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Learning Framework

Learning Self Organization
Interaction Laws1

Inferring ϕ from observation

Can the interaction be learned?

Consider a system of N agents, each of which is assigned xi ∈ Rd ,

ϕ : R+ → R with ϕ(r) = U′(r)
r is the interaction law;

∣∣ · ∣∣: Euclidean norm.

Known ϕ

⇒ emergent behaviors (clustering, flocking, milling, etc.).

For Example:
ϕ(r) = 1[0, 12 ) + 0.1 ∗ 1[ 1√

2
,1].

It induces clusters.

1Lu, Zhong, Tang, Maggioni, PNAS, 2019.
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Learning Framework

Learning Self Organization
Interaction Laws, cont.

Moreover
ϕ(r) = rq−1 − rp−1, 0 ≤ p < q.

It induces ring-like patterns.

ϕ(r) = − tanh((1− r)a) + b

r
, a > 0,−1 < b < 1.

It induces soccer ball like patterns.

Inverse Problem

Given {xi (t), ẋi (t)}Ni=1 for t ∈ [0,T ], can ϕ be learned?
Input: {xi (t), ẋi (t)}Ni=1 for t ∈ [0,T ], including agent information.
Output: ϕ: interaction law.

Ming Zhong (TAMIDS) Learning Dynamics BIRS 2022 5 / 20



Learning Framework

Learning Self Organization
Interaction Laws, cont.

Moreover
ϕ(r) = rq−1 − rp−1, 0 ≤ p < q.

It induces ring-like patterns.

ϕ(r) = − tanh((1− r)a) + b

r
, a > 0,−1 < b < 1.

It induces soccer ball like patterns.

Inverse Problem
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Learning Framework

Learning Self Organization
The Variational Approach

Given {X(m)
tl , Ẋ

(m)
tl }L,Ml,m=1 with 0 = t1 < · · · < tL = T and X

(m)
0 ∼ µN(RD)

EL,M,H(φ) =
1

LM

L,M∑
l,m=1

∣∣Ẋ(m)
tl − fφ(X

(m)
tl )

∣∣2
S ,

Here
∣∣Xt

∣∣2
S = 1

N

∑N
i=1

∣∣xi (t)∣∣2 and φ ∈ H (compact and convex).

ϕ̂L,M,H = argminφ∈H{EL,M,H(φ)}

Theorem (Lu, Maggioni, Tang, Zhong, 2019)

When ϕ̂L,M,HM
’s constructed from HM with dim(HM) = O(M

1
3 ),

ϕ̂L,M,HM

M→∞−−−−→ ϕ at a rate of O(M− 1
3 ); X̂t

M→∞−−−−→ Xt for t ∈ [0,T ].

Learning Rate in M is optimal (1D regression rate).

Independent of the dimension of the observation data, i.e. D = Nd ≫ 1.

Package: https://github.com/MingZhongCodes/LearningDynamics.

Ming Zhong (TAMIDS) Learning Dynamics BIRS 2022 6 / 20

https://github.com/MingZhongCodes/LearningDynamics


Learning Framework

Learning Self Organization
The Variational Approach

Given {X(m)
tl , Ẋ
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(m)
tl }L,Ml,m=1 with 0 = t1 < · · · < tL = T and X

(m)
0 ∼ µN(RD)

EL,M,H(φ) =
1

LM

L,M∑
l,m=1

∣∣Ẋ(m)
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Opinion Dynamics

Figure: X vs. X̂2.

2Lu, Z., Tang, Maggioni, PNSA, 2019.
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Learning Self Organization
Opinion Dynamics

Figure: ϕ vs. ϕ̂, ρLT vs. ρL,MT
2.

2Lu, Z., Tang, Maggioni, PNSA, 2019.
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Applications
Second Order Systems

Fill-Mill 2D

Figure: X vs. X̂4.

4Zhong, Miller, Maggioni, Physica D, 2020.
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Applications
Second Order Systems

Anticipation Dynamics

Figure: ϕ vs. ϕ̂4.

4Miller, Tang, Zhong, Maggioni, submitted, 2020
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Dynamics on Manifold5

Figure: X vs. X̂.

5Maggioni, Miller, Qiu, Zhong, PMLR for 38th ICML, 2021.
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Celestial Dynamics (Traj)6

Figure: Earth-Moon-Sun System

6Zhong, Miller, Maggioni, submitted, 2021.
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Celestial Dynamics (Traj)6

Figure: Inner Solar System

6Zhong, Miller, Maggioni, submitted, 2021.
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Applications
Celestial Dynamics (Traj)6

Figure: Outer Solar System

6Zhong, Miller, Maggioni, submitted, 2021.
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Applications
Celestial Mechanics: Estimating Masses

Figure: Mass Estimation from Learned Interaction Kernels.
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Celestial Mechanics: Estimating Masses

Figure: Shared Kernel Function.
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Future Directions

Ongoing Projects
Feature Map Learning7

Figure: Φ(xi , xi′) vs other estimated pairs (Power Law).

7Feng, Maggioni, Martin, Zhong, submitted 2022.
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Future Directions

Ongoing Projects
Learning from Steady State Patterns8

Figure: Learn from Steady State Patterns.

8Maggioni, Zhong, in preparation, 2022.
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Future Projects
Physics-informed Machine Learning

Ongoing:

Feature Map Learning: second-order systems.

RKHS Learning: how to choose H (faster convergence? better accuracy?)
how to do de-noising? how to add regularization?

Second-order dynamics on Riemannian manifolds.

Future:

Real data applications: galaxy data, flocking of birds, bacteria culture, etc.

New collective dynamics models: ant raiding, locust swarm, cell migration,
fingerprint formation , etc.

Topological averaging, Mean-field limits, Control, etc.

Semi-supervised learning: no type information; changing types, changing N,
etc.
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Q and A
Questions?

Thank You!!
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