Machine Learning of Self Organization from Observation

Ming Zhong

Scientific Machine Learning Lab Texas A&M Institute of Data Science (TAMIDS) Texas A&M University

May 16, 2022

Emergent Collective Behaviors: Integrating Simulation and Experiment 2022

Table of Contents

Applications

3 Future Directions

Motivation: Interesting Patterns

Self Organization

Figure: Stripes on Zebra, Source: Wiki

Learning Framework

Motivation: Interesting Patterns

Self Organization

Figure: Flocking of Birds, Source: Wiki

Motivation: Interesting Patterns

Self Organization

Figure: Milling of Fish, Source: Wiki

Ming Zhong	(TAMI	DS'
Tring Zhong	(17400	00.

Learning Dynamics

Inferring ϕ from observation

Can the interaction be learned?

Inferring ϕ from observation

Can the interaction be learned?Interpretable?

Inferring ϕ from observation

Can the interaction be learned?Interpretable? Effective?

Inferring ϕ from observation

Can the interaction be learned?Interpretable? Effective? Efficient?

Inferring ϕ from observation

Can the interaction be learned?Interpretable? Effective? Efficient?

Consider a system of N agents, each of which is assigned $\mathbf{x}_i \in R^d$,

¹Lu, **Zhong**, Tang, Maggioni, PNAS, 2019.

Inferring ϕ from observation

Can the interaction be learned?Interpretable? Effective? Efficient?

Consider a system of N agents, each of which is assigned $\mathbf{x}_i \in R^d$,

$$\frac{d\mathbf{x}_i(t)}{dt} = -\partial_{\mathbf{x}_i} E(\mathbf{x}_1(t), \dots, \mathbf{x}_N(t)), \quad i = 1, \dots, N.$$

¹Lu, **Zhong**, Tang, Maggioni, PNAS, 2019.

Inferring ϕ from observation

Can the interaction be learned?Interpretable? Effective? Efficient?

Consider a system of N agents, each of which is assigned $\mathbf{x}_i \in R^d$,

$$\frac{d\mathbf{x}_{i}(t)}{dt} = -\partial_{\mathbf{x}_{i}} \Big(\underbrace{\frac{1}{N} \sum_{1 \leq i < i' \leq N} U(|\mathbf{x}_{i'}(t) - \mathbf{x}_{i}(t)|)}_{= E(\mathbf{x}_{1}(t), \dots, \mathbf{x}_{N}(t))}\Big), \quad i = 1, \dots, N.$$

Here U(0) = 0 and $\lim_{\mathbf{r}\to\mathbf{0}} U'(|\mathbf{r}|)\mathbf{r} = \mathbf{0}$.

¹Lu, **Zhong**, Tang, Maggioni, PNAS, 2019.

Inferring ϕ from observation

Can the interaction be learned?Interpretable? Effective? Efficient?

Consider a system of N agents, each of which is assigned $\mathbf{x}_i \in R^d$,

$$\dot{\mathbf{x}}_i = \frac{1}{N} \sum_{i'=1}^{N} \phi(|\mathbf{x}_{i'} - \mathbf{x}_i|) (\mathbf{x}_{i'} - \mathbf{x}_i), \quad i = 1, \dots, N.$$
(1)

¹Lu, **Zhong**, Tang, Maggioni, PNAS, 2019.

Inferring ϕ from observation

Can the interaction be learned?Interpretable? Effective? Efficient?

Consider a system of N agents, each of which is assigned $\mathbf{x}_i \in R^d$,

$$\dot{\mathbf{x}}_i = \frac{1}{N} \sum_{i'=1}^{N} \phi(|\mathbf{x}_{i'} - \mathbf{x}_i|) (\mathbf{x}_{i'} - \mathbf{x}_i), \quad i = 1, \dots, N.$$
(1)

• $\phi : \mathbb{R}^+ \to \mathbb{R}$ with $\phi(r) = \frac{U'(r)}{r}$ is the interaction law; $|\cdot|$: Euclidean norm.

¹Lu, **Zhong**, Tang, Maggioni, PNAS, 2019.

Inferring ϕ from observation

Can the interaction be learned?Interpretable? Effective? Efficient?

