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Main questions

Let a0,a1, . . . ,ak ∈ Q, distinct, a0 ̸= 0. Put

f (x) = a0(x − a1) · · · (x − ak ).

Let g(y) ∈ Q[y ].

1. For which f ,g does equation

f (x) = g(y)

have infinitely many rational solutions x , y?

2. What do we know if g has also only simple rational roots?
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More precise main question

Equation f (x) = g(y) has infinitely many rational solutions with a
bounded denominator if there is a ∆ ∈ Z such that f (x) = g(y) has
infinitely many solutions with (∆x ,∆y) ∈ Z2.

For which f ,g does the equation f (x) = g(y) have infinitely many
solutions (x , y) ∈ Q2 with a bounded denominator?

Avanzi and Zannier (2001):
If f (x) = g(y) with gcd(deg(f ), deg(g)) = 1 and deg(f ), deg(g) > 6
has infinitely many rational solutions, then infinitely many of them
have a bounded denominator.
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Earlier results (1). The equation

x(x + d) · · · (x + (k − 1)d) = by ℓ, k > 2, ℓ > 1

Siegel (1926): If ℓ > 2, then only finitely many integral solutions.

Schinzel (1967): If ℓ = 2, then only finitely many integral solutions.

Erdös and Selfridge (1975): No integral solutions if d = 1,b = 1.

Erdös (1951) k ≥ 4, Györy (1998) k = 2,3:
No integral solutions if d = 1,b = k !, except for

(50
3

)
= 1402.

Euler; (Györy, Hajdu, Saradha, 2004); (Bennett, Bruin, Györy, Hajdu,
2006); (Györy, Hajdu, Pintér, 2009):
No integral solutions if b = 1, k ≤ 34.
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Earlier results (2). The equation

(x + d1d) · · · (x + dkd) = b0y ℓ + bℓ

Many results by Saradha, Shorey and coauthors.

(Saradha, Shorey), (Hanrot, Saradha, Shorey), (Bennett), 2001-2004:
The only solutions with d = b0 = 1,bℓ = 0 and only one term is
missing from AP are 4!

3 = 23, 6!
5 = 122, 10!

7 = 7202.

Hajdu and Papp (2020): Only finitely many solutions x , y , ℓ if only one
term is missing from a finite AP and k > 6.
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Question 2.

(Mordell, 1963), (Boyd and Kisilevsky, 1972), (Saradha and Shorey,
1990), Mignotte, Saradha, Shorey (1996), (Hajdu and Pintér, 2000):
All solutions are known for the equation
x(x + 1) · · · (x + k − 1) = y(y + 1) · · · (y + ℓ− 1)
for (k , ℓ) = (2,3), (3,4), (4,6), ℓ/k ∈ {2,3,4,5,6}.

(Mordell, 1963), (Avanesov, 1966), (Pintér, 1995), (De Weger, 1996),
(Stroeker and De Weger, 1999), (Bugeaud, Mignotte), (Stoll and
Tengely, 2008), (Blokhuis, Brouwer, De Weger, 2017)
All solutions of

(m
k

)
=

(n
ℓ

)
are known for

(k , ℓ) = (3,4), (2,3), (2,4), (2,6), (2,8), (3,6), (4,6), (4,8), (2,5),
for m ≤ 106 and for binomial coefficient is < 1060.

Beukers, Shorey and Tijdeman (1999): The equation
x(x + d1) · · · (x + (k − 1)d1) = y(y + d2) · · · (y + (ℓ− 1)d2)
has only finitely many positive integral solutions x , y
except when (k , ℓ) = (2,4) and d1 = 2d2

2 . Then
(y2 + 3d2y)(y2 + 3d2y + 2d2

2 ) = y(y + d2)(y + 2d2)(y + 3d2).
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Preliminaries

We call polynomials f , f1 ∈ Q[x ] similar if there exist a,b ∈ Q, a ̸= 0
such that f (x) = f1(ax + b). Notation f ≃ f1.
This induces an equivalence relation in Q[x ].
If f has only simple rational roots, then f1 has only simple rational roots;
in every such equivalence class there is a polynomial with integer
roots.
Similar f , f1 represent the same rational numbers for rational x ’s.

If f ≃ f1 and g ≃ g1, then we call the equations f (x) = g(y) and
f1(x) = g1(y) equivalent.
It suffices to study a representative from each class of equations.

Let φ(x) ∈ Q[x ].
Then every solution of f (x) = g(y) is a solution of φ(f (x)) = φ(g(y)).
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The Bilu-Tichy Theorem

Theorem (Bilu, Tichy, 2000)
Let f (x),g(x) ∈ Q[x ] be non-constant polynomials. Then the following
two statements are equivalent.

(I) The equation f (x) = g(y) has infinitely many rational solutions
x , y with a bounded denominator.

(II) We have f = φ(F (κ)) and g = φ(G(λ)), where κ(x), λ(x) ∈ Q[x ]
are linear polynomials, φ(x) ∈ Q[x ], and F (x),G(x) form a
standard pair over Q such that the equation F (x) = G(y) has
infinitely many rational solutions with a bounded denominator.

