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Outline
▶ The concept of linear section with respect to a linear

series.

▶ Subspace topology and linear scattering of Diophantine
arithmetic inequalities.

▶ A construction of Diophantine approximation vectors and
sets.

▶ Compactness of approximation sets: outline of proof.

▶ Comments about effective calculation for local Weil and
logarithmic height functions.

Notation
▶ Throughout K denotes a number field with fixed algebraic

closure K.



The linear sections of a linear system
▶ Let 0 ̸= V ⊆ H0(X , L) be a nonzero subspace for L an

effective line bundle on a geometrically irreducile
projective variety X .

▶ Fix a basis s0, . . . , sn for V . By elimination of
indeterminacy of rational maps, there exists the following
commutative diagram:

X ′

π

��

ϕ′

  
X

ϕ // Pn



The linear sections of a linear system cont.
▶ Defns.

▶ The proper linear sections Λ ⊊ X of X with respect to
|V | are described by the condition that

Λ = π(ϕ′−1(T ))

for proper linear subspaces

T ⊊ Pn
K.

▶ The linear sections of L are the totality of the linear
sections of |L⊗m|, m > 0.

▶ Let Y (K) ⊆ X (K) be a nonempty set of rational points.
Then, Y (K) is said to be dense with respect to the
linear system |V | if it is contained in no finite union of
proper linear sections.



Motivation for linear sections
▶ Guiding problems for the Subspace Theorem, for the case

of hyperplanes in Pn:
▶ Effectively describe the Diophantine exceptional set

and/or determine its linear scattering (i.e., determine the
smallest integer h so that the Diophantine exceptional
set is contained in a finite union of h proper linear
subspaces).

▶ Existing viewpoints:
▶ Vojta: qualitative and effective description of exceptional

set.
▶ Evertse and Schlickewei: quantitative description of the

exceptional set via parametric formulation of subspace
theorem.

▶ Schmidt: study the Diophantine exceptional set via
approximation sets for rational points.



Selected recent progress
▶ The concept of linear section allows these existing

viewpoints to extend to the context of linear systems. It
allows for a way to discuss linear scattering of more
general height inequalities (e.g., those of Ru and Vojta).

▶ As one more recent representative example, the concept
of linear section allows for a qualitative understanding of
the linear scattering of the following sequences of
implications:
▶ Thm (-). The logarithmic parametric subspace theorem

for linear systems and logarithmic twisted height
functions ⇒ Logarithmic formulation of
Faltings-Wüstholz approximation theorem for linear
systems ⇒ Logarithmic subspace theorem for linear
systems.



Diophantine approximation sets: construction
▶ The starting point is:

▶ Thm (Ru-Vojta). Let D1, . . . ,Dq be a collection of
nonzero effective and properly intersecting Cartier
divisors on a geometrically integral projective variety
X/K. Put D = D1 + · · ·+Dq. Let L be a big line bundle
on X and having (stable) base locus Bs(L). Let S ⊂ MK

be a finite set of places. Then, for all ϵ > 0, there exists
an optimal constant γ = γ(L;D1, . . . ,Dq;S) > 0 and a
sufficiently large integer m > 0, such that the collection
of K-rational points

x ∈ X \

(
Bs(L)

⋃ q⋃
i=1

Supp(Di )

)
which satisfy the inequality

mS(x ,D) ⩽ (γ + ϵ)hL(x)

is dense with respect to the linear sections of |L⊗m|.



Diophantine approximation sets cont.
▶ Consider a collection of nonzero effective and properly

intersecting Cartier divisors D1, . . . ,Dq on a geometrically
integral projective variety X/K.

▶ Fix a big line bundle L on X .

▶ Fix a finite set of places S ⊆ MK.

▶ Set N := q(#S).



Diophantine approximation sets cont.
▶ Defns. Inside of X , let Z be the Zariski closed subset

Z :=

(
Bs(L)

⋃ q⋃
i=1

Supp(Di)

)⋃
{x ∈ X (K) : hL(x) ⩽ 0}.

Fix x ∈ X (K) \ Z (K).
▶ Fox each v ∈ S and each i = 1, . . . , q, set

aiv (x) :=
λDi

(v ; x)

hL(x)
.

▶ For each v ∈ S , set

a(x ; v) := (a1v (x), . . . , aqv (x)) ∈ Rq.

▶ Put
a(x) := (a(x ; v))v∈S ∈ RN .



Diophantine approximation sets cont.
Fix a sufficiently large integer m > 0 so that the conclusion of
the Ru-Vojta theorem holds true with respect to the optimal
constant

γ = γ(L;D1, . . . ,Dq; S) ∈ R>0.

▶ Defns.
▶ A point a ∈ RN is called an approximation point of

(X , L), with respect to the D1, . . . ,Dq and the set of
places S , if for each of its open neighbourhoods
a ∈ B ⊆ RN the collection of those points
x ∈ X (K) \ Z (K) which have the property that a(x) ∈ B
is nonempty and dense with respect to the linear
sections of |L⊗m|.