Consider a system of N agents, each of which is assigned $\mathbf{x}_i \in R^d$,

$$\dot{\mathbf{x}}_{i} = \frac{1}{N} \sum_{i'=1}^{N} \phi(|\mathbf{x}_{i'} - \mathbf{x}_{i}|) (\mathbf{x}_{i'} - \mathbf{x}_{i}), \quad i = 1, \dots, N.$$
(1)

• $\phi : \mathbb{R}^+ \to \mathbb{R}$ with $\phi(r) = \frac{U'(r)}{r}$ is the **interaction law**; $|\cdot|$: Euclidean norm. • Known ϕ

¹Lu, **Zhong**, Tang, Maggioni, PNAS, 2019.

Inferring ϕ from observation

Can the interaction be learned?Interpretable? Effective? Efficient?

Consider a system of N agents, each of which is assigned $\mathbf{x}_i \in R^d$,

$$\dot{\mathbf{x}}_{i} = \frac{1}{N} \sum_{i'=1}^{N} \phi(\left|\mathbf{x}_{i'} - \mathbf{x}_{i}\right|) (\mathbf{x}_{i'} - \mathbf{x}_{i}), \quad i = 1, \dots, N.$$
(1)

φ : ℝ⁺ → ℝ with φ(r) = U'(r)/r is the interaction law; | · |: Euclidean norm.
Known φ ⇒ emergent behaviors (clustering, flocking, milling, etc.).

¹Lu, **Zhong**, Tang, Maggioni, PNAS, 2019.

Inferring ϕ from observation

Can the interaction be learned?Interpretable? Effective? Efficient?

Consider a system of N agents, each of which is assigned $\mathbf{x}_i \in R^d$,

$$\dot{\mathbf{x}}_{i} = \frac{1}{N} \sum_{i'=1}^{N} \phi(|\mathbf{x}_{i'} - \mathbf{x}_{i}|) (\mathbf{x}_{i'} - \mathbf{x}_{i}), \quad i = 1, \dots, N.$$
(1)

φ : ℝ⁺ → ℝ with φ(r) = U'(r)/r is the interaction law; | · |: Euclidean norm.
Known φ ⇒ emergent behaviors (clustering, flocking, milling, etc.).
For Example:

$$\phi(r) = \mathbf{1}_{[0,\frac{1}{2})} + 0.1 * \mathbf{1}_{[\frac{1}{\sqrt{2}},1]}.$$

It induces clusters.

¹Lu, **Zhong**, Tang, Maggioni, PNAS, 2019.

Interaction Laws, cont.

Moreover

$$\phi(r) = r^{q-1} - r^{p-1}, \quad 0 \le p < q.$$

It induces ring-like patterns.

Interaction Laws, cont.

Moreover

$$\phi(r) = r^{q-1} - r^{p-1}, \quad 0 \le p < q.$$

It induces ring-like patterns.

$$\phi(r) = -\frac{\tanh((1-r)a) + b}{r}, \quad a > 0, -1 < b < 1$$

It induces soccer ball like patterns.

Interaction Laws, cont.

Moreover

$$\phi(r) = r^{q-1} - r^{p-1}, \quad 0 \le p < q.$$

It induces ring-like patterns.

$$\phi(r) = -\frac{\tanh((1-r)a) + b}{r}, \quad a > 0, -1 < b < 1$$

It induces soccer ball like patterns.

Inverse Problem

Given $\{\mathbf{x}_i(t), \dot{\mathbf{x}}_i(t)\}_{i=1}^N$ for $t \in [0, T]$, can ϕ be learned? Input: $\{\mathbf{x}_i(t), \dot{\mathbf{x}}_i(t)\}_{i=1}^N$ for $t \in [0, T]$, including agent information. Output: ϕ : interaction law.

