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The inverse problem

Type equation here.



Classically formulated as

which is often reduced to

PDE constrained optimisation
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• Non-linear, high-dimensional 
optimisation

• PDE-solves (many r.h.s., many 
wavelengths)

• Exact adjoint may not be readily 
available

Computational challenges



Sources of non-linearity

• Oscilatory nature of data
• Absence of low frequency data
• Limited aperture



initial guess II the penalty method for 0.1M � and 1M � needs a few more iterations, but still
converges to the same point as for initial guess I. For 10M � and the reduced method,
however, the iterations stall at a relatively high data misfit.

These experiments suggests that the penalty method indeed mitigates some of the
nonlinearity of the problem, allowing the optimization to converge to the same final iterate,
even when the initial guess is further away from the ground truth.

7. Discussion

This paper lays out the basics of an efficient implementation of the penalty method for PDE-
constrained optimization problems arising in inverse problems. While the initial results are
promising, some aspects of the proposed method warrant further investigation.

Even though the theoretical results suggest that the penalty approach can find a stationary
point of the Lagrangian with finite precision with a finite λ, it is not clear how to choose a
suitable value for λ a priori. Our analysis and results suggest that choosing λ to be a small
fraction of PA 1

2
2�& & at the initial iterate yields good results. A continuation strategy for λ is

needed if we want to guarantee finding a stationary point of the Lagrangian with preset
tolerance. A natural way to do this seems to be detecting when the penalty method stalls and
subsequently reducing λ. The numerical results suggest that such an approach is viable, but
further study is needed in order to develop a robust continuation strategy.

Figure 11. Ground truth (s km2 2) (top) with locations of the sources (*) and receivers
(") and initial iterates I (middle, left) and II (bottom, right). The bottom row shows the
data for a source in the center for the ground truth (dashed line) as well as the data for
the two initial iterates. The first initial iterate produces data that differs only slightly
from the observed data and inversion is considered to be easy. The second initial iterate
produces data that is shifted significantly with respect to the observed data and
inversion is considered to be difficult.

Inverse Problems 32 (2016) 015007 T van Leeuwen and F J Herrmann

22



The penalty formulation essentially relaxes the constraints and therefore allows for errors
in the physics as well as the data. As a result, the penalty formulation leads to reduced
sensitivity of the final reconstruction to the initial guess. Further investigation is needed to
characterize this robustness.

Finally, the Hessian of the penalty objective exhibits additional structure that could
potentially be exploited. In particular, the penalty-method GN Hessian is full rank and allows
for a natural sparse approximation H G GTMxM (see equation (18)). The reduced GN Hessian,
on the other hand, has rank of at most ML and does not permit such a natural sparse
approximation.

8. Conclusions

We have presented a penalty method for PDE-constrained optimization with linear PDEs with
applications to inverse problems. The method is based on a quadratic penalty formulation of
the constrained problem. This reformulation results in a an unconstrained optimization pro-
blem in both the parameters and the state variables. To avoid having to store and update the
state variables as part of the optimization, we explicitly eliminate the state variables by

Figure 12.QN reconstructions after 50 iterations and corresponding data for a source in
the center, starting from the initial iterate I. Both the penalty and reduced methods
converge to the same final iterate when starting from this initial guess and are able to fit
the data equally well.
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solving an overdetermined linear system. The proposed method combines features from both
the all-at-once approach, in which the states and parameters are updated simultaneously, and
the conventional reduced approach, in which the PDE-constraints are eliminated explicitly.
While having a similar computational complexity as the conventional reduced approach, the
penalty approach explores a larger search space by not satisfying the PDE-constraints exactly.

We show that we can (theoretically) find a stationary point of the Lagrangian of the
constrained problem within a given tolerance as long as the penalty parameter, λ, is chosen
large enough. While theoretically we need M ³ d, we can suffice with solving the problem
for a finite λ to reach the stationary point within finite precision.

The main algorithmic difference with the conventional reduced approach is the way the
states are eliminated from the problem. Instead of solving the PDEs, we formulate an
overdetermined system of equations that consists of the discretized PDE and the measure-
ments. We discuss the properties of this augmented system and show with a few numerical
examples that both the structure of the system as well as the eigenvalues are not altered
dramatically as compared the original PDE. Thus, it is plausible that the augmented system
can be solved as efficiently using the same approach as is used for the original PDE.

Figure 13.QN reconstructions after 50 iterations and corresponding data for a source in
the center, starting from the initial iterate II. For small λ, the penalty method converges
to the same final iterate as when starting from initial guess II, showing stability against
changes in the initial guess. The reduced method converges to a completely different
model, suggesting that the optimization method is stuck in a local minimum. This is
confirmed when looking at the data-fit.
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Reducing non-linearity



Use quadratic penalty instead

and reduce via 

to get a reduced penalty formulation.

