞,
∫ t

0
Covξs (ϕ, ρs)2ds <∞,

and (MVM-SDE) holds, that is,

ξt(ϕ) = ξ0(ϕ) +

∫ t

0
Covξs (ϕ, ρs)dWs .

15



Admissible Controls

We fix p ≥ 0, q ∈ [0, p] and a Polish space H of measurable, real
functions which will contain the control. Then we say:

Definition

An admissible control is a weak solution (ξ, ρ) of (MVM-SDE) such that

ρt(·, ω) ∈ H

and, P⊗ dt-a.e.,∫ t

0

(∫
R

(1 + |x |q)|ρs(x)− ξs(ρs)|ξs(dx)

)2

ds <∞.

NB: Can guarantee second conditions by placing growth bounds on H.

Can also have suitable state-dependent restriction on the control.
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Control Problem and DPP

We consider the following control problem. In addition to the action
space H, fix a measurable cost function

c : Pp ×H→ R ∪ {+∞}

and a discount rate β ≥ 0. For µ ∈ Pp the value function is given by

v(µ) = inf
{
E

[∫ ∞
0

e−βtc(ξt , ρt)dt

]
: (ξ, ρ) admissible control, ξ0 = µ

}
.

Theorem (Dynamic Programming Principle)
Let τ be a bounded stopping time on C (R+,Pp). For any µ ∈ Pp, the
value function v satisfies

v(µ) = inf
(ξ,ρ)

E

[
e−βτ(ξ)v(ξτ(ξ)) +

∫ τ(ξ)

0
e−βtc(ξt , ρt)dt

]
,

where the infimum extends over all admissible controls (ξ, ρ) with ξ0 = µ.

Proof: Using general framework of Žitković ’14.
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Existence of non-trivial solutions

One important question is: given a choice of the control ρ, does
(MVM-SDE) have a solution? This is non-trivial, but the answer is yes!

Theorem (Global Existence of solutions)
For any measurable function ρ̄ : R→ R and any µ ∈ P, there exists a
weak solution (ξ, ρ) of (MVM-SDE) such that ξ0 = µ and ρt = ρ̄ for all
t.

Proof via a careful construction argument.
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Towards an Itô formula: derivatives of functions of measures

Next want to consider measure-valued functions, and their derivatives:

Definition (C.f. Carmona and Delarue ’18)
Let p ≥ 0. A function f : Pp → R is said to belong to C 1(Pp) if there is
a continuous function (x , µ) 7→ ∂f

∂µ (x , µ) from R× Pp to R, called (a
version of) the derivative of f , with the following properties.

• locally uniform p-growth: for every compact set K ⊂ Pp, there is a
constant cK such that for all x ∈ R and µ ∈ K ,∣∣∣∣ ∂f∂µ (x , µ)

∣∣∣∣ ≤ cK (1 + |x |p),

• fundamental theorem of calculus: for every µ, ν ∈ Pp,

f (ν)− f (µ) =

∫ 1

0

∫
R

∂f

∂µ
(x , tν + (1− t)µ)(ν − µ)(dx)dt.

Similar definition for C 2, etc. 19



Itô formula for MVMs

Theorem (Itô’s Formula)
Let (ξ, ρ) be a weak solution of (MVM-SDE), where ξ takes values in Pp

for some fixed p ≥ 0. Let q ∈ [0, p] and assume that, P ⊗ dt-a.e.,∫ t

0

(∫
R

(1 + |x |q)|ρs(x)− ξs(ρs)|ξs(dx)

)2

ds <∞.

Then, for every f in C 2(Pq) we have the Itô formula

f (ξt) = f (ξ0) +

∫ t

0

∫
R

∂f

∂µ
(x , ξs)σs(dx)dWs

+
1
2

∫ t

0

∫
R×R

∂2f

∂µ2 (x , y , ξs)σs(dx)σs(dy)ds,

where we write σs(dx) = (ρs(x)− ξs(ρs))ξs(dx).

Proof: See Sigrid’s talk.
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HJB Formulation

We expect v to be a solution (in some sense) of the following HJB
equation:

βu(µ) + sup
ρ∈H
{−c(µ, ρ)− Lu(µ, ρ)} = 0, µ ∈ Pp \ Ps

u(µ) = c(x)/β, µ = δx ∈ Ps

where
c(x) = inf

ρ∈H
c(δx , ρ)

and the operator L is given by

Lf (µ, ρ) =
1
2

∫
R×R

∂2f

∂µ2 (x , y , µ)σ(dx)σ(dy)

with σ(dx) = (ρ(x)− µ(ρ))µ(dx).

