

On some generalized Fermat equations of the form $x^2 + y^{2n} = z^p$

Philippe Michaud-Jacobs

University of Warwick

Modern Breakthroughs in Diophantine Problems Banff, Canada 20th June 2022

The Generalized Fermat Conjecture

The equation

$$x^p + y^q + z^r = 0$$

has finitely many (10) solutions (x^p, y^q, z^r) in non-zero coprime integers x, y, and z and $p, q, r \in \mathbb{Z}_{\geq 2}$ satisfying 1/p + 1/q + 1/r < 1.

We call (p, q, r) the **signature** of the equation.

Many 'solved' cases:

• $(2,3,7), (3,4,5), (5,5,7), \dots$ • $(\ell,\ell,\ell), (\ell,\ell,2), (4,2\ell,3), \dots$ FLT

Aim: Study

$$x^2 + y^{2\ell} = z^p,$$

where p is a fixed prime and ℓ varies + highlight the role played by modular curves.

Generalized Fermat Equations $0 \bullet 0$

The modular method

Suppose $x^{\ell} + 19y^{\ell} + z^{\ell} = 0$.	
Frey curve	$E_{x,y,z,\ell} = E : Y^2 = (X - x^{\ell})(X + 19y^{\ell})$
Modularity $\overline{ ho}_{E,\ell}$ must be modular	All elliptic curves $/\mathbb{Q}$ are modular
Irreducibility $\overline{\rho}_{E,\ell}$ must be irreducible	$\overline{\rho}_{E,\ell}$ is irreducible by Mazur's theorem on ℓ -isogenies of elliptic curves /Q
Level-lower $\overline{\rho}_{E,\ell} \sim \overline{\rho}_{f,\lambda}$, a newform f $\lambda \mid \ell$ a prime of \mathbb{Q}_f	$\overline{\rho}_{E,\ell} \sim \overline{\rho}_{f_1,\ell}$ or $\overline{\rho}_{E,\ell} \sim \overline{\rho}_{f_2,\ell}$ f_1, f_2 newforms at level 38
Eliminate Compare traces of Frobenius	$\operatorname{tr}(\overline{\rho}_{E,\ell}(\sigma_3)) \equiv \operatorname{tr}(\overline{\rho}_{f_i,\ell}(\sigma_3)) \pmod{\ell} \Rightarrow \ell \le 5$

Over totally real fields

Frey curve - Modularity - Irreducibility - Level-lower - Eliminate

Over a totally real field K, the same strategy works.

- Need to prove modularity
- Need to prove irreducibility
- Newforms ~> Hilbert newforms

$$x^2 + y^{2\ell} = z^{3p}$$

Descent

$$x^2 + y^{2\ell} = z^p$$

- Factor LHS over $\mathbb{Q}(i)$: $(y^{\ell} + xi)(y^{\ell} xi) = z^{p}$.
- So $y^{\ell} + xi = (a + bi)^p$ for some $a, b \in \mathbb{Z}$.
- Compare real and imaginary parts and factor over $K = \mathbb{Q}(\zeta_p + \zeta_p^{-1})$:

$$y^{\ell} = \frac{(a+bi)^{p} + (a-bi)^{p}}{2}$$
$$y^{\ell} = a \cdot \prod_{j=1}^{(p-1)/2} \underbrace{\left((\zeta_{p}^{j} + \zeta_{p}^{-j} + 2)a^{2} + (\zeta_{p}^{j} + \zeta_{p}^{-j} - 2)b^{2}\right)}_{\beta_{j} \in \mathcal{K}}$$

Suppose p + y and ℓ ≠ p. Each term on the RHS is an ℓth power.

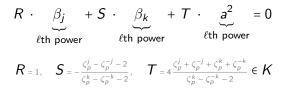
$$x^2 + y^{2\ell} = z^{3p}$$

0000000

Frey curves

We have $y^{\ell} = a \cdot \prod_{j=1}^{(p-1)/2} \beta_j$.