Joint parameter and state estimation
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The penalty formulation essentially relaxes the constraints and therefore allows for errors
in the physics as well as the data. As a result, the penalty formulation leads to reduced
sensitivity of the final reconstruction to the initial guess. Further investigation is needed to
characterize this robustness.

Finally, the Hessian of the penalty objective exhibits additional structure that could
potentially be exploited. In particular, the penalty-method GN Hessian is full rank and allows
for a natural sparse approximation H G GTMxM (see equation (18)). The reduced GN Hessian,
on the other hand, has rank of at most ML and does not permit such a natural sparse
approximation.

8. Conclusions

We have presented a penalty method for PDE-constrained optimization with linear PDEs with
applications to inverse problems. The method is based on a quadratic penalty formulation of
the constrained problem. This reformulation results in a an unconstrained optimization pro-
blem in both the parameters and the state variables. To avoid having to store and update the
state variables as part of the optimization, we explicitly eliminate the state variables by
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converge to the same final iterate when starting from this initial guess and are able to fit
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• How to choose trade-off parameter

• Implement data-assimulation step in 
a computationally efficient manner

• Understand limitations



Other approaches

• Other extensions / data fidelities
• Classical inverse scattering
• Wavefield redatuming 
• Reduced-order-models
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model fit

Data-driven vs. model-driven



Uncertainty quantification

Type equation here.



Formulate a prior and likelihood 
model, e.g. 

and generate samples from the 
posterior

Bayesian approach

<latexit sha1_base64="odlDmrVIUCowp/FlFIZfYoNLfs0="></latexit>

⇡prior(m) / exp
�
� 1

2km� µmk2⌃m

�
<latexit sha1_base64="sD6R0PaAPgx2VerIU30WZ7QnYiU="></latexit>

⇡like(d|m) / exp
�
� 1

2kPA�1(m)q � dk2⌃d

�



Want to go beyond computing 
moments:

• Reliability of interpreted features
• Influence of prior of certain features
• Sensitivity to initial guess

Uncertainty quantification



Hessian-based
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Figure 12. Full-waveform inversion for the western Mediterranean. (a) Source-receiver distribution in the western Mediterranean region. Beach balls indicate the
source mechanisms and locations of the 52 earthquakes used in our inversion. Great circles connecting sources and receivers are plotted in lighter color when
coverage is high. The black and gray boxes mark the boundary of the computational domain and the inner boundary of the absorbing layer, respectively.
Recordings are only chosen from within the inner gray box to avoid contamination by artificial reflections from imperfect absorbing boundaries. (b) Absolute
variations of the isotropic S velocity, vs, relative to the lateral average in the region.

insensitive to an amplitude scaling, the phase differences avoid trade-offs with the event magnitudes and the
station calibration that may not be well constrained. These differences are then minimized iteratively using a
conjugate-gradient method that is based on the computation of Fréchet kernels with the help of adjoint tech-
niques. Figure 12 shows horizontal slices though the final distribution of the isotropic S velocity vs, defined as
v2

s = 2
3

v2
sv +

1
3

v2
sh [e.g., Babuška and Cara, 1991; Panning and Romanowicz, 2006].

Using the previously described methods, we estimate 3-D distributions of resolution lengths using a total of
five samples. Resolution length in N-S, E-W, and radial directions are summarized in Figure 13. As a result of
the heterogeneous coverage, the distributions of resolution lengths exhibit strong spatial variability, as well
as directional dependence. This observation is not specific to full-waveform inversion and also typically found
in ray tomography [e.g., Yanovskaya, 1997, 2000]. In the horizontal directions, resolution length around 50 km
depth varies between 30 and nearly 400 km. Local minima of horizontal resolution lengths appear beneath
regions of particularly dense coverage, such as the Aegean and the Iberian peninsula. However, horizontal
resolution is poor beneath the south-central Mediterranean where few surface ray paths cross.

Resolution length in radial direction is mostly shorter than that in the horizontal directions because of
fundamental- and higher-mode surface wave data that are naturally incorporated in the full-waveform inver-
sion. Regions with poor horizontal resolution may in fact be well resolved in radial direction when few
surface wave paths spread heterogeneities over wide areas while still constraining them to roughly the right
depth range.

With increasing depth, the resolution lengths are less dominated by surface waves and more a function of
body wave coverage. Consequently, the resolved volume shrinks with increasing depth. Despite the smaller
volume, horizontal resolution lengths of∼50 km are possible to depths of around 600 km in regions where suf-
ficiently many wave paths cross. As a result of predominantly E-W oriented source-receiver paths (Figure 12a),
resolution in N-S direction is mostly better than in E-W direction.

