Diophantine equations f(x) = g(y)with infinitely many rational solutions x, y

Rob Tijdeman

Leiden University

Joint work with Lajos Hajdu

Specialisation and Effectiveness in Number Theory Banff, Canada 29 August - 3 September 2022

Diophantine equations f(x) = g(y)

Let $a_0, a_1, \ldots, a_k \in \mathbb{Q}$, distinct, $a_0 \neq 0$. Put

$$f(x) = a_0(x-a_1)\cdots(x-a_k).$$

Let $g(y) \in \mathbb{Q}[y]$.

1. For which f, g does equation

f(x)=g(y)

have infinitely many rational solutions x, y?

2. What do we know if g has also only simple rational roots?

< 回 > < 回 > < 回 > -

Equation f(x) = g(y) has infinitely many rational solutions with a bounded denominator if there is a $\Delta \in \mathbb{Z}$ such that f(x) = g(y) has infinitely many solutions with $(\Delta x, \Delta y) \in \mathbb{Z}^2$.

For which f, g does the equation f(x) = g(y) have infinitely many solutions $(x, y) \in \mathbb{Q}^2$ with a bounded denominator?

Avanzi and Zannier (2001):

If f(x) = g(y) with gcd(deg(f), deg(g)) = 1 and deg(f), deg(g) > 6 has infinitely many rational solutions, then infinitely many of them have a bounded denominator.

Earlier results (1). The equation

$$x(x+d)\cdots(x+(k-1)d)=by^\ell, k>2, \ell>1$$

Siegel (1926): If $\ell > 2$, then only finitely many integral solutions. Schinzel (1967): If $\ell = 2$, then only finitely many integral solutions.

Erdös and Selfridge (1975): No integral solutions if d = 1, b = 1.

Erdös (1951) $k \ge 4$, Györy (1998) k = 2,3: No integral solutions if d = 1, b = k!, except for $\binom{50}{3} = 140^2$.

Euler; (Györy, Hajdu, Saradha, 2004); (Bennett, Bruin, Györy, Hajdu, 2006); (Györy, Hajdu, Pintér, 2009): No integral solutions if $b = 1, k \le 34$.

3

イロト 不得 トイヨト イヨト

Earlier results (2). The equation

$$(x+d_1d)\cdots(x+d_kd)=b_0y^\ell+b_\ell$$

Many results by Saradha, Shorey and coauthors.

(Saradha, Shorey), (Hanrot, Saradha, Shorey), (Bennett), 2001-2004: The only solutions with $d = b_0 = 1$, $b_\ell = 0$ and only one term is missing from AP are $\frac{4!}{3} = 2^3$, $\frac{6!}{5} = 12^2$, $\frac{10!}{7} = 720^2$.

Hajdu and Papp (2020): Only finitely many solutions x, y, ℓ if only one term is missing from a finite AP and k > 6.

Question 2.

(Mordell, 1963), (Boyd and Kisilevsky, 1972), (Saradha and Shorey, 1990), Mignotte, Saradha, Shorey (1996), (Hajdu and Pintér, 2000): All solutions are known for the equation

$$x(x+1)\cdots(x+k-1) = y(y+1)\cdots(y+\ell-1)$$

for $(k,\ell) = (2,3), (3,4), (4,6), \ell/k \in \{2,3,4,5,6\}.$

(Mordell, 1963), (Avanesov, 1966), (Pintér, 1995), (De Weger, 1996), (Stroeker and De Weger, 1999), (Bugeaud, Mignotte), (Stoll and Tengely, 2008), (Blokhuis, Brouwer, De Weger, 2017) All solutions of $\binom{m}{k} = \binom{n}{\ell}$ are known for $(k, \ell) = (3, 4), (2, 3), (2, 4), (2, 6), (2, 8), (3, 6), (4, 6), (4, 8), (2, 5),$ for $m \leq 10^6$ and for binomial coefficient is $< 10^{60}$.

Beukers, Shorey and Tijdeman (1999): The equation $x(x + d_1) \cdots (x + (k - 1)d_1) = y(y + d_2) \cdots (y + (\ell - 1)d_2)$ has only finitely many positive integral solutions x, yexcept when $(k, \ell) = (2, 4)$ and $d_1 = 2d_2^2$. Then $(y^2 + 3d_2y)(y^2 + 3d_2y + 2d_2^2) = y(y + d_2)(y + 2d_2)(y + 3d_2)$

We call polynomials $f, f_1 \in \mathbb{Q}[x]$ similar if there exist $a, b \in \mathbb{Q}$, $a \neq 0$ such that $f(x) = f_1(ax + b)$. Notation $f \simeq f_1$.

