Division fields and an effective version of THE LOCAL-GLOBAL PRINCIPLE FOR DIVISIBILITY

Laura Paladino
laura.paladino@unical.it

Specialisation and Effectiveness in Number Theory 28 Aug - 2 Sept BIRS

Joint work with Roberto Dvornicich (University of Pisa)

Introduction

- K a field with $\operatorname{char}(K) \neq 2,3$;
- K the algebraic closure of K;
- \mathcal{E} an elliptic curve with Weierstrass form
- K a field with $\operatorname{char}(K) \neq 2,3$;
- \bar{K} the algebraic closure of K;
\mathcal{E} an elliptic curve with Weierstrass form $\mathcal{E}[m]$ the m-torsion subgroup of \mathcal{E}, for every positive integer m.
- K a field with $\operatorname{char}(K) \neq 2,3$;
- \bar{K} the algebraic closure of K;
- \mathcal{E} an elliptic curve with Weierstrass form

$$
\mathcal{E}: \quad y^{2}=x^{3}+A x+B, \quad \text { where } A, B \in K
$$

- $\mathcal{E}[m]$ the m-torsion subgroup of \mathcal{E}, for every positive integer m.
- K a field with $\operatorname{char}(K) \neq 2,3$;
- \bar{K} the algebraic closure of K;
- \mathcal{E} an elliptic curve with Weierstrass form

$$
\mathcal{E}: \quad y^{2}=x^{3}+A x+B, \quad \text { where } A, B \in K
$$

- $\mathcal{E}[m]$ the m-torsion subgroup of \mathcal{E}, for every positive integer m.

DEFINITION

The m-division field $K(\mathcal{E}[m])$ of \mathcal{E} over K is the field generated over K by the coordinates of the m-torsion points of \mathcal{E}. We will also denote it by K_{m}.

DEFINITION

The m-division field $K(\mathcal{E}[m])$ of \mathcal{E} over K is the field generated over K by the coordinates of the m-torsion points of \mathcal{E}. We will also denote it by K_{m}.

DEFINITION

The m-division field $K(\mathcal{E}[m])$ of \mathcal{E} over K is the field generated over K by the coordinates of the m-torsion points of \mathcal{E}. We will also denote it by K_{m}.

It is well-known that $\mathcal{E}[m] \cong(\mathbb{Z} / m \mathbb{Z})^{2}$.

DEFINITION

The m-division field $K(\mathcal{E}[m])$ of \mathcal{E} over K is the field generated over K by the coordinates of the m-torsion points of \mathcal{E}. We will also denote it by K_{m}.

It is well-known that $\mathcal{E}[m] \cong(\mathbb{Z} / m \mathbb{Z})^{2}$. Let $P_{1}=\left(x_{1}, y_{1}\right)$, $P_{2}=\left(x_{2}, y_{2}\right)$ be two of the m-torsion points of \mathcal{E}, forming a basis of $\mathcal{E}[m]$.

DEFINITION

The m-division field $K(\mathcal{E}[m])$ of \mathcal{E} over K is the field generated over K by the coordinates of the m-torsion points of \mathcal{E}. We will also denote it by K_{m}.

It is well-known that $\mathcal{E}[m] \cong(\mathbb{Z} / m \mathbb{Z})^{2}$. Let $P_{1}=\left(x_{1}, y_{1}\right)$, $P_{2}=\left(x_{2}, y_{2}\right)$ be two of the m-torsion points of \mathcal{E}, forming a basis of $\mathcal{E}[m]$. Then

$$
K_{m}=K\left(x_{1}, x_{2}, y_{1}, y_{2}\right)
$$

DEFINITION

The m-division field $K(\mathcal{E}[m])$ of \mathcal{E} over K is the field generated over K by the coordinates of the m-torsion points of \mathcal{E}. We will also denote it by K_{m}.

It is well-known that $\mathcal{E}[m] \cong(\mathbb{Z} / m \mathbb{Z})^{2}$. Let $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right)$ be two of the m-torsion points of \mathcal{E}, forming a basis of $\mathcal{E}[m]$. Then

$$
K_{m}=K\left(x_{1}, x_{2}, y_{1}, y_{2}\right)
$$

By the Weil Pairing we have

$$
K\left(\zeta_{m}\right) \subseteq K_{m}
$$

Questions:

1. In which cases $K\left(\zeta_{m}\right)=K(\mathcal{E}[m])$?
2. What about number fields $K(\mathcal{E}[m])$, when $K\left(\zeta_{m}\right) \subsetneq K(\mathcal{E}[m])$?

