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Recap: The Sampling Problem in Bayesian Statistics



Computation for the Bayesian Framework

The goal is to obtain an approximation to the posterior in a Bayesian context:

P : π(θ|y) =
π(y |θ)π(θ)

π(y)

where θ ∈ Θ are the unknown parameters of the model, π(θ) is an appropriate prior density and y
denotes the dataset.

This raises technical challenges as the normalisation constant

π(y) =

∫
Θ

π(y |θ)π(θ)dθ

is an intractable d-dimensional integral.

Sampling from P via Markov chain Monte Carlo (MCMC) is a popular approach which requires only
evaluation of the un-normalised form

p(θ) := π(y |θ)π(θ),

but it is not a silver bullet.
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Optimal Quantisation

“Pick a collection of parameters that best represents P”

Idea: argmin
θ1,...,θm∈Θ

diff︸︷︷︸
(∗)

(
1

m

m∑
i=1

δ(θi ),P

)

[For now we focus on optimisation in Θm, but later we will
discuss optimisation over P(Θ).]

SP-MCMCMCMC

Remarks:

▶ “Nice idea, but we don’t have access to P.”

▶ “High-dimensional optimisation is hard.”

This tutorial will explain how Stein’s Method can be used to manufacture a function (∗) that can be
computed without the normalisation constant π(y), and to review methodology for optimisation of (∗).
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Sampling and Stein’s Method



Background: Quantisation via Reproducing Kernel Hilbert Spaces (RKHS)

Let k : Θ×Θ → R be the reproducing kernel of a RKHS H(k) of functions from Θ to R; i.e ∀θ ∈ Θ,
k(θ, ·) ∈ H(k) and f (θ) = ⟨f , k(θ, ·)⟩H(k) whenever f ∈ H(k). (Intuition: f (θ) =

∑
i cik(θ, θi ))

Consider an integral probability pseudo-metric based on ∥ · ∥H(k):

diff

(
1

m

m∑
i=1

δ(θi ),P

)
:= sup

∥f ∥H(k)≤1

∣∣∣∣∣ 1m
m∑
i=1

f (θi )− Eϑ∼P [f (ϑ)]

∣∣∣∣∣
=: DH(k),P ({θi}mi=1)

which is sometimes called the maximum mean discrepancy, or the worst-case integration error for the
RKHS H(k).

Let’s try to compute this:

DH(k),P({θi}mi=1)
2 =

∥∥∥∥∥ 1

m

m∑
i=1

k(θi , ·)−
∫

k(θ, ·)dP(θ)

∥∥∥∥∥
2

H(k)

Problem: We need to choose k carefully, so that the integrals can be evaluated. How?
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Stein Characterisation

Definition (Stein Characterisation)

A distribution P is characterised by the pair (A,F), consisting of a Stein Operator A and a Stein Set
F , if it holds that

ϑ ∼ P iff E[Af (ϑ)] = 0 ∀f ∈ F .

Proposition (Chwialkowski, Strathmann, and Gretton [2016])

Suppose that κ is a reproducing kernel on Θ = Rd such that κ and its first-order mixed derivatives are
bounded, that κ is C0-universal, and that Eϑ∼P [∥∇ log p(ϑ)∥2] < ∞. Then P has Stein
characterisation (A,F), consisting of

Af =
∇ · (fp)

p
, F =

{
f ∈ H(κ)d :

d∑
i=1

∥fi∥2H(κ) ≤ 1

}
.

Sketch (easy direction, d = 1)

Eϑ∼P [Af (ϑ)] =

∫
(fp)′

p
dP =

∫
(fp)′dx = f (∞)p(∞)− f (−∞)p(−∞) = 0
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Suppose that κ is a reproducing kernel on Θ = Rd such that κ and its first-order mixed derivatives are
bounded, that κ is C0-universal, and that Eϑ∼P [∥∇ log p(ϑ)∥2] < ∞. Then P has Stein
characterisation (A,F), consisting of
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Af =
∇ · (fp)

p
, F =

{
f ∈ H(κ)d :

d∑
i=1

∥fi∥2H(κ) ≤ 1

}
.

