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High energy spectral asymptotics: the origins

• Let (M, g) be a smooth, compact Riemannian manifold of dimension d and −∆g

be the Laplace–Beltrami operator on M.

• −∆g has discrete spectrum, 0 = λ2
0 < λ2

1 ≤ λ2
2 ≤ . . . , with λj →∞.

• (Hilbert, 1910) This conjecture will not be proved in my lifetime.

Proved by Weyl in 1911
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High energy spectral asymptotics: heat traces

• Consider u(t) : tr(et∆g ) =
∑

j e
−tλ2

j .

Theorem (Minakshisundaram–Pleijel - 1949)

Let (M, g) be a smooth, compact Riemannian manifold of dimension d. Then, there
are {aj}∞j=1 such that for all N,

u(t) =
vol(M)

(4πt)
d
2

+

N−1∑
j=1

aj t
− d

2
+j + O(t−

d
2

+N).

• Asymptotics for u(t) imply the theorem of Weyl:

N(λ) =
volg (M)volRd (B1)

(2π)d
λd + o(λd ).

Naive Conjecture

Let N(λ) := #{j : λj ≤ λ}. Then, there are {bj}∞j=1 such that for all N

N(λ) =
volg (M)volRd (B1)

(2π)d
λd +

N−1∑
j=1

bjλ
d−j + O(λd−N).
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The naive conjecture is obviously false

• Let (M, g) = (S2, ground).

• For every ` = 0, 1, . . . , the value `(`+ 1) is an eigenvalue for −∆S2 with
multiplicity 2`+ 1 and these are the only eigenvalues.

• Suppose the Naive Conjecture is true:

For any 0 < ε� 1,

2` + 1 = N
(√

`(` + 1) + ε
)
− N

(√
`(` + 1) − ε

)
= b0[(`(` + 1) + ε) − (`(` + 1) − ε)] + b1(

√
`(` + 1) + ε−

√
`(` + 1) − ε) + O(1)

= 2εb0 + O(1)
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High energy spectral asymptotics: improved errors

• Let V ∈ C∞(M; [0,∞))

• −∆g + V has discrete spectrum, 0 ≤ λ2
0 ≤ λ2

1 ≤ λ2
2 ≤ . . . , with λj →∞.

N(λ, g ,V ) := #{j : λj ≤ λ} =:
volg (M)volRd (B1)

(2π)d
λd + E(λ, g ,V )

.

• Levitan (1952), Avakumović (1956), E(λ, g ,V ) = O(λd−1)

• Hörmander (1968) - introduces the theory of Fourier integral operators -
E(λ, g ,V ) = O(λd−1)

Theorem (Duistermaat–Guillemin, 1975)

If there are few periodic geodesics, then E(λ, g ,V ) = o(λd−1).

If there are only
periodic geodesics E(λ, g ,V ) 6= o(λd−1).

Theorem (Canzani–G, 2020)

If there are ‘very’ few periodic geodesics, then E(λ, g ,V ) = O(λd−1/ log λ).

All based on Levitan’s wave method (to be explained later).
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A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then N(λ, g ,V ) has a full asymptotic expansion in
powers of λ.

• Problem!: We do not know of any compact manifolds without a closed geodesic

• Move to non-compact manifolds

• New problem!: N(λ, g ,V ) does not make sense here.
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A replacement for the Weyl law

The local density of states is given by

e(−∆g + V , λ)(x) := 1(−∞,λ2](−∆g + V )(x , x).

Theorem (Levitan 1952, Avakumović 1956, Hörmander 1968)

e(−∆g + V , λ)(x) = (2π)−dvolRd (B1)λd + O(λd−1).

Theorem (Safarov 1988, Sogge–Zelditch 2002)

If there are few loops from x to itself, then

e(−∆g + V , λ)(x) = (2π)−dvolRd (B1)λd + o(λd−1).

If the geodesics through x are all periodic with the same time,∣∣e(−∆g + V , λ)(x)− (2π)−dvolRd (B1)λd
∣∣ 6= o(λd−1).
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A third naive conjecture
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If there are no geodesic loops, then e(−∆g + V , λ)(x) has a full asymptotic expansion
in powers of λ.

• Problem!: (still) We do not know of any compact manifolds without a loop.

• Move to non-compact manifolds.

Now this makes sense!

• One example M = Rd with the standard metric.

• Still a problem V = |x |2.
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A less naive conjecture

We say V ∈ C∞b (Rd ) if V ∈ C∞ and for all α ∈ Nd , there are Cα > 0 such that

‖∂αx V ‖L∞ ≤ Cα.