This induces an equivalence relation in $\mathbb{Q}[x]$.

If f has only simple rational roots, then f_1 has only simple rational roots; in every such equivalence class there is a polynomial with integer roots.

Similar f, f_1 represent the same rational numbers for rational x's.

If $f \simeq f_1$ and $g \simeq g_1$, then we call the equations f(x) = g(y) and $f_1(x) = g_1(y)$ equivalent.

It suffices to study a representative from each class of equations.

Let $\varphi(x) \in \mathbb{Q}[x]$. Then every solution of f(x) = g(y) is a solution of $\varphi(f(x)) = \varphi(g(y))$.

・ロト ・四ト ・ヨト ・ヨト

Theorem (Bilu, Tichy, 2000)

Let $f(x), g(x) \in \mathbb{Q}[x]$ be non-constant polynomials. Then the following two statements are equivalent.

- (I) The equation f(x) = g(y) has infinitely many rational solutions x, y with a bounded denominator.
- (II) We have $f = \varphi(F(\kappa))$ and $g = \varphi(G(\lambda))$, where $\kappa(x), \lambda(x) \in \mathbb{Q}[x]$ are linear polynomials, $\varphi(x) \in \mathbb{Q}[x]$, and F(x), G(x) form a standard pair over \mathbb{Q} such that the equation F(x) = G(y) has infinitely many rational solutions with a bounded denominator.

Note that $F(\kappa) \sim F$, $G(\lambda) \sim G$. (We often identify them.) (II) implies (I) is trivial. Notation: $k = \deg(f), \ell = \deg(g), m = \deg(F), n = \deg(G), t = \deg(\varphi)$. Therefore $k = mt, \ell = nt$.

There are five kinds of (unordered) standard pairs.

▲撮♪ ▲ 国 ⊁ ▲ 国 ⊁

Kind	Standard pair (<i>F</i> , <i>G</i> unordered)	Parameter restrictions
First	$(x^q, ax^p v(x)^q)$	$0 \leq p < q, (p,q) = 1,$
		$p + \deg(v) > 0$
Second	$(x^2, (ax^2+b)v(x)^2)$	-
Third	$(D_m(x,a^n),D_n(x,a^m))$	gcd(m,n) = 1
Fourth	$(a^{-m/2}D_m(x,a), -b^{-n/2}D_n(x,b))$	gcd(m,n) = 2
Fifth	$((ax^2-1)^3, 3x^4-4x^3)$	-

Standard pairs. Here

a, b are non-zero rational numbers,

m, *n*, *q* are positive integers,

p is a non-negative integer,

 $v(x) \in \mathbb{Q}[x]$ is a non-zero, but possibly constant polynomial.

 $D_m(x, b)$ is a Dickson polynomial.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let b be a non-zero rational number and m be a positive integer. Then the m-th *Dickson polynomial* is defined by

$$D_m(x,b) := \sum_{i=0}^{\lfloor m/2
floor} d_{m,i} x^{m-2i}$$
 where $d_{m,i} = rac{m}{m-i} inom{m-i}{i} (-b)^i.$

Some properties are:

$$\begin{split} D_m(x,b) &= x D_{m-1}(x,b) - b D_{m-2}(x,b), \\ D_m(x+\frac{b}{x},b) &= x^m + \left(\frac{b}{x}\right)^m, \\ D_{mn}(x,b) &= D_m(D_n(x,b),b^n) = D_n(D_m(x,b),b^m), \\ \sum_{m=0}^{\infty} D_m(x,b) z^m &= (2-xz)/(1-xz+bz^2), \\ D_m(2x,1) &= 2T_m(x), \text{ where } T_m(x) = \cos(m \arccos x). \end{split}$$

イロト イ団ト イヨト イヨト

Kulkarni and Sury (2003): The number of solutions of the equation $(x + 1)(x + 2) \cdots (x + k) = g(y)$ is finite with exception of three explicitly given classes in which there can be infinitely many solutions.

Hajdu, Papp and Tijdeman (2022): The number of solutions of the equation $(x + d_1d) \cdots (x + d_kd) = g(y)$, for $g(y) \in \mathbb{Q}[y]$ of degree $\ell \geq 2$ and $d, k, K, d_1, d_2, \ldots, d_k \in \mathbb{Z}$ with $0 \leq d_1 < d_2 < \cdots < d_k < K$, k > 2, is finite under the assumption that $K - k \leq cK^{2/3}$ with c an explicit constant, provided that g does not belong to two explicitly given classes in which there can be infinitely many solutions.

A standard pair of the fifth kind is $(F, G) = ((\alpha x^2 - 1)^3, 3x^4 - 4x^3)$.