Questions:

1. In which cases $K\left(\zeta_{m}\right)=K(\mathcal{E}[m])$?
2. What about number fields $K(\mathcal{E}[m])$, when $K\left(\zeta_{m}\right) \subsetneq K(\mathcal{E}[m])$? Other generating systems? Degrees? Galois groups $\operatorname{Gal}(K(\mathcal{E}[m]) / K)$? Discriminant? Etc.

Questions:

1. In which cases $K\left(\zeta_{m}\right)=K(\mathcal{E}[m])$?
2. What about number fields $K(\mathcal{E}[m])$, when $K\left(\zeta_{m}\right) \subsetneq K(\mathcal{E}[m])$?

Questions:

1. In which cases $K\left(\zeta_{m}\right)=K(\mathcal{E}[m])$?
2. What about number fields $K(\mathcal{E}[m])$, when $K\left(\zeta_{m}\right) \subsetneq K(\mathcal{E}[m])$? Other generating systems? Degrees? Galois groups $\operatorname{Gal}(K(\mathcal{E}[m]) / K)$? Discriminant? Etc.

Elliptic curves with $\mathbb{Q}\left(\zeta_{m}\right)=\mathbb{Q}(\mathcal{E}[m])$

Elliptic curves with $\mathbb{Q}\left(\zeta_{m}\right)=\mathbb{Q}(\mathcal{E}[m])$

Theorem (Merel, Stein, $2001+$ Rebolledo 2013)
Let p be a prime number.
If $\mathbb{Q}(\mathcal{E}[p])=\mathbb{Q}\left(\zeta_{p}\right)$ then $p \in\{2,3,5\}$.

The fundamental fact in Merel's proof is showing the existence of
modular curves with a rational point of prime order $p \in\{2,3,5\}$. But no numerical example were given.

Elliptic Curves with $\mathbb{Q}\left(\zeta_{m}\right)=\mathbb{Q}(\mathcal{E}[m])$

Theorem (Merel, Stein, $2001+$ Rebolledo 2013)

Let p be a prime number.
If $\mathbb{Q}(\mathcal{E}[p])=\mathbb{Q}\left(\zeta_{p}\right)$ then $p \in\{2,3,5\}$.

The fundamental fact in Merel's proof is showing the existence of modular curves with a rational point of prime order $p \in\{2,3,5\}$. But no numerical example were given.

Elliptic Curves with $\mathbb{Q}\left(\zeta_{m}\right)=\mathbb{Q}(\mathcal{E}[m])$

THEOREM (P.,2010)

We have $\mathbb{Q}(\mathcal{E}[3])=\mathbb{Q}\left(\zeta_{3}\right)$ if and only if \mathcal{E} belongs to the family

$$
\mathcal{F}_{\beta, h}: \quad y^{2}=x^{3}+A_{\beta, h} x+B_{\beta, h}, \quad \beta, h \in \mathbb{Q} \backslash\{0\}
$$

$$
A_{\beta, h}=-\frac{27 \beta^{4}}{h^{4}}+\frac{18 \beta^{3}}{h^{2}}-\frac{9 \beta^{2}}{2}+\frac{3 \beta h^{2}}{2}-\frac{3 h^{4}}{16}
$$

$$
B_{\beta, h}=\frac{54 \beta^{6}}{h^{6}}-\frac{54 \beta^{5}}{h^{4}}+\frac{45 \beta^{4}}{2 h^{2}}-\frac{15 \beta^{2} h^{2}}{8}-\frac{3 \beta h^{4}}{8}-\frac{1}{32 h^{6}}
$$

Elliptic curves with $\mathbb{Q}\left(\zeta_{m}\right)=\mathbb{Q}(\mathcal{E}[m])$

Theorem (Gonzáles-Jiménez, Lozano-Robledo, 2016) If $\mathbb{Q}(\mathcal{E}[m])=\mathbb{Q}\left(\zeta_{m}\right)$ then $m \in\{2,3,4,5\}$.

Elliptic curves with $\mathbb{Q}\left(\zeta_{m}\right)=\mathbb{Q}(\mathcal{E}[m])$

Theorem (Gonzáles-Jiménez, Lozano-Robledo, 2016) If $\mathbb{Q}(\mathcal{E}[m])=\mathbb{Q}\left(\zeta_{m}\right)$ then $m \in\{2,3,4,5\}$.

Theorem (Gonzáles-Jiménez, Lozano-Robledo, 2016)
If $\mathbb{Q}(\mathcal{E}[m]) / \mathbb{Q}$ is abelian, then $m=2,3,4,5,6$, or 8 .