Note that F (κ) ∼ F ,G(λ) ∼ G. (We often identify them.)
(II) implies (I) is trivial.
Notation: k = deg(f ), ℓ = deg(g),m = deg(F ),n = deg(G), t = deg(φ).
Therefore k = mt , ℓ = nt .

There are five kinds of (unordered) standard pairs.
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Standard pairs

Kind Standard pair (F ,G unordered) Parameter restrictions
First (xq,axpv(x)q) 0 ≤ p < q, (p,q) = 1,

p + deg(v) > 0
Second (x2, (ax2 + b)v(x)2) -

Third (Dm(x ,an),Dn(x ,am)) gcd(m,n) = 1
Fourth (a−m/2Dm(x ,a),−b−n/2Dn(x ,b)) gcd(m,n) = 2
Fifth ((ax2 − 1)3,3x4 − 4x3) -

Standard pairs. Here
a,b are non-zero rational numbers,
m,n,q are positive integers,
p is a non-negative integer,
v(x) ∈ Q[x ] is a non-zero, but possibly constant polynomial.
Dm(x ,b) is a Dickson polynomial.
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Dickson polynomials

Let b be a non-zero rational number and m be a positive integer.
Then the m-th Dickson polynomial is defined by

Dm(x ,b) :=
⌊m/2⌋∑

i=0

dm,ixm−2i where dm,i =
m

m − i

(
m − i

i

)
(−b)i .

Some properties are:

Dm(x ,b) = xDm−1(x ,b)− bDm−2(x .b),

Dm(x + b
x ,b) = xm +

(b
x

)m
,

Dmn(x ,b) = Dm(Dn(x ,b),bn) = Dn(Dm(x ,b),bm),∑∞
m=0 Dm(x ,b)zm = (2 − xz)/(1 − xz + bz2),

Dm(2x ,1) = 2Tm(x), where Tm(x) = cos(m arccos x).
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Earlier applications of the Bilu-Tichy theorem

Kulkarni and Sury (2003): The number of solutions of the equation
(x + 1)(x + 2) · · · (x + k) = g(y) is finite with exception of three
explicitly given classes in which there can be infinitely many solutions.

Hajdu, Papp and Tijdeman (2022): The number of solutions of the
equation (x + d1d) · · · (x + dkd) = g(y), for g(y) ∈ Q[y ] of degree
ℓ ≥ 2 and d , k ,K ,d1,d2, . . . ,dk ∈ Z with 0 ≤ d1 < d2 < · · · < dk < K ,
k > 2, is finite under the assumption that K − k ≤ cK 2/3 with c an
explicit constant, provided that g does not belong to two explicitly given
classes in which there can be infinitely many solutions.
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Standard pairs of the fifth kind

A standard pair of the fifth kind is (F ,G) = ((αx2 − 1)3,3x4 − 4x3).

Suppose f has only simple rational roots.

Then f ′ has only simple real roots.

Since f = φ(F ) we have f ′ = φ′(F ) · F ′.

Therefore F ′ has only simple real roots.

This is not the case for standard pairs of the fifth kind.

Thus we can exclude the standard pairs of the fifth kind.
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Standard pairs of the third and fourth kind

Third kind: (F (x),G(x)) = (Dm(x ,an),Dn(x ,am)) and gcd(m,n) = 1.
Fourth kind: (F (x),G(x)) = (a−m/2Dm(x ,a),−b−n/2Dn(x ,b)) and
gcd(m,n) = 2 and an extra condition.

Crucial relation: Dmn(x ,b) = Dm(Dn(x ,b),bn) = Dn(Dm(x ,b),bm).

Therefore, for F (x) = Dm(x ,bn),G(x) = Dn(x ,bm) the equation
F (x) = G(y) has infinitely many solutions (x , y) = (Dn(z,b),Dm(z,b)).

Questions:
When does φ(cDm(x ,b) + d) have simple rational roots?

For t = 1 (i.e. deg(φ) = 1):
When does cDm(x ,b) + d have simple rational roots?
We can take c = 1.

Rob Tijdeman (Leiden University) Diophantine equations f (x) = g(y) July 2022 13 / 22



Question for t = 1

Theorem

Assume that with some rational numbers u,b with ub ̸= 0 we have

Dm(x ,b) + u = (x − w1) · · · (x − wm), (1)

where Dm(x ,b) is the m-th Dickson polynomial with parameter b and
w1, . . . ,wm ∈ Q are distinct. Then m ∈ {1,2,3,4,6}.

Theorem

Let m ∈ {3,4,6}. For any w1,w2 ∈ Q we can define
w3, . . . ,wm,b,u ∈ Q such that (1) holds. On the other hand, this
provides the only solutions of equation (1).
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Conclusion for the third and fourth kind

m = deg(F ),n = deg(G), t = degφ, deg(f ) = mt , deg(g) = nt .

Theorem
Standard pairs of the third kind:
Then m ∈ {1,2,3,4,6} or n ∈ {1,2}.
Here m and n should be coprime and every t is possible.