The Variational Approach

Given
$$\{\mathbf{X}_{t_l}^{(m)}, \dot{\mathbf{X}}_{t_l}^{(m)}\}_{l,m=1}^{L,M}$$
 with $0 = t_1 < \cdots < t_L = T$ and $\mathbf{X}_0^{(m)} \sim \mu^N(\mathbb{R}^D)$

The Variational Approach

Given $\{\mathbf{X}_{t_l}^{(m)}, \dot{\mathbf{X}}_{t_l}^{(m)}\}_{l,m=1}^{L,M}$ with $0 = t_1 < \cdots < t_L = T$ and $\mathbf{X}_0^{(m)} \sim \mu^N(\mathbb{R}^D)$

$$\mathcal{E}_{L,M,\mathcal{H}}(arphi) = rac{1}{LM}\sum_{l,m=1}^{L,M} \left|\dot{\mathbf{X}}_{t_l}^{(m)} - \mathbf{f}_{arphi}(\mathbf{X}_{t_l}^{(m)})
ight|_{\mathcal{S}}^2,$$

Here $|\mathbf{X}_t|_{S}^2 = \frac{1}{N} \sum_{i=1}^{N} |\mathbf{x}_i(t)|^2$ and $\varphi \in \mathcal{H}$ (compact and convex).

The Variational Approach

Given
$$\{\mathbf{X}_{t_l}^{(m)}, \dot{\mathbf{X}}_{t_l}^{(m)}\}_{l,m=1}^{L,M}$$
 with $0 = t_1 < \cdots < t_L = T$ and $\mathbf{X}_0^{(m)} \sim \mu^N(\mathbb{R}^D)$

$$\mathcal{E}_{L,M,\mathcal{H}}(arphi) = rac{1}{LM}\sum_{l,m=1}^{L,M} \left|\dot{\mathbf{X}}_{t_l}^{(m)} - \mathbf{f}_{arphi}(\mathbf{X}_{t_l}^{(m)})
ight|_{\mathcal{S}}^2,$$

Here
$$|\mathbf{X}_t|_{\mathcal{S}}^2 = \frac{1}{N} \sum_{i=1}^{N} |\mathbf{x}_i(t)|^2$$
 and $\varphi \in \mathcal{H}$ (compact and convex).
• $\hat{\phi}_{L,M,\mathcal{H}} = \operatorname{argmin}_{\varphi \in \mathcal{H}} \{ \mathcal{E}_{L,M,\mathcal{H}}(\varphi) \}$

The Variational Approach

Given $\{\mathbf{X}_{t_l}^{(m)}, \dot{\mathbf{X}}_{t_l}^{(m)}\}_{l,m=1}^{L,M}$ with $0 = t_1 < \cdots < t_L = T$ and $\mathbf{X}_0^{(m)} \sim \mu^N(\mathbb{R}^D)$

$$\mathcal{E}_{L,M,\mathcal{H}}(\varphi) = rac{1}{LM}\sum_{l,m=1}^{L,M} \left|\dot{\mathbf{X}}_{t_l}^{(m)} - \mathbf{f}_{\varphi}(\mathbf{X}_{t_l}^{(m)})
ight|_{\mathcal{S}}^2,$$

Here
$$|\mathbf{X}_t|_{\mathcal{S}}^2 = \frac{1}{N} \sum_{i=1}^{N} |\mathbf{x}_i(t)|^2$$
 and $\varphi \in \mathcal{H}$ (compact and convex).
• $\hat{\phi}_{L,M,\mathcal{H}} = \operatorname{argmin}_{\varphi \in \mathcal{H}} \{ \mathcal{E}_{L,M,\mathcal{H}}(\varphi) \}. \quad \hat{\phi}_{L,M,\mathcal{H}} \xrightarrow{M \to \infty} \phi$?

The Variational Approach

Given $\{\mathbf{X}_{t_l}^{(m)}, \dot{\mathbf{X}}_{t_l}^{(m)}\}_{l,m=1}^{L,M}$ with $0 = t_1 < \cdots < t_L = T$ and $\mathbf{X}_0^{(m)} \sim \mu^N(\mathbb{R}^D)$

$$\mathcal{E}_{L,M,\mathcal{H}}(arphi) = rac{1}{LM}\sum_{l,m=1}^{L,M} ig| \dot{\mathbf{X}}_{t_l}^{(m)} - \mathbf{f}_arphi(\mathbf{X}_{t_l}^{(m)}) ig|_\mathcal{S}^2,$$

Here
$$\left|\mathbf{X}_{t}\right|_{\mathcal{S}}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left|\mathbf{x}_{i}(t)\right|^{2}$$
 and $\varphi \in \mathcal{H}$ (compact and convex)
• $\hat{\phi}_{L,M,\mathcal{H}} = \operatorname{argmin}_{\varphi \in \mathcal{H}} \{\mathcal{E}_{L,M,\mathcal{H}}(\varphi)\}. \quad \hat{\phi}_{L,M,\mathcal{H}} \xrightarrow{M \to \infty} \phi$?