Proposition (CJO, Girolami, and Chopin [2017])

The above functions Af constitute the unit ball in a Stein RKHS H(kP) := AH(κ) with kernel

kP(θ, θ
′) = ∇θ · ∇θ′κ(θ, θ

′) +
∇θp(θ)

p(θ)
· ∇θ′κ(θ, θ

′) +
∇θ′p(θ

′)

p(θ′)
· ∇θκ(θ, θ

′) +
∇θp(θ)

p(θ)
· ∇θ′p(θ

′)

p(θ′)
κ(θ, θ′).

In particular,
∫
kP(θ, ·)dP(θ) = 0 and

∫∫
kP(θ, ϑ)dP(θ)dP(ϑ) = 0.



Kernel Stein Discrepancy

The kernel Stein discrepancy [KSD; Chwialkowski et al., 2016, Liu et al., 2016] is defined as the
worst-case integration error for the Stein RKHS H(kP):

DH(kP ),P ({θi}mi=1) =

√√√√ 1

m2

m∑
i,j=1

kP(θi , θj)−
2

m

m∑
i=1

�������∫
kP(θ, θi )dP(θ) +

����������∫∫
kP(θ, ϑ)dP(θ)dP(ϑ)

Computation of the KSD does not require knowledge of the normalisation constant π(y) and so it can
be explicitly computed.

Gorham and Mackey [2017] established that (for suitable P)

dDud

(
1
m

∑m
i=1 δ(θi ),P

)
DH(kP ),P ({θi}mi=1) dWass

(
1
m

∑m
i=1 δ(θi ),P

)
↓ ⇐ ↓ ⇐ ↓
0 0 0

when the KSD has κ(θ, θ′) = (σ2 + ∥θ − θ′∥2)−β being the inverse-multiquadric kernel. (dDud is the

Dudley metric and metrises weak convergence. dWass is the Wasserstein metric, popular from optimal

transport.)
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Sampling and Stein’s Method

“Pick a sample that minimises KSD”

Idea: argmin
θ1,...,θm∈Θ

DH(kP ),P({θi}
m
i=1)

Sampling is now an optimisation problem, and we can design
optimisation methodology:

▶ Sequential grid search over Θ [Chen et al., 2018]

▶ Sequential stochastic search over Θ [Chen et al., 2019]

▶ Sequential search over a Markov chain sample path
[Riabiz et al., 2022]
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Optimal Thinning of MCMC Output

In an ideal world we would be able to post-process the MCMC output and keep only those states that
are representative of the posterior P:
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n
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Desiderata:

▶ Fix problems with MCMC (automatic identification of burn-in; mitigation of poor mixing; number
of points proportional to the probability mass in a region; etc.)

▶ Compressed representation of the posterior, to reduce any downstream computational load.
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Stein Thinning of MCMC Output

“Greedily pick states θi from the MCMC output to minimise KSD”

The “Stein Thinning” algorithm produces a subset S = {i1, . . . , im} ⊂ {1, . . . , n} consisting of:

i1 ∈ argmax
i∈{1,...,n}

p(θi |y)

im ∈ argmin
i∈{1,...,n}

DH(kP ),P

(
{θij }

m−1
j=1 ∪ {θi}

)
, m ≥ 2

= argmin
i∈{1,...,n}

m−1∑
j=1

kP(θi , θij ) +
kP(θi , θi )

2

This requires searching over a finite set only and can therefore be exactly implemented. The cost of
selecting the mth point is O(mn).
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Convergence and Bias Removal

Stein Thinning does not require MCMC to be P-invariant - as long as the relevant part of the
parameter space is explored:

Theorem (Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and CJO [2022])

Let (θi )i∈N be a Q-invariant, time-homogeneous, reversible Markov chain, such that P is absolutely
continuous with respect to Q and

▶ (θi )i∈N is V -uniformly ergodic with V (θ) ≥ dP
dQ (θ)

√
kP (θ, θ)

▶ supi∈N E[ dP
dQ (θi )

√
kP (θi , θi )V (θi )] < ∞

▶ ∃γ > 0 s.t. b := supi∈N E[eγ max(1, dP
dQ

(θi )
2)kP (θi ,θi )] < ∞.