▶ The approximation set

A := Approx(X , L;D1, . . . ,Dq;S) ⊆ RN

is defined by the condition that

A := {a ∈ RN : a is an approximation point}.



Diophantine approximation sets: Compactness

▶ Thm (-). The approximation set

A := Approx(X , L;D1, . . . ,Dq; S) ⊆ RN

is compact.

▶ Outline of proof. The idea is to show that the
approximation set is closed and bounded.
That it is closed, follows easily from the definition of A.
That is is compact, may be deduced from the Ru-Vojta
theorem.
In fact, the approximation set A is contained in the closed
and bouded region of RN that consists of those
a = (a1v , . . . , aqv )v∈S ∈ RN which satisfy the collection of
inequalities
▶ aiv ⩾ 0 for all v ∈ S and i = 1, . . . , q; and
▶
∑

v∈S (maxi=1,...,q aiv ) ⩽ γ.



Calculation of approximation sets?
▶ Question. Defining inequalities and/or effective

calculation of such approximation sets?
▶ This is a difficult problem.
▶ For example, to what extent is the Diophantine

exceptional set that arises in the conclusion of the
subspace theorem, for linear systems, effectively
computable?

▶ Another less ambitous (but still challenging) question is
the extent to which the approximation vectors are
effectively computable.

▶ A first step in this direction (in full generality) involves
the question of effective calculation for presentations of
Cartier divisors.



Recall about presentations of Cartier Divisors
(folowing [BG])
▶ Let D be a Cartier divisor on a geometrically integral

projective vareity X/K.
▶ Let sD = div(D) be the meromorphic section of OX (D)

that corresponds to D.
▶ There are base point free line bundles L,M on X which

are such that
OX (D) ≃ L⊗M−1.

▶ Fixing a collection of global generating sections s0, . . . , sk
for L and t0, . . . , tℓ for M , the data

D = (sD , L, s = (s0, . . . , sk);M , t = (t0, . . . , tℓ))

is called a presentation of D.
▶ Fixing a place v ∈ MK, there is a local Weil function

λD(x ; v) := max
i

max
j

∣∣∣∣ si
tjsD

(x)

∣∣∣∣
v

,

for x ∈ X (K) \ Supp(D)(K).



Effective calculation of presentations of
Cartier Divisors
▶ In order to do effective calculations with such local Weil

functions, defined in terms of presentations of Cartier
divisors, a key first step is to compute, effectively,
presentations of Cartier divisors.

▶ To place matters into perspective, let us recall breifly
some facts about global generation and related topics.



Recall about global generation and related
topics
▶ To begin with, recall Fujita’s conjecture.

▶ Conjecture (Fujita). Let L be an ample line bundle on
a nonsingular projective variety X . Let KX be the
canonical line bundle. Let n = dimX . Then

KX ⊗ L⊗(n+1)

is globally generated and

KX ⊗ L⊗(n+2)

is very ample.



Global generation and related topics cont.
▶ It is also helpful to recall the concept of

Castelnuovo-Mumford regularity.
▶ Defn (Mumford). Let F be a coherent sheaf on Pn.

Let m ∈ Z. Then F is m-regular, in the sense of
Castelnuovo-Mumford, if it holds true that

Hi(Pn,F(m − i)) = 0,

for all i > 0.
▶ Mumford’s m-regularity Thm. I Let F be an

m-regular sheaf on Pn. Then, for all k ⩾ 0, it holds true
that:
(i) F(m + k) is generated by its global sections;
(ii) The natural maps

H0(Pn,F(m))⊗H0(Pn,OPn(k)) → H0(Pn,F(m + k))

are surjective; and
(iii) F is (m + k)-regular.



Global generation and related topics cont.
▶ Finally, let us recall an observation of Eisenbud which

pertains to the manner in which free resolutions of graded
modules can be used to compute cohomology groups.

▶ Thm (Eisenbud). Let A = K[x0, . . . , xn] and let M be a
finitely generated graded A-module. Then for all i ⩾ 0
and all ℓ ∈ Z, it holds true that

Hi(Pn, M̃(ℓ)) ≃ ExtiA(J ,M)ℓ,

where J ⊆ A is a homogeneous ideal that is primary to
the ideal (x0, . . . , xn)

a. Here, a = a(M) is the maximum
of the degrees of the syzygies of M diminishd by n+ ℓ. In
particular, if 0 → Fm → · · · → F0 → M → 0 is a graded
free resolution of M and if Fi =

⊕
j A(−aij), then we may

take

a =

(
max
ij

aij

)
− n − ℓ.



Effective calculation of presentations of
Cartier Divisors: Upshot
▶ Together, the concept of CM-regularity and the theory of

graded resolutions can be used to compte presentations of
line bundles on X ⊆ Pn, assuming that such line bundles
L are given, as input, in the form L = M̃ for M a suitable
graded K[x0, . . . , xn]-module.

▶ This approach also yeilds an effective description of
height functions since they may be expressed as

hL(x) =
∑
v∈MK

λD(x ; v) +O(1)

where D is some suitable presentation of L = M̃ .