Theorem (Lu, Maggioni, Tang, **Zhong**, 2019)

When $\hat{\phi}_{L,M,\mathcal{H}_M}$'s constructed from \mathcal{H}_M with dim $(\mathcal{H}_M) = \mathcal{O}(M^{\frac{1}{3}})$,

The Variational Approach

Given $\{\mathbf{X}_{t_l}^{(m)}, \dot{\mathbf{X}}_{t_l}^{(m)}\}_{l,m=1}^{L,M}$ with $0 = t_1 < \cdots < t_L = T$ and $\mathbf{X}_0^{(m)} \sim \mu^N(\mathbb{R}^D)$

$$\mathcal{E}_{L,M,\mathcal{H}}(arphi) = rac{1}{LM}\sum_{l,m=1}^{L,M} ig| \dot{\mathbf{X}}_{t_l}^{(m)} - \mathbf{f}_arphi(\mathbf{X}_{t_l}^{(m)}) ig|_\mathcal{S}^2,$$

Here
$$\left|\mathbf{X}_{t}\right|_{\mathcal{S}}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left|\mathbf{x}_{i}(t)\right|^{2}$$
 and $\varphi \in \mathcal{H}$ (compact and convex)
• $\hat{\phi}_{L,M,\mathcal{H}} = \operatorname{argmin}_{\varphi \in \mathcal{H}} \{\mathcal{E}_{L,M,\mathcal{H}}(\varphi)\}. \quad \hat{\phi}_{L,M,\mathcal{H}} \xrightarrow{M \to \infty} \phi$?

Theorem (Lu, Maggioni, Tang, **Zhong**, 2019) When $\hat{\phi}_{L,M,\mathcal{H}_M}$'s constructed from \mathcal{H}_M with dim $(\mathcal{H}_M) = \mathcal{O}(M^{\frac{1}{3}})$, • $\hat{\phi}_{L,M,\mathcal{H}_M} \xrightarrow{M \to \infty} \phi$ at a rate of $\mathcal{O}(M^{-\frac{1}{3}})$; $\hat{\mathbf{X}}_t \xrightarrow{M \to \infty} \mathbf{X}_t$ for $t \in [0, T]$.

The Variational Approach

Given $\{\mathbf{X}_{t_l}^{(m)}, \dot{\mathbf{X}}_{t_l}^{(m)}\}_{l,m=1}^{L,M}$ with $0 = t_1 < \cdots < t_L = T$ and $\mathbf{X}_0^{(m)} \sim \mu^N(\mathbb{R}^D)$

$$\mathcal{E}_{L,M,\mathcal{H}}(arphi) = rac{1}{LM}\sum_{l,m=1}^{L,M} ig| \dot{\mathbf{X}}_{t_l}^{(m)} - \mathbf{f}_arphi(\mathbf{X}_{t_l}^{(m)}) ig|_\mathcal{S}^2,$$

Here
$$\left|\mathbf{X}_{t}\right|_{\mathcal{S}}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left|\mathbf{x}_{i}(t)\right|^{2}$$
 and $\varphi \in \mathcal{H}$ (compact and convex)
• $\hat{\phi}_{L,M,\mathcal{H}} = \operatorname{argmin}_{\varphi \in \mathcal{H}} \{\mathcal{E}_{L,M,\mathcal{H}}(\varphi)\}. \quad \hat{\phi}_{L,M,\mathcal{H}} \xrightarrow{M \to \infty} \phi$?