Then the output of Stein Thinning satisfies

PST :=
1

m

∑
i∈S

δ(θi ) ⇒ P

almost surely as n,m → ∞ with m ≤ n and log(n) = O(mβ/2) for some β < 1.
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Stein Thinning of MCMC Output

The figures we saw before were actually produced by Stein Thinning!
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Full details in:

▶ M. Riabiz, W. Chen, J. Cockayne, P. Swietach, S. A. Niederer, L. Mackey, and CJO. Optimal
thinning of MCMC output.
JRSSB, 2022



Illustrative Application to Differential Equation Constrained Inverse Problems

Goodwin oscillator; d = 4 parameters to be
estimated. (Red dots are Stein Thinning, while
gray dots are MCMC.)

Cardiac model; d = 38 parameters to be esitmated.
(Blue, red, and green are Stein Thinning, while
black are MCMC.)
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Non-Myopic and Batch Extensions to Stein Thinning

Greedy selection may be sub-optimal. Also, the cost of selecting m points from n using Stein Thinning
is high, at O(m2n).

▶ A non-myopic algorithm selects s points simultaneously.

▶ A mini-batch algorithm searches over a subset of b ≪ n candidates at each step.

Full details in:

▶ O. Teymur, J. Gorham, M. Riabiz, and CJO. Optimal quantisation of probability measures using
maximum mean discrepancy.
In AISTATS, 2021



Sampling and Stein’s Method: Broader Context



Broader Context: Optimisation over P(Θ)

Going beyond optimisation in Θ, we can consider optimisation in P(Θ):

DH(kP ),P(Q) := sup
∥f ∥H(kP )≤1

|Eϑ∼Q [f (ϑ)]|

▶ Stein Importance Sampling: Liu and Lee [2017], Hodgkinson et al. [2020], ...

Given {θi}ni=1, construct PSIS :=
n∑

i=1

wiδ(θi ) where w ∈ argmin
w1,...,wn≥0
w1+···+wn=1

DH(kP ),P

(
n∑

i=1

wiδ(θi )

)
Complexity = O(n3) but PST → PSIS as m → ∞ for n fixed.

▶ Variational Inference: Ranganath et al. [2016], Hu et al. [2018], Fisher et al. [2021], ...

min
Q∈Q

DH(kP ),P(Q), (e.g.) Q = {T#Q0 : T a neural network}

Avoids the requirement in VI that T be a diffeomorphism (i.e. no need for normalising flows!).

▶ Gradient Flow: Korba et al. [2021]

∂Qt

∂t
+ div(QtvQt ) = 0, vQt = −∇W2F(Qt), F(Q) =

1

2
DH(kP ),P(Q)2

*not the same as SVGD [see Liu, 2017].
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Broader Context: Sampling with Stein Discrepancies

For any Stein characterisation (A,F) we can consider an associated Stein discrepancy [Gorham and
Mackey, 2015]:

DH(kP ),P(Q) := sup
f∈F

|Eϑ∼Q [f (ϑ)]|

▶ Beyond Euclidean State Spaces: Riemannian manifolds [Barp et al., 2022, Le et al., 2020],
discrete spaces [Xu and Reinert, 2021], ...

▶ Beyond Kernel Stein Sets: bounded Lipschitz [Gorham and Mackey, 2015], neural network
[Grathwohl et al., 2020], ...

▶ Beyond the Canonical Stein Operator: diffusion Stein operators [Gorham et al., 2019], ...

▶ Scalable Stein Discrepancies: random features [Huggins and Mackey, 2018], data sub-sampling
[Gorham et al., 2020], ...

The interaction between the sampling algorithms we have seen and the choice of Stein
Discrepancy is not well-understood.
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Broader Context: Alternatives to Direct Minimisation of Stein Discrepancy

▶ Stein Variational Gradient Descent: Liu and Wang [2016], Liu [2017], Liu and Zhu [2018],
Detommaso et al. [2018], ...

▶ MCMC with Stein Control Variates: Assaraf and Caffarel [1999], Mira et al. [2013], CJO et al.
[2017], Belomestny et al. [2017], South et al. [2022], ...

Given a QoI f , seek (u, c) such that c +
∇ · (p∇u)

p
= f . Then c = Eϑ∼P [f (ϑ)].

In practice, an approximate solution u gives rise to a control variate v = ∇ · (p∇u)/p for use in
MCMC.

A slightly more detailed introduction can be found in the survey:

▶ A. Anastasiou et al. Stein’s method meets statistics: A review of some recent developments.
arXiv:2105.03481, 2021
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