7. Convergence and the Choice of Sampling Distributions

In the following paragraphs we provide theoretical considerations on the choice of the random sampling dis-
tribution and the convergence of the autocorrelation functions. Key results of this paragraph are as follows:
(i) Normally distributed random functions ensure nearly optimal convergence of the empirical covariance

FICHTNER AND VAN LEEUWEN RESOLUTION ANALYSIS BY RANDOM PROBING 5562
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Figure 13. Slices through the 3-D distributions of resolution lengths. Resolution length in (left column) N-S direction,
(middle column) E-W direction, and (right column) radial direction. Regions where the volume of the local point spread
functions is below 1% of the maximum point spread function volume are blanked.

E[v(x)v(x′)] toward !(x − x′). (ii) The autocorrelation c(x) converges most rapidly near x = 0, meaning that
its variance can be estimated from values around x = 0 based on a small number of random samples.
(iii) Autocorrelating over a larger interval improves convergence and can compensate for a small number
of samples.

7.1. Optimal Properties of the Sampling Distribution
To ensure a rapid convergence of the resolution proxies, the empirical expectation En[v(x)v(x′)] should con-
verge quickly toward !(x − x′), as noted in equation (6). To infer properties of sampling distributions that are
suitable in this sense, we consider two fixed points x and x′ ≠ x. In the interest of a light notation, we define

v(x)v(x′) = v v′ , (33)

where v and v′ are two identically distributed and independent random variables with mean 0. Our goal is to
estimate the convergence of the empirical expectation

En = 1
n
(v1v′

1 + v2v′
2 + ... + vnv′

n) , (34)

FICHTNER AND VAN LEEUWEN RESOLUTION ANALYSIS BY RANDOM PROBING 5563

Assume posterior is 
locally Gaussian and
covariance is a blurring
kernel 



• May be sufficient if problem is 
locally linear

• Gives only information on 
uncertainties of certain features

• Computationally feasible



MCMC sampling

1536 M. Izzatullah, T. van Leeuwen and D. Peter
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Figure 11. The Camembert model. Summary of the sample mean, variance, and skewness models of the posterior distribution for the three algorithms. First
row: mean; second row: variance and third row: skewness.
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Figure 12. The Camembert model: The 1-D and 2-D pairwise marginal posterior probability distributions for three neighbouring model parameters, m229,
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Sample from posterior using Langevin 
dynamics and use adaptive stepsize



• Samples actual posterior (in theory)

• Sampling multi-modal could still be 
challenging

• Computationally more challenging

• What to do with all the samples?



Learn joint density from given samples

with

Normalising flows

(a) (b)

Figure 1: Samples from the posterior distribution learned in the pre-training phase. Here, we display
the results for: (a) in-distribution data (e.g. test data); (b) out-of-distribution data. Due to limited
aperture (the receivers are located at the position “z=0“), the areas of highest uncertainty correspond
to the vertical features of the blood vessel system.

train a normalizing flow f✓✓✓ : X ⇥ Y ! Zx ⇥ Zy by minimizing the Kullback-Leibler divergence
between the target density pX,Y and the pull-back of the standard Gaussian distribution defined on
the latent space Zx ⇥ Zy via f✓✓✓ [10, 11]:

min
✓✓✓

KL(pX,Y kp✓✓✓) = Ex,y⇠pX,Y (x,y)
1

2
kf✓✓✓(x,y)k2 � log | det Jf✓✓✓ (x,y)|. (3)

Here, Jf✓✓✓ denotes the Jacobian of f✓✓✓ with respect to the input. Following [2], we impose a triangular
structure on the normalizing flow, e.g. f✓✓✓(x,y) = (fzx

✓✓✓ (x,y), f
zy
✓✓✓ (y)). We choose the conditional

architecture of the HINT invertible network, whose original (non-conditional) form was proposed
in [1]. After an ideal optimization of equation (3), sampling from the posterior distribution x ⇠
pX|Y (x|y) is equivalent to computing the latent data code zy = f

zy
✓✓✓ (y) and evaluating f�1

✓✓✓ (zx, zy)
for random zx’s. This first phase does not require repeated evaluation of the physical model A
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• Choosing appriopriate archtecture is 
not easy

• Requires many training samples

• Tied to particular acquisition and 
sampling

• What to do with all the samples?



Wrap-up

Type equation here.

• Many computational challenges in solving 
non-linear problems and sampling in high-
dimensions

• Many practical challenges in choosing 
parameters,  architectures, etc.

• More fundamental problems with UQ; which 
distribution should we sample from and 
what to do with the samples?

• How do we merge data-driven approaches 
and UQ?



Thanks!
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