Standard pairs of the fourth kind:
Then m ∈ {2,4,6} or n = 2.
Here gcd(m,n) = 2 and every t is possible.

Theorem
There are no solutions if both f and g have only simple rational roots.
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PTE-sets

Suppose f (x) = φ(F (x)) = (F (x)− p1) · · · (F (x)− pt) has only single
integral roots.
Then p1,p2, . . . ,pt are distinct.
We call such sets F (x)− pi (i = 1,2, . . . , t) with only simple integral
roots PTE-sets.

t = 2: ’ideal Prouhet-Tarry-Escott pairs’.
Known to exist for m ≤ 12,m ̸= 11. Open problem.

Theorem
For m = deg(F ) ∈ {2,3,4,6} there exist PTE-sets for any t ∈ Z>0.

PTE-sets are useful to construct equations f (x) = g(y) with infinitely
many integer solutions with f ,g having only simple integral roots.
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PTE’s of degree 6

Lemma. Let N be the product of r primes of the form ≡ 1 (mod 6).
Then N can be written as x2 + xy + y2 for positive integers x , y
in 2r ways.

We take (r = 3) : 7 · 13 · 19 = 1729 = x2 + xy + y2

for (x , y) = (40,3), (37,8), (32,15), (25,23).

Hence G(y) = y6 − 2 · 1729y4 + 17292y2 has simple rational roots
when 26625600, 177422400, 508953600 or 761760000 is subtracted,
since the corresponding polynomials equal

(y2 − 402)(y2 − 32)(y2 − 432), (y2 − 372)(y2 − 82)(y2 − 452),

(y2 − 322)(y2 − 152)(y2 − 472), (y2 − 252)(y2 − 232)(y2 − 482).

A PTE-quadruple of degree 6.
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Standard pairs of the first or second kind

(F (x),G(x)) or (G(x),F (x)) =

First kind: (xq,axpv(x)q) with 0 ≤ p < q, (p,q) = 1 and
p + deg(v) > 0.

Second kind: (x2, (ax2 + b)v(x)2).

If q > 2, then xq + d cannot have simple roots.
Thus deg(F ) ≤ 2 or deg(G) ≤ 2.

It follows that deg(f ) | 2 deg(g) or deg(g) | 2 deg(f ).

If F (x) = x , then F (x) = G(y) has trivial solutions (x , y) = (G(y), y).
Same if deg(G) = 1.

In case of the second kind a Pell equation plays a role.
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An example of the first kind

Let f (x) = (x2 − (249 · 1591 · 1840)2)(x2 − (656 · 1305 · 1961)2) and
g(y)) =
(y − 2492)(y − 15912)(y − 18402)(y − 6562)(y − 13052)(y − 19612).

The equation f (x) = g(y) has infinitely many integral solutions
(x , y) = (a(a2 − 1729),a2) for a ∈ Z.

Observe that here both f and g have simple integral roots.

Here F (x) = x2,G(y) = y(y − 1729)2, t = 2 and
φ(z) = (z − (249 · 1591 · 1840)2)(z − (656 · 1305 · 1961)2).

(40,3), (37,8) satisfy x2 + xy + y2 = 1729.
We considered triples (40, 3, -43), (37, 8, -45)
432 − 402 = 249,402 − 32 = 1591,432 − 32 = 1840.
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An example of the second kind

Consider the Pell equation x2 = 2y2 − 1 with solutions
(1,1), (7,5), (41,29), . . . . Take t = 3,

F (x) = x2, G(y) = 2y2 − 1, φ(z) = (z − 12)(z − 72)(z − 412).

Then we have

f (x) = (x2−12)(x2−72)(x2−412), g(y) = 23(y2−12)(y2−52)(y2−292).

So f (x) and g(y) both have simple integral roots.
Further, every solution of x2 = 2y2 − 1 is a solution of f (x) = g(y).
Here t can be chosen arbitrarily.
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Application

Theorem
For every positive integer N there exist only finitely many pairs of
disjoint blocks A and B of size at most N with the property that for
some k , ℓ with 1 ≤ k < ℓ and k ∤ 2ℓ, there exist distinct elements
a1, . . . ,ak ∈ A and distinct elements b1, . . . ,bℓ ∈ B such that
a1 · · · ak = b1 · · · bℓ.

Example with k ∤ ℓ. Recall example of the first kind.
f (x) = (x2 − (249 · 1591 · 1840)2)(x2 − (656 · 1305 · 1961)2) and
g(y)) =
(y − 2492)(y − 15912)(y − 18402)(y − 6562)(y − 13052)(y − 19612).
The equation f (x) = g(y) has infinitely many integral solutions
(x , y) = (a(a2 − 1729),a2) for a ∈ Z. Let N = 2 · 656 · 1305 · 1961.

For any x the numbers x ± 249 · 1591 · 1840 and x ± 656 · 1305 · 1961
are in an interval of length N and so do, for any y , the numbers
y − 2492, y − 15912, y − 18402, y − 6562, y − 13052, y − 19612.
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