Suppose *f* has only simple rational roots.

Then f' has only simple real roots.

Since $f = \varphi(F)$ we have $f' = \varphi'(F) \cdot F'$.

Therefore F' has only simple real roots.

This is not the case for standard pairs of the fifth kind.

Thus we can exclude the standard pairs of the fifth kind.

く 戸 と く ヨ と く ヨ と

Third kind: $(F(x), G(x)) = (D_m(x, a^n), D_n(x, a^m))$ and gcd(m, n) = 1. Fourth kind: $(F(x), G(x)) = (a^{-m/2}D_m(x, a), -b^{-n/2}D_n(x, b))$ and gcd(m, n) = 2 and an extra condition.

Crucial relation: $D_{mn}(x, b) = D_m(D_n(x, b), b^n) = D_n(D_m(x, b), b^m)$.

Therefore, for $F(x) = D_m(x, b^n)$, $G(x) = D_n(x, b^m)$ the equation F(x) = G(y) has infinitely many solutions $(x, y) = (D_n(z, b), D_m(z, b))$.

Questions:

When does $\varphi(cD_m(x, b) + d)$ have simple rational roots?

For t = 1 (i.e. $deg(\varphi) = 1$): When does $cD_m(x, b) + d$ have simple rational roots? We can take c = 1.

Theorem

Assume that with some rational numbers u, b with $ub \neq 0$ we have

$$D_m(x,b) + u = (x - w_1) \cdots (x - w_m),$$
 (1)

where $D_m(x, b)$ is the *m*-th Dickson polynomial with parameter *b* and $w_1, \ldots, w_m \in \mathbb{Q}$ are distinct. Then $m \in \{1, 2, 3, 4, 6\}$.

Theorem

Let $m \in \{3, 4, 6\}$. For any $w_1, w_2 \in \mathbb{Q}$ we can define $w_3, \ldots, w_m, b, u \in \mathbb{Q}$ such that (1) holds. On the other hand, this provides the only solutions of equation (1).

14/22

イロン イ団と イヨン 一

Conclusion for the third and fourth kind

 $m = \deg(F), n = \deg(G), t = \deg \varphi, \deg(f) = mt, \deg(g) = nt.$

Theorem

Standard pairs of the third kind: Then $m \in \{1, 2, 3, 4, 6\}$ or $n \in \{1, 2\}$. Here m and n should be coprime and every t is possible.

Standard pairs of the fourth kind: Then $m \in \{2, 4, 6\}$ or n = 2. Here gcd(m, n) = 2 and every t is possible.

Theorem

There are no solutions if both f and g have only simple rational roots.

PTE-sets

Suppose $f(x) = \varphi(F(x)) = (F(x) - p_1) \cdots (F(x) - p_t)$ has only single integral roots. Then p_1, p_2, \dots, p_t are distinct. We call such sets $F(x) - p_i$ $(i = 1, 2, \dots, t)$ with only simple integral

roots PTE-sets.

t = 2: 'ideal Prouhet-Tarry-Escott pairs'. Known to exist for $m \le 12, m \ne 11$. Open problem.

Theorem

For $m = \deg(F) \in \{2, 3, 4, 6\}$ there exist PTE-sets for any $t \in \mathbb{Z}_{>0}$.

PTE-sets are useful to construct equations f(x) = g(y) with infinitely many integer solutions with f, g having only simple integral roots.

э.

イロト イヨト イヨト イヨト

Lemma. Let *N* be the product of *r* primes of the form $\equiv 1 \pmod{6}$. Then *N* can be written as $x^2 + xy + y^2$ for positive integers *x*, *y* in 2^{*r*} ways.

We take
$$(r = 3)$$
: $7 \cdot 13 \cdot 19 = 1729 = x^2 + xy + y^2$
for $(x, y) = (40, 3), (37, 8), (32, 15), (25, 23).$

Hence $G(y) = y^6 - 2 \cdot 1729y^4 + 1729^2y^2$ has simple rational roots when 26625600, 177422400, 508953600 or 761760000 is subtracted, since the corresponding polynomials equal

$$(y^2 - 40^2)(y^2 - 3^2)(y^2 - 43^2), (y^2 - 37^2)(y^2 - 8^2)(y^2 - 45^2),$$

 $(y^2 - 32^2)(y^2 - 15^2)(y^2 - 47^2), (y^2 - 25^2)(y^2 - 23^2)(y^2 - 48^2).$

A PTE-quadruple of degree 6.

Standard pairs of the first or second kind

(F(x), G(x)) or (G(x), F(x)) =

First kind: $(x^q, ax^p v(x)^q)$ with $0 \le p < q$, (p, q) = 1 and $p + \deg(v) > 0$.