• For p > 3 and each β_j, β_k , there is a relation:



This is an equation of signature (ℓ, ℓ, ℓ). We define a Frey curve over K:

$$E_{x,y,z,\ell} = E: \quad Y^2 = X(X - S \cdot \beta_k)(X + T \cdot a^2).$$

• If p = 3, we define a Frey curve over \mathbb{Q} :

$$E_{x,y,z,\ell} = E:$$
 $Y^2 = X^3 + 6b^2X^2 + 3(a^2 - 3b^2)X.$

Suppose $\overline{\rho}_{E,\ell}$ is modular and irreducible.

$$\overline{\rho}_{E,\ell} \sim \overline{\rho}_{f,\lambda}, \text{ where } \begin{cases} f \text{ is a newform at level } 288 & \text{if } p = 3, \\ f \text{ is a Hilbert newform at level } 2^3 \cdot \mathcal{O}_K & \text{if } p > 3. \end{cases}$$

Problem: We have the trivial solution $(x, y, z, \ell) = (0, \pm 1, 1, \ell)$ and

 $\overline{\rho}_{E_{\mathrm{triv}},\ell} \sim \overline{\rho}_{f_*,\ell}.$

Consequence: We cannot eliminate the isomorphism $\overline{\rho}_{E,\ell} \sim \overline{\rho}_{f_*,\ell}$. **Solution I:** Consider $x^{2\ell} + y^{2\ell} = z^p$ instead.

Theorem (B, A–S, B–C–D–D–F, M)

Let $\ell \geq 2$ and $p \in \{\textbf{3}, \textbf{5}, 7, 11, 13, 17\}$. The equation

$$x^{2\ell} + y^{2\ell} = z^p$$

has no solutions in non-zero coprime integers x, y, and z.

Generalized Fermat Equations 000

$$x^2 + y^{2\ell} = z^p$$

$$x^2 + y^{2\ell} = z^{3p}$$

0000000

Complex multiplication

Solution II: When p = 3, the curve E_{triv} : $Y^2 = X^3 + 3X$ has complex multiplication by $\mathbb{Q}(i)$. **Consequence:** If $\overline{\rho}_{E,\ell} \sim \overline{\rho}_{f_*,\ell} \sim \overline{\rho}_{E_{triv},\ell}$ then

$$E \sim P \in \begin{cases} X_{\text{split}}^+(\ell)(\mathbb{Q}) & \text{if } p \equiv 1 \pmod{4} \\ X_{\text{nonsplit}}^+(\ell)(\mathbb{Q}) & \text{if } p \equiv -1 \pmod{4} \end{cases}$$

In fact, when $p \equiv -1 \pmod{4}$:

$$E \sim P' \in (X_{\text{nonsplit}}^+(\ell) \times_{X(1)} X_0(2))(\mathbb{Q})$$
 \bigcirc

In each case $j(E) \in \mathbb{Z}[1/\ell]$, forcing $E = E_{triv}$.

• Same idea works when $\ell = p$ (for any p).

$$x^2 + y^{2\ell} = z^p$$

$$x^2 + y^{2\ell} = z^{3p}$$

0000000

All this was in the case $p \neq y$.

• If p = 3 and $3 \mid y$ we cannot eliminate an isomorphism

$$\overline{\rho}_{W,\ell} \sim \overline{\rho}_{g_*,\ell}$$

for a newform g_* at level 96 for all ℓ .

Theorem (Chen, Dahmen)

Let ℓ be a prime and suppose there exist non-zero coprime integers x, y, and z satisfying

$$x^2 + y^{2\ell} = z^3.$$

Then $3 \mid y$ and $\ell > 10^7$.

$$x^2 + y^{2\ell} = z^{3p}$$

Assume p > 5 is fixed and p + y.

- Know $\ell > 10^7$.
- Since 3 | y, the Frey curve E_{x,y,z,ℓ}/K has multiplicative reduction at all primes q | 3.

Assume $\overline{\rho}_{E,\ell}$ is modular and irreducible.

 $\overline{\rho}_{E,\ell} \sim \overline{\rho}_{f,\lambda}$, where f is a Hilbert newform at level $2^3 \cdot \mathcal{O}_K$.