The boundary condition can be understood as follows: since an MVM
starting at a Dirac measure δx stays there, v must satisfy
v(δx) = c(x)/β.
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Main Result I: Viscosity Characterisation

Theorem

Fix a set of actions H, a discount rate β > 0, and a cost function
c : Pp ×H→ R ∪ {∞}. Assume that

1. there is a constant κ ∈ (0,∞) such that |ρ(x)| ≤ κ(1 + |x |p) holds
for all x ∈ R and ρ ∈ H ∩ Cc(R);

2. µ 7→ c(µ, ρ) is upper semi-continuous for every ρ ∈ H ∩ Cc(R);

3. for every µ ∈ Pp and every f ∈ C 2(Pq),

sup
ρ∈H
{−c(µ, ρ)− Lf (µ, ρ)} = sup

ρ∈H∩Cc (R)

{−c(µ, ρ)− Lf (µ, ρ)} ;

Then the value function v : Pp → R is a viscosity solution of the HJB
equation.
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Viscosity Solutions I: Restricting limits

Since MVMs have decreasing support, define a partial order � on Pp by

µ � ν ⇐⇒ supp(µ) ⊂ supp(ν).

Note that MVMs are decreasing with respect to this order. So effective
state space for an MVM starting at a measure µ̄ ∈ Pp is the set

Dµ̄ = {µ ∈ Pp : µ � µ̄}.

In particular, for any u : Pp → R, the restriction of u to Dµ̄ has
semicontinuous envelopes given by

(u|Dµ̄
)∗(µ) = lim sup

ν→µ, ν�µ̄
u(ν)

(u|Dµ̄
)∗(µ) = lim inf

ν→µ, ν�µ̄
u(ν)

for all µ � µ̄.
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Viscosity Solutions I: Definition

For any test function f ∈ C 2(Pq), define H(·; f ) : Pp → R by

H(µ; f ) = βf (µ) + sup
ρ∈H
{−c(µ, ρ)− Lf (µ, ρ)} .

We can now state the definition of viscosity solution.

Definition

Consider a function u : Pp → R.

• u is a viscosity subsolution if

lim inf
µ→µ̄, µ�µ̄

H(µ; f ) ≤ 0

holds for all µ̄ ∈ Pp \ Ps and f ∈ C 2(Pq) such that
f (µ̄) = lim supµ→µ̄, µ�µ̄ u(µ) and f (µ) ≥ u(µ) for all µ � µ̄.
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Main Result II: Comparison

Need to show that viscosity solutions are unique:

Theorem
Let β > 0, and suppose that the cost function c and the action space H
satisfy the following conditions:

1. µ 7→ c(µ, ρ) is continuous on P({x1, ..., xN}) uniformly in ρ ∈ H for
any N ∈ N and x1, ..., xN ∈ R;

2. the set {ρ(x)− ρ(0) : ρ ∈ H} is bounded for every x ∈ R.

Let u, v ∈ C (Pp) be a viscosity sub- and supersolution, respectively. If
u ≤ v on Ps , then u ≤ v on Pp.

Value function is uniquely characterised as the viscosity
solution of the HJB equation!
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Remarks

• Can incorporate state dependent constraints by modifying the cost.
Let A ⊆ Pp ×H be the state constraint, so we require (ξt , ρt) ∈ A,
and suppose A is open. Then we can set the cost function to +∞
on A{ to recover a constrained problem.

• Problem generalises to MVMs on Rd .

• Open questions: how general is the requirement that the MVM
solves (MVM-SDE)?
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Example: Explicitly solvable control problems

Example
Fix p ≥ 4, q = 1, a state dependent set of actions

H(µ) := {ρ ∈ H : Varµ(ρ) ≤ Var(µ)}

for some H such that id ∈ H, and a discount rate β > 0. Define

c(µ, ρ) := 2Var(µ)2 − βM(µ)2.

Then the value function is the unique continuous viscosity solution of the
HJB equation and is given by

M(µ)2 = inf
{
E

[∫ ∞
0

e−βtc(ξt , ρt)dt

]
: (ξ, ρ) admissible control, ξ0 = µ

}
.

Moreover, there exists an optimal control (ξ∗, ρ∗) satisfying
ξ∗s (ρ∗s ) = M(ξ∗s ) for a.e. s ≥ 0 (e.g. ρ∗s (x) = x).

This solution already appeared in the context of the SEP in Eldan ’16.
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Conclusions

• Consider Stochastic Control problems in the space of MVMs: can
describe a wide range of interesting control problems.

• Develop stochastic representation for the controlled process, with
corresponding Itô formula.

• Construct appropriate notion of viscosity solution, show value
function is unique viscosity solution to the HJB equation.

• Can derive optimal behaviour in some simple control problems.
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