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High energy spectral asymptotics: the origins

® Let (M, g) be a smooth, compact Riemannian manifold of dimension d and —Ag
be the Laplace—Beltrami operator on M.

® —Ag has discrete spectrum, 0 = )\(2) < /\f < /\g <..., with A\; = oco.

Theorem (Weyl, 1911 (slightly modified setting))

Let
N =#{j : N <AL
Then,
N(A) = V°|g("E’;;/TC;|(]de(Bl) A9+ o(AY).

® (Hilbert, 1910) This conjecture will not be proved in my lifetime.
Proved by Weyl in 1911
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High energy spectral asymptotics: heat traces

‘

® Consider u(t) : tr(et®s) = > et

Theorem (Minakshisundaram—Pleijel - 1949)

Let (M, g) be a smooth, compact Riemannian manifold of dimension d. Then, there
are {a;}22, such that for all N,

(M
o) = ) S et oo,
(47!'1')2 j=1

® Asymptotics for u(t) imply the theorem of Weyl:

N(\) = Lg("gv";r«d(’gﬂ +o(\9).

Let N(X) :=#{j : Aj < A}. Then, there are {b;}22, such that for all N
N—-1
N()\) _ V0|g(M)VO|Rd(Bl)

A9 bA?—i + ond—N).
ny +j; AT+ O(NY)
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The naive conjecture is obviously false

® Let (Mvg) - (827 ground)-
® For every £ =0,1,..., the value ¢(¢ + 1) is an eigenvalue for —Ag with
multiplicity 2¢ 4+ 1 and these are the only eigenvalues.

® Suppose the Naive Conjecture is true: For any 0 < e < 1,

241= N(\/z(z+ 1+e) - N<\/£(l+ 1) — e)

= Bo[(6(¢ +1) + &) — (K¢ +1) — ] + bi(\/£(L + 1) + ¢ — /e +1) — ) + 0(1)
= 2eby + O(l)
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High energy spectral asymptotics: improved errors

® Let V € C®(M;[0,00))
® —Ag + V has discrete spectrum, 0 < )\8 < /\% < )\5 < ..., with \; = co.

V0|g(M)VO|Rd (Bl)

A+ E(N g, V).

NN g V) =#{ N\ <A} =

® Levitan (1952), Avakumovi¢ (1956), E()\, g, V) = O(A9~1)

® Hoérmander (1968) - introduces the theory of Fourier integral operators -

E(xg V) =011

Theorem (Duistermaat—Guillemin, 1975)

If there are few periodic geodesics, then E(\, g, V) = o(A9~1). If there are only
periodic geodesics E(), g, V) # o(A9~1).

Theorem (Canzani-G, 2020)

If there are ‘very’ few periodic geodesics, then E()\, g, V) = O(A\9~1/log \).

All based on Levitan's wave method (to be explained later).
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A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then N(X, g, V) has a full asymptotic expansion in
powers of \.

® Problem!: We do not know of any compact manifolds without a closed geodesic
® Move to non-compact manifolds

® New problem!: N(}, g, V) does not make sense here.
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A replacement for the Weyl law

The local density of states is given by

e(—Ag + V, A)(x) = 1(Loo a)(—Ag + V)(x, x).

Theorem (Levitan 1952, Avakumovi¢ 1956, Hérmander 1968)

e(—Ag + V,A)(x) = (27) " ¥volga (B1)A? + O(AI71).

Theorem (Safarov 1988, Sogge—Zelditch 2002)

If there are few loops from x to itself, then
e(—=Ag + V,A)(x) = (2m) " ¥volga (B1)AY + o(A971).
If the geodesics through x are all periodic with the same time,

le(—Ag + V,A)(x) — (2m) ~¥volga (B1)AY| # o(A771).
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A third naive conjecture

Naive Conjecture

If there are no geodesic loops, then e(—Ag + V,\)(x) has a full asymptotic expansion
in powers of .

® Problem!: (still) We do not know of any compact manifolds without a loop.
® Move to non-compact manifolds. Now this makes sense!
® One example M = R? with the standard metric.