Second kind: $(x^2, (ax^2 + b)v(x)^2)$.

If q > 2, then $x^q + d$ cannot have simple roots. Thus $\deg(F) \le 2$ or $\deg(G) \le 2$.

It follows that $\deg(f) \mid 2 \deg(g)$ or $\deg(g) \mid 2 \deg(f)$.

If F(x) = x, then F(x) = G(y) has trivial solutions (x, y) = (G(y), y). Same if deg(G) = 1.

In case of the second kind a Pell equation plays a role.

Let $f(x) = (x^2 - (249 \cdot 1591 \cdot 1840)^2)(x^2 - (656 \cdot 1305 \cdot 1961)^2)$ and $g(y)) = (y - 249^2)(y - 1591^2)(y - 1840^2)(y - 656^2)(y - 1305^2)(y - 1961^2).$ The equation f(x) = g(y) has infinitely many integral solutions $(x, y) = (a(a^2 - 1729), a^2)$ for $a \in \mathbb{Z}$.

Observe that here both f and g have simple integral roots.

Here
$$F(x) = x^2$$
, $G(y) = y(y - 1729)^2$, $t = 2$ and $\varphi(z) = (z - (249 \cdot 1591 \cdot 1840)^2)(z - (656 \cdot 1305 \cdot 1961)^2)$.

(40,3), (37,8) satisfy $x^2 + xy + y^2 = 1729$. We considered triples (40, 3, -43), (37, 8, -45) $43^2 - 40^2 = 249, 40^2 - 3^2 = 1591, 43^2 - 3^2 = 1840$.

э

Consider the Pell equation $x^2 = 2y^2 - 1$ with solutions $(1, 1), (7, 5), (41, 29), \dots$. Take t = 3,

$$F(x) = x^2$$
, $G(y) = 2y^2 - 1$, $\varphi(z) = (z - 1^2)(z - 7^2)(z - 41^2)$.

Then we have

$$f(x) = (x^2 - 1^2)(x^2 - 7^2)(x^2 - 41^2), \quad g(y) = 2^3(y^2 - 1^2)(y^2 - 5^2)(y^2 - 29^2).$$

So f(x) and g(y) both have simple integral roots. Further, every solution of $x^2 = 2y^2 - 1$ is a solution of f(x) = g(y). Here *t* can be chosen arbitrarily.

< 回 > < 回 > < 回 > -

Theorem

For every positive integer N there exist only finitely many pairs of disjoint blocks A and B of size at most N with the property that for some k, ℓ with $1 \le k < \ell$ and $k \nmid 2\ell$, there exist distinct elements $a_1, \ldots, a_k \in A$ and distinct elements $b_1, \ldots, b_\ell \in B$ such that $a_1 \cdots a_k = b_1 \cdots b_\ell$.

Example with $k \nmid \ell$. Recall example of the first kind. $f(x) = (x^2 - (249 \cdot 1591 \cdot 1840)^2)(x^2 - (656 \cdot 1305 \cdot 1961)^2)$ and $g(y)) = (y - 249^2)(y - 1591^2)(y - 1840^2)(y - 656^2)(y - 1305^2)(y - 1961^2).$ The equation f(x) = g(y) has infinitely many integral solutions $(x, y) = (a(a^2 - 1729), a^2)$ for $a \in \mathbb{Z}$. Let $N = 2 \cdot 656 \cdot 1305 \cdot 1961$.

For any *x* the numbers $x \pm 249 \cdot 1591 \cdot 1840$ and $x \pm 656 \cdot 1305 \cdot 1961$ are in an interval of length *N* and so do, for any *y*, the numbers $y - 249^2$, $y - 1591^2$, $y - 1840^2$, $y - 656^2$, $y - 1305^2$, $y - 1961^2$.

R.M. Avanzi, U.M. Zannier, Acta Arith. 99 (2001), 227-256.

F. Beukers, T.N. Shorey, R. Tijdeman, Number Theory in Progress, de Gruyter, 1999, pp. 11-26.

Yu. Bilu, R. Tichy, Acta Arith. 95 (2000), 261-288.

L. Hajdu, Á. Papp, Monatsh. Math. **193** (2020), 637-655, **195** (2021), 377.

L. Hajdu, Á. Papp, R. Tijdeman, Ramanujan J. **58** (2022), 1075-1093.

L. Hajdu, R. Tijdeman, The Diophantine equation f(x) = g(y) for polynomials with simple rational roots, in preparation.

L. Hajdu, R. Tijdeman, N. Varga, Diophantine equations for Littlewood polynomials, in preparation.