Theorem (Lu, Maggioni, Tang, **Zhong**, 2019) When $\hat{\phi}_{L,M,\mathcal{H}_M}$'s constructed from \mathcal{H}_M with dim $(\mathcal{H}_M) = \mathcal{O}(M^{\frac{1}{3}})$, • $\hat{\phi}_{L,M,\mathcal{H}_M} \xrightarrow{M \to \infty} \phi$ at a rate of $\mathcal{O}(M^{-\frac{1}{3}})$; $\hat{\mathbf{X}}_t \xrightarrow{M \to \infty} \mathbf{X}_t$ for $t \in [0, T]$.

• Learning Rate in M is optimal (1D regression rate).

The Variational Approach

Given $\{\mathbf{X}_{t_l}^{(m)}, \dot{\mathbf{X}}_{t_l}^{(m)}\}_{l,m=1}^{L,M}$ with $0 = t_1 < \cdots < t_L = T$ and $\mathbf{X}_0^{(m)} \sim \mu^N(\mathbb{R}^D)$

$$\mathcal{E}_{L,M,\mathcal{H}}(arphi) = rac{1}{LM}\sum_{l,m=1}^{L,M} ig| \dot{\mathbf{X}}_{t_l}^{(m)} - \mathbf{f}_arphi(\mathbf{X}_{t_l}^{(m)}) ig|_\mathcal{S}^2,$$

Here
$$\left|\mathbf{X}_{t}\right|_{\mathcal{S}}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left|\mathbf{x}_{i}(t)\right|^{2}$$
 and $\varphi \in \mathcal{H}$ (compact and convex)
• $\hat{\phi}_{L,M,\mathcal{H}} = \operatorname{argmin}_{\varphi \in \mathcal{H}} \{\mathcal{E}_{L,M,\mathcal{H}}(\varphi)\}. \quad \hat{\phi}_{L,M,\mathcal{H}} \xrightarrow{M \to \infty} \phi$?

Theorem (Lu, Maggioni, Tang, **Zhong**, 2019) When $\hat{\phi}_{L,M,\mathcal{H}_M}$'s constructed from \mathcal{H}_M with dim $(\mathcal{H}_M) = \mathcal{O}(M^{\frac{1}{3}})$, • $\hat{\phi}_{L,M,\mathcal{H}_M} \xrightarrow{M \to \infty} \phi$ at a rate of $\mathcal{O}(M^{-\frac{1}{3}})$; $\hat{\mathbf{X}}_t \xrightarrow{M \to \infty} \mathbf{X}_t$ for $t \in [0, T]$.

- Learning Rate in M is optimal (1D regression rate).
- Independent of the dimension of the observation data, i.e. $D = Nd \gg 1$.

The Variational Approach

Given $\{\mathbf{X}_{t_l}^{(m)}, \dot{\mathbf{X}}_{t_l}^{(m)}\}_{l,m=1}^{L,M}$ with $0 = t_1 < \cdots < t_L = T$ and $\mathbf{X}_0^{(m)} \sim \mu^N(\mathbb{R}^D)$

$$\mathcal{E}_{L,M,\mathcal{H}}(arphi) = rac{1}{LM}\sum_{l,m=1}^{L,M} ig| \dot{\mathbf{X}}_{t_l}^{(m)} - \mathbf{f}_arphi(\mathbf{X}_{t_l}^{(m)}) ig|_\mathcal{S}^2,$$

Here
$$\left|\mathbf{X}_{t}\right|_{\mathcal{S}}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left|\mathbf{x}_{i}(t)\right|^{2}$$
 and $\varphi \in \mathcal{H}$ (compact and convex)
• $\hat{\phi}_{L,M,\mathcal{H}} = \operatorname{argmin}_{\varphi \in \mathcal{H}} \{\mathcal{E}_{L,M,\mathcal{H}}(\varphi)\}. \quad \hat{\phi}_{L,M,\mathcal{H}} \xrightarrow{M \to \infty} \phi$?