® Still a problem V = |x|2.
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Conjecture (Parnovski—Shterenberg 2016)

Suppose V € C°(R?). Then, there are {aj(x)}72, such that for any N > 0,

N—-1
e(—Ags + V,A)(x) = D ai(x)AT7 + o(x? V).
j=0

v

Conjecture (Parnovski—Shterenberg 2016)

Suppose Vi, Vo € Cp° (RY). Then, if Vi = Vi in a neighborhood of x, for any N > 0,
we have
e(—Aga + Vi, \)(x) — e(—Aga + Vo, \)(x) = O(A~N).
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A less naive conjecture

We say V € Cboo(]Rd) if V€ C* and for all & € N9, there are C, > 0 such that

[0 VllLee < Ca

Conjecture (Parnovski—Shterenberg 2016)

Suppose V € C°(R?). Then, there are {aj(x)}£2y such that for any N >0,

N—1
e(—Dga + V,A)(x) = Y 2 () + o(ndN).
j=0
This conjecture is complicated. Since the spectrum can be very wild
® Dense pure point
® Positive, but arbitrarily small Hausdorff dimension
® Absolutely continuous

® Singular continuous
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The conjecture is known for several classes of potentials

Potential Method Reference
periodic gauge transform (GT) | [Parnovski—Shterenberg 2016]
almost periodic (+conditions) GT [Parnovski—Shterenberg 2016]
compactly supported wave method [Popov—Shubin 1983]
compactly supported +periodic on R wave method + GT [G 2020]




The conjecture is true in 1 dimension

Theorem (G — Parnovski — Shterenberg 2022)

Let V € Cg°(R;R). Then there are {aj(x)}?2, such that for all N > 0, there is
Cn > 0 satisfying
N-1 .
‘e(—AR ANOEDS aj(x),\1*2J’ < CuAl=2N,
j=0

Moreover aj(x) can be determined from a finite (j-dependent) number of derivatives
of V at x.



Corollaries of the theorem: Spectral Gaps

Corollary (G — Parnovski — Shterenberg 2022)

Let V € Cg°(R;R). Then for all N > 0, there is Cy > 0 such that for all A > 1 and
€>0, if

spec(—Agr + V)N[A—e, X+ €] =0,
then
e< CN)\_N.
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Corollaries of the theorem: Lyapunov exponents

Corollary (G — Parnovski — Shterenberg 2022, (see also Delyon—Foulon 1986))

Let V € Cg° (R;R). If the Lyapunov exponent, A(X), makes sense, then
A < Cya—N.



Corollaries of the theorem: Lyapunov exponents

Corollary (G — Parnovski — Shterenberg 2022, (see also Delyon—Foulon 1986))

Let V € Cg° (R;R). If the Lyapunov exponent, A(X), makes sense, then
A < Cya—N.

Heuristic message

The spectrum WANTS to be absolutely continuous.
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® Use the Fourier transform to write:
1 ;
Lcooq(V-AFV =) = 2—/ /e’t(“_‘/_A"'v)dtdu
us — 00
® Approximate by a ‘smooth version': Let 5 have compact support. Then,

A .
Pl q(V=A+V —X)= / /ﬁ(t)e"(“’ V=AY dtdp.
—o0

® use a parametrix for e~ *V~A+V to obtain asymptotics for the smoothed version.

® Tauberian methods or scattering theory allow us to compare smoothed with
unsmoothed.
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Ideas from the proof: Gauge transform

® Use Moser averaging to reduce a periodic problem to a constant coefficient
problem: Find ® so that

e®(—=A + V)e™® = —A 4 m(D) + smoothing, D = —io.
® Can be reduced to solving a series of commutator equations
ei(0,x)

2(¢,0)

A8 =V, IfVv=€PY = &=

® For H=—-A+ m(D),

1 .
Lo s2(H) = 7/ e =8 ge.
(oo (H) 2m)9 Jigpsme)<a
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The wave method lets us reduce to a periodic operator.

® Finite speed of propagation allows us to make arbitrarily large changes outside a
set with very large (> AV) radius.

A
prol (VA FV =N = [ [ 5 cos(t(u— VA Vo

pr(t) = Tp(Tt)

® \We use this to turn a non-periodic potential, V into a periodic one MV,

A 2V/

mass tmnspmt

® Crucial new feature — the periodic lattice is huge! (> AN).
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® \We now assume V is periodic with a potentially very large > AN period.
® Main issue, if |§| < 1, then &= % > 1.
Hope: use that |9xe/®*| ~ |4].
® Crucial fact: near £ = \, OxV ~r < 1 and 0xV¥ ~ r < 1, then [V, V] ~ rA7L.

® How can we work with 9xV ~ r? Peel off dyadic layers of the fourier transform of
V.
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Peeling successive layers
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Thank you!