Conjecture (Parnovski–Shterenberg 2016)

Suppose V ∈ C∞b (Rd ). Then, there are {aj (x)}∞j=0 such that for any N > 0,
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The conjecture is known for several classes of potentials

Potential Method Reference

periodic gauge transform (GT) [Parnovski–Shterenberg 2016]

almost periodic (+conditions) GT [Parnovski–Shterenberg 2016]

compactly supported wave method [Popov–Shubin 1983]

compactly supported +periodic on R wave method + GT [G 2020]
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The conjecture is true in 1 dimension

Theorem (G – Parnovski – Shterenberg 2022)

Let V ∈ C∞b (R;R). Then there are {aj (x)}∞j=0 such that for all N > 0, there is
CN > 0 satisfying

∣∣∣e(−∆R + V , λ)(x)−
N−1∑
j=0

aj (x)λ1−2j
∣∣∣ ≤ CNλ

1−2N .

Moreover aj (x) can be determined from a finite (j-dependent) number of derivatives
of V at x.



Corollaries of the theorem: Spectral Gaps

Corollary (G – Parnovski – Shterenberg 2022)

Let V ∈ C∞b (R;R). Then for all N > 0, there is CN > 0 such that for all λ ≥ 1 and
ε > 0, if

spec(−∆R + V ) ∩ [λ− ε, λ+ ε] = ∅,

then
ε ≤ CNλ

−N .



Corollaries of the theorem: Almost plane waves

Corollary (G – Parnovski – Shterenberg 2022)

Let V ∈ C∞b (R;R). Then for all N > 0 there are cN > 0 and C > 0 such that for any
λ > 1 and any solution of

(−∆R + V − λ2)u = 0,

and any x1, x2 ∈ R with |x1 − x2| < cNλ
N ,

|u(x1)|2 + λ−2|u′(x1)|2 ≤ eCλ
−1

(|u(x2)|2 + λ−2|u′(x2)|2)
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Corollaries of the theorem: Lyapunov exponents

Corollary (G – Parnovski – Shterenberg 2022, (see also Delyon–Foulon 1986))

Let V ∈ C∞b (R;R). If the Lyapunov exponent, Λ(λ), makes sense, then

Λ(λ) ≤ CNλ
−N .

Heuristic message

The spectrum WANTS to be absolutely continuous.
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Ideas from the proof: Wave method

• Use the Fourier transform to write:

1(−∞,0](
√
−∆ + V − λ) =

1

2π

∫ λ

−∞

∫
e it(µ−

√
−∆+V )dtdµ

• Approximate by a ‘smooth version’:

Let ρ̂ have compact support. Then,

ρ ∗ 1(−∞,0](
√
−∆ + V − λ) =

∫ λ

−∞

∫
ρ̂(t)e it(µ−

√
−∆+V )dtdµ.

• use a parametrix for e−it
√
−∆+V to obtain asymptotics for the smoothed version.

• Tauberian methods or scattering theory allow us to compare smoothed with
unsmoothed.
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Ideas from the proof: Gauge transform

• Use Moser averaging to reduce a periodic problem to a constant coefficient
problem: Find Φ so that

e iΦ(−∆ + V )e−iΦ = −∆ + m(D) + smoothing , D = −i∂.

• Can be reduced to solving a series of commutator equations

[−∆, Φ̃] = V ,

If V = e i〈θ,x〉 ⇒ Φ̃ =
e i〈θ,x〉

2〈ξ, θ〉

.

• For H = −∆ + m(D),

1(−∞,λ2](H) =
1

(2π)d

∫
|ξ|2+m(ξ)≤λ2

e i〈x−y,ξ〉dξ.



Ideas from the proof: Gauge transform

• Use Moser averaging to reduce a periodic problem to a constant coefficient
problem: Find Φ so that

e iΦ(−∆ + V )e−iΦ = −∆ + m(D) + smoothing , D = −i∂.

• Can be reduced to solving a series of commutator equations

[−∆, Φ̃] = V ,

If V = e i〈θ,x〉 ⇒ Φ̃ =
e i〈θ,x〉

2〈ξ, θ〉

.

• For H = −∆ + m(D),

1(−∞,λ2](H) =
1

(2π)d

∫
|ξ|2+m(ξ)≤λ2

e i〈x−y,ξ〉dξ.



Ideas from the proof: Gauge transform

• Use Moser averaging to reduce a periodic problem to a constant coefficient
problem: Find Φ so that

e iΦ(−∆ + V )e−iΦ = −∆ + m(D) + smoothing , D = −i∂.

• Can be reduced to solving a series of commutator equations

[−∆, Φ̃] = V , If V = e i〈θ,x〉 ⇒ Φ̃ =
e i〈θ,x〉

2〈ξ, θ〉
.

• For H = −∆ + m(D),

1(−∞,λ2](H) =
1

(2π)d

∫
|ξ|2+m(ξ)≤λ2

e i〈x−y,ξ〉dξ.