Theorem (Lu, Maggioni, Tang, **Zhong**, 2019) When $\hat{\phi}_{L,M,\mathcal{H}_M}$'s constructed from \mathcal{H}_M with dim $(\mathcal{H}_M) = \mathcal{O}(M^{\frac{1}{3}})$, • $\hat{\phi}_{L,M,\mathcal{H}_M} \xrightarrow{M \to \infty} \phi$ at a rate of $\mathcal{O}(M^{-\frac{1}{3}})$; $\hat{\mathbf{X}}_t \xrightarrow{M \to \infty} \mathbf{X}_t$ for $t \in [0, T]$.

- Learning Rate in M is optimal (1D regression rate).
- Independent of the dimension of the observation data, i.e. $D = Nd \gg 1$.
- Package: https://github.com/MingZhongCodes/LearningDynamics.

Ming Zhong (TAMIDS)

Opinion Dynamics

Figure: X vs. $\hat{\mathbf{X}}^2$.

²Lu, Z., Tang, Maggioni, PNSA, 2019.

Opinion Dynamics

²Lu, Z., Tang, Maggioni, PNSA, 2019.

Table of Contents

Learning Framework

2 Applications

3 Future Directions

Heterogeneous Agents³

Predator-Preys Dynamics

Figure: X vs. X.

³Lu, **Zhong**, Tang, Maggioni, PNSA, 2019.

Heterogeneous Agents³

Predator-Preys Dynamics

Second Order Systems

Fill-Mill 2D

Figure: **X** vs. $\hat{\mathbf{X}}^4$.

⁴Zhong, Miller, Maggioni, Physica D, 2020.

Second Order Systems

Anticipation Dynamics

Figure: ϕ vs. $\hat{\phi}^4$.

⁴Miller, Tang, **Zhong**, Maggioni, submitted, 2020

Applications

Dynamics on Manifold⁵

⁵Maggioni, Miller, Qiu, **Zhong**, PMLR for 38th ICML, 2021.

Applications

Dynamics on Manifold⁵

⁵Maggioni, Miller, Qiu, **Zhong**, PMLR for 38th ICML, 2021.

Applications Celestial Dynamics (Traj)⁶

Figure: Earth-Moon-Sun System

⁶**Zhong**, Miller, Maggioni, submitted, 2021.

Applications Celestial Dynamics (Traj)⁶

Figure: Inner Solar System

⁶**Zhong**, Miller, Maggioni, submitted, 2021.

Applications Celestial Dynamics (Traj)⁶

Figure: Outer Solar System

⁶**Zhong**, Miller, Maggioni, submitted, 2021.

Celestial Mechanics: Estimating Masses

Figure: Mass Estimation from Learned Interaction Kernels.

Figure: Shared Kernel Function.

Ming	Zhong	(TAMIDS))
		· - ,	

Learning Dynamics

Table of Contents

Learning Framework

2 Applications

Ongoing Projects

Figure: $\Phi(\mathbf{x}_i, \mathbf{x}_{i'})$ vs other estimated pairs (Power Law).

⁷Feng, Maggioni, Martin, **Zhong**, submitted 2022.

Ongoing Projects

Feature Map Learning⁷

⁷Feng, Maggioni, Martin, **Zhong**, submitted 2022.

Ongoing Projects

Learning from Steady State Patterns⁸

Figure: Learn from Steady State Patterns.

⁸Maggioni, **Zhong**, in preparation, 2022.

Physics-informed Machine Learning

Ongoing:

Physics-informed Machine Learning

Ongoing:

• Feature Map Learning: second-order systems.

Physics-informed Machine Learning

Ongoing:

- Feature Map Learning: second-order systems.
- RKHS Learning: how to choose \mathcal{H} (faster convergence? better accuracy?) how to do de-noising? how to add regularization?

Physics-informed Machine Learning

Ongoing:

- Feature Map Learning: second-order systems.
- RKHS Learning: how to choose \mathcal{H} (faster convergence? better accuracy?) how to do de-noising? how to add regularization?
- Second-order dynamics on Riemannian manifolds.

Physics-informed Machine Learning

Ongoing:

- Feature Map Learning: second-order systems.
- RKHS Learning: how to choose \mathcal{H} (faster convergence? better accuracy?) how to do de-noising? how to add regularization?
- Second-order dynamics on Riemannian manifolds.