Compare traces of Frobenius at $\sigma_{q_3} \in G_{\mathbb{Q}}$:

$$\pm (\operatorname{Norm}(\mathfrak{q}_3) + 1) \equiv a_{\mathfrak{q}_3}(f) \pmod{\lambda}.$$

So

$$\ell \mid \underline{B_f} \coloneqq \operatorname{Norm}_{\mathbb{Q}(f)/\mathbb{Q}} \left(\operatorname{Norm}(\mathfrak{q}_3) + 1 \pm a_{\mathfrak{q}_3}(f) \right)$$

$$x^2 + y^{2\ell} = z^{3p}$$

 $0 \bullet 00000$

We have

 $\ell \mid B_f := \operatorname{Norm}_{\mathbb{Q}(f)/\mathbb{Q}} \left(\operatorname{Norm}(\mathfrak{q}_3) + 1 \pm a_{\mathfrak{q}_3}(f) \right).$ When p = 7: • $B_f \in \{20, 24, 28, 32, 36\}$ and so $\ell \le 7 < 10^7$. When $p \ge 11$: • it is (too) hard to compute the values $a_{\mathfrak{q}_3}(f)...$ But

$$|a_{\mathfrak{q}_3}(f)| \leq 2\sqrt{\operatorname{Norm}(\mathfrak{q}_3)}.$$

$$x^2 + y^{2\ell} = z^{3p}$$

Using this,

$$\begin{split} \ell \mid & B_f \coloneqq \operatorname{Norm}_{\mathbb{Q}(f)/\mathbb{Q}} \left(\operatorname{Norm}(\mathfrak{q}_3) + 1 \pm a_{\mathfrak{q}_3}(f) \right) \\ \leq \left(\operatorname{Norm}(\mathfrak{q}_3) + 1 + 2\sqrt{\operatorname{Norm}}(\mathfrak{q}_3) \right)^{[\mathbb{Q}(f):\mathbb{Q}]} \\ = \left(1 + \sqrt{\operatorname{Norm}}(\mathfrak{q}_3) \right)^{2[\mathbb{Q}(f):\mathbb{Q}]} \\ \leq \left(1 + \sqrt{\operatorname{Norm}}(\mathfrak{q}_3) \right)^{2d}, \end{split}$$

where d is the dimension of the space of Hilbert newforms at level $2^3 \cdot \mathcal{O}_K$.

Example. Let p = 17. Then d = 41883752 and $\ell \le 10^{160315410}$.

Modularity

Theorem (Freitas)

Let K be an abelian totally real number field where 3 is unramified. Let C/K be an elliptic curve semistable at all primes q|3. Then, C is modular.

Consequence: $\overline{\rho}_{E,\ell}$ is modular for all ℓ .

$$x^2 + y^{2\ell} = z^{3p}$$

Irreducibility

Suppose $\overline{\rho}_{E,\ell}$ is reducible so that $E \rightsquigarrow P \in X_0(\ell)(K)$.

• We can bound ℓ :

$$\ell \mid \operatorname{Norm}_{\mathcal{K}/\mathbb{Q}}(\epsilon^{12}-1) \text{ or } \underbrace{\ell \leq (1+3^{3(p-1)h_{\mathcal{K}}/2})^2}_{\text{from studying } X_1(\ell)},$$

for ϵ a fundamental unit of K.

• When p = 7, we have

$$\ell \mid 15369 \text{ or } \ell \le (1+3^9)^2 > 10^7...$$

We have $P \equiv \text{cusp} \pmod{3 \cdot \mathcal{O}_K} \implies \ell < 65 \cdot 6^6 < 10^7$.

$$x^2 + y^{2\ell} = z^{3p}$$

An asymptotic result

Theorem (M)

Let p be a prime. There exists a constant C(p) such that for $\ell > C(p)$, the equation

$$x^2 + y^{2\ell} = z^{3\rho}$$

has no solutions in non-zero coprime integers x, y, and z.

We could take

$$C(p) = \underbrace{(\sqrt{p}+1)^2}_{p|y} \cdot \underbrace{\operatorname{Norm}_{K/\mathbb{Q}}(\epsilon^{12}-1) \cdot (1+3^{3(p-1)h_K/2})^2}_{\text{irreducibility}} \cdot \underbrace{(\sqrt{\operatorname{Norm}(\mathfrak{q}_3)}+1)^{2d}}_{\text{eliminating } \overline{\rho}_{E,\ell} \sim \overline{\rho}_{f,\lambda}}$$

The case p = 7

Theorem (M)

Let $\ell \geq 2$. The equation

$$x^2 + y^{2\ell} = z^{21}$$

has no solutions in non-zero coprime integers x, y, and z.