Ideas from the proof: Gauge transform

• Use Moser averaging to reduce a periodic problem to a constant coefficient
problem: Find Φ so that

e iΦ(−∆ + V )e−iΦ = −∆ + m(D) + smoothing , D = −i∂.

• Can be reduced to solving a series of commutator equations

[−∆, Φ̃] = V , If V = e i〈θ,x〉 ⇒ Φ̃ =
e i〈θ,x〉

2〈ξ, θ〉
.

• For H = −∆ + m(D),

1(−∞,λ2](H) =
1

(2π)d

∫
|ξ|2+m(ξ)≤λ2

e i〈x−y,ξ〉dξ.



The wave method lets us reduce to a periodic operator.

• Finite speed of propagation allows us to make arbitrarily large changes outside a
set with very large (� λN) radius.

ρT ∗ 1(−∞,0](
√
−∆ + V − λ) =

∫ λ

−∞

∫
ρ̂(

t

T
) cos(t(µ−

√
−∆ + V )dtdµ

ρT (t) := Tρ(Tt)

• We use this to turn a non-periodic potential, V into a periodic one MV .

θ

V̂ (θ)

λ−2N ′

mass transport

θ

M
V

∧

(θ)

• Crucial new feature – the periodic lattice is huge! (� λN).



The wave method lets us reduce to a periodic operator.

• Finite speed of propagation allows us to make arbitrarily large changes outside a
set with very large (� λN) radius.

ρT ∗ 1(−∞,0](
√
−∆ + V − λ) =

∫ λ

−∞

∫
ρ̂(

t

T
) cos(t(µ−

√
−∆ + V )dtdµ

ρT (t) := Tρ(Tt)

• We use this to turn a non-periodic potential, V into a periodic one MV .

θ

V̂ (θ)

λ−2N ′

mass transport

θ

M
V

∧

(θ)

• Crucial new feature – the periodic lattice is huge! (� λN).



The wave method lets us reduce to a periodic operator.

• Finite speed of propagation allows us to make arbitrarily large changes outside a
set with very large (� λN) radius.

ρT ∗ 1(−∞,0](
√
−∆ + V − λ) =

∫ λ

−∞

∫
ρ̂(

t

T
) cos(t(µ−

√
−∆ + V )dtdµ

ρT (t) := Tρ(Tt)

• We use this to turn a non-periodic potential, V into a periodic one MV .

θ

V̂ (θ)

λ−2N ′

mass transport

θ

M
V

∧

(θ)

• Crucial new feature – the periodic lattice is huge! (� λN).



The wave method lets us reduce to a periodic operator.

• Finite speed of propagation allows us to make arbitrarily large changes outside a
set with very large (� λN) radius.

ρT ∗ 1(−∞,0](
√
−∆ + V − λ) =

∫ λ

−∞

∫
ρ̂(

t

T
) cos(t(µ−

√
−∆ + V )dtdµ

ρT (t) := Tρ(Tt)

• We use this to turn a non-periodic potential, V into a periodic one MV .

θ

V̂ (θ)

λ−2N ′

mass transport

θ

M
V

∧

(θ)

• Crucial new feature – the periodic lattice is huge! (� λN).



The wave method lets us reduce to a periodic operator.

• Finite speed of propagation allows us to make arbitrarily large changes outside a
set with very large (� λN) radius.

ρT ∗ 1(−∞,0](
√
−∆ + V − λ) =

∫ λ

−∞

∫
ρ̂(

t

T
) cos(t(µ−

√
−∆ + V )dtdµ

ρT (t) := Tρ(Tt)

• We use this to turn a non-periodic potential, V into a periodic one MV .

θ

V̂ (θ)

λ−2N ′

mass transport

θ

M
V

∧

(θ)

• Crucial new feature – the periodic lattice is huge! (� λN).



An onion peeling gauge transform

• We now assume V is periodic with a potentially very large � λN period.

• Main issue, if |θ| � 1, then Φ̃ = e i〈θ,x〉
2〈ξ,θ〉 � 1.

Hope: use that |∂xe iθx | ∼ |θ|.

• Crucial fact: near ξ = λ, ∂xV ∼ r � 1 and ∂xΨ ∼ r � 1, then [V ,Ψ] ∼ rλ−1.

• How can we work with ∂xV ∼ r?

Peel off dyadic layers of the fourier transform of
V .

V̂ (θ)

θ

θ

θ

λ−1/4−λ−1/4

eiΦ1

ei(Φ1+Φ2)
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Peeling successive layers

V̂ (θ)

θ

θ

θ

θ

λ−1/4−λ−1/4

λ−2/4−λ−2/4

λ−3/4−λ−3/4

eiΨ1

eiΨ2

eiΨ3



Thank you!