Physics-informed Machine Learning

Ongoing:

- Feature Map Learning: second-order systems.
- RKHS Learning: how to choose \mathcal{H} (faster convergence? better accuracy?) how to do de-noising? how to add regularization?
- Second-order dynamics on Riemannian manifolds.

Future:

• Real data applications: galaxy data, flocking of birds, bacteria culture, etc.

Physics-informed Machine Learning

Ongoing:

- Feature Map Learning: second-order systems.
- RKHS Learning: how to choose \mathcal{H} (faster convergence? better accuracy?) how to do de-noising? how to add regularization?
- Second-order dynamics on Riemannian manifolds.

- Real data applications: galaxy data, flocking of birds, bacteria culture, etc.
- New collective dynamics models: ant raiding, locust swarm, cell migration, fingerprint formation , etc.

Physics-informed Machine Learning

Ongoing:

- Feature Map Learning: second-order systems.
- RKHS Learning: how to choose \mathcal{H} (faster convergence? better accuracy?) how to do de-noising? how to add regularization?
- Second-order dynamics on Riemannian manifolds.

- Real data applications: galaxy data, flocking of birds, bacteria culture, etc.
- New collective dynamics models: ant raiding, locust swarm, cell migration, fingerprint formation , etc.
- Topological averaging, Mean-field limits, Control, etc.

Physics-informed Machine Learning

Ongoing:

- Feature Map Learning: second-order systems.
- RKHS Learning: how to choose \mathcal{H} (faster convergence? better accuracy?) how to do de-noising? how to add regularization?
- Second-order dynamics on Riemannian manifolds.

- Real data applications: galaxy data, flocking of birds, bacteria culture, etc.
- New collective dynamics models: ant raiding, locust swarm, cell migration, fingerprint formation , etc.
- Topological averaging, Mean-field limits, Control, etc.
- Semi-supervised learning: no type information; changing types, changing *N*, etc.

References

Forward Approach

For different kinds of Self Organization

- Y.-L. Chuang, M. R. D'Orsogna, D. Marthaler, A.L. Bertozzi, "State Transitions and the Continuum Limit for a 2D Interacting Self-propelled Particle System", 2007.
- F. Cucker, S. Smale, "Emergent Behavior in Flocks", 2007.
- S. Ha, D. Levy, "Particle, Kinetic and Fluid Models of Phototaxis", 2009.
- T. Kolokolnikov, H. Sun, D. Uminsky, A.L. Bertozzi, "A Theory of Complex Patterns Arising from 2D Particle Interactions", 2011.
- Y. Chen, T. Kolokolnikov, "A Minimal Model of Predator-Swarm Interactions", 2013.
- S. Mostch, E. Tadmor, "Heterophilious Dynamics Enhances Consensus", 2014.
- K.P. O'Keeffe, H. Hong, S.H. Strogatz, "Oscillators that Sync and Swarm", 2017.
- R. Shu, E. Tadmor, "Anticipation Breeds Alignment", 2019.

References

Inverse Problem Approach

SINDy, ROM, PINN, Neural ODEs, Bayesian Inference, etc.

- Bongini, Fornasier, Hansen, Maggioni, "Inferring Interaction Rules from Observations of Evolutive Systems I: the Variational Approach", 2017.
- Lu, **Zhong**, Tang, Maggioni, "Nonparametric inference of interaction laws in systems of agents from trajectory data", 2019.
- **Zhong**, Miller, Maggioni, "Data-driven Discovery of Emergent Behaviors in Collective Dynamics", 2020.
- Miller, Tang, **Zhong**, Maggioni, "Learning theory for inferring interaction kernels in second-order interacting agent systems", 2020.
- Maggioni, Miller, Qiu, **Zhong**, "Learning interaction kernels for agent systems on Riemannian manifolds", 2021.
- **Zhong**, Miller, Maggioni, "Machine Learning for Discovering Effective Interaction Kernels between Celestial Bodies from Ephemerides", 2021.
- Feng, Maggioni, Martin, **Zhong**, "Learning Interaction Variables and Kernels from Observations of Agent-Based Systems", 2022.

$\begin{array}{c} Q \text{ and } A \\ {}_{\text{Questions?}} \end{array}$

Thank You!!