Generators for $K(\mathcal{E}[m])$

Generators for $K(\mathcal{E}[m])$

Theorem (Reynolds, 2011)

Let m be divisible by an integer $d \geq 3$. Then

$$
K_{m}=K\left(x_{1}, y\left(\frac{m}{d} P_{1}\right), x_{2}, y\left(\frac{m}{d} P_{2}\right)\right),
$$

where $y\left(\frac{m}{d} P_{i}\right)$ denotes the ordinate of the point $\frac{m}{d} P_{i}$, for $i=1,2$.

Generators for $K(\mathcal{E}[m])$

Since K_{m} / K is a Galois extension, then by the Primitive Element Theorem we have that it is monogenous.

Generators for $K(\mathcal{E}[m])$

Since K_{m} / K is a Galois extension, then by the Primitive Element Theorem we have that it is monogenous. Anyway, it is not easy to find explicitly $\alpha \in K_{m}$ such that $K_{m}=K(\alpha)$. Then we searched for minimal generating sets inside $\left\{x_{1}, x_{2}, \zeta_{m}, y_{1}, y_{2}\right\}$.

Generators for $K(\mathcal{E}[m])$

Since K_{m} / K is a Galois extension, then by the Primitive Element Theorem we have that it is monogenous. Anyway, it is not easy to find explicitly $\alpha \in K_{m}$ such that $K_{m}=K(\alpha)$. Then we searched for minimal generating sets inside $\left\{x_{1}, x_{2}, \zeta_{m}, y_{1}, y_{2}\right\}$.

Theorem (Bandini, P., 2016)

Let \mathcal{E}, P_{1} and P_{2} as above. For every odd integer $m \geq 5$ we have

$$
K_{m}=K\left(x_{1}, \zeta_{m}, y_{2}\right)
$$

Generators for $K(\mathcal{E}[m])$

Since K_{m} / K is a Galois extension, then by the Primitive Element Theorem we have that it is monogenous. Anyway, it is not easy to find explicitly $\alpha \in K_{m}$ such that $K_{m}=K(\alpha)$. Then we searched for minimal generating sets inside $\left\{x_{1}, x_{2}, \zeta_{m}, y_{1}, y_{2}\right\}$.

Theorem (Bandini, P., 2016)

Let \mathcal{E}, P_{1} and P_{2} as above. For every odd integer $m \geq 5$ we have

$$
K_{m}=K\left(x_{1}, \zeta_{m}, y_{2}\right)
$$

If m is an even number, then either $K_{m}=K\left(x_{1}, \zeta_{m}, y_{2}\right)$ or $K_{m}=K\left(x_{1}, \zeta_{m}, y_{1}, y_{2}\right)$ and $\operatorname{Gal}\left(K_{m} / K\left(x_{1}, \zeta_{m}, y_{2}\right)\right)$ is generated by the element mapping P_{2} to $\frac{m}{2} P_{1}+P_{2}$.

Galois representations

Let p be an odd prime number and consider the following statement.

Let p be an odd prime number and consider the following statement.

Lemma (Bandini, P., 2016)

For any prime $p \geqslant 5$ one has

$$
\left[K_{p}: K\left(x_{1}, \zeta_{p}\right)\right] \leq 2 p
$$

Moreover the Galois group $\operatorname{Gal}\left(K_{p} / K\left(x_{1}, \zeta_{p}\right)\right)$ is cyclic, generated by a power of

$$
\eta=\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)
$$

Galois representations

By the previous lemma, we have

$$
\left[K_{p}: K\right] \leq \frac{p^{2}-1}{2} \cdot(p-1) \cdot 2 p=\left(p^{2}-p\right)\left(p^{2}-1\right)=\left|\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})\right|
$$

Galois representations

By the previous lemma, we have

$$
\left[K_{p}: K\right] \leq \frac{p^{2}-1}{2} \cdot(p-1) \cdot 2 p=\left(p^{2}-p\right)\left(p^{2}-1\right)=\left|\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})\right|
$$

If K is a number field and \mathcal{E} has no complex multiplication, then, by the famous Serre's theorem, the Galois representation

$$
\rho_{\mathcal{E}, p}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})
$$

is surjective for all $p>p(\mathcal{E})$, where $p(\mathcal{E})$ is a prime depending on \mathcal{E}.

By the previous lemma, we have

$$
\left[K_{p}: K\right] \leq \frac{p^{2}-1}{2} \cdot(p-1) \cdot 2 p=\left(p^{2}-p\right)\left(p^{2}-1\right)=\left|\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})\right|
$$

If K is a number field and \mathcal{E} has no complex multiplication, then, by the famous Serre's theorem, the Galois representation

$$
\rho_{\mathcal{E}, p}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})
$$

is surjective for all $p>p(\mathcal{E})$, where $p(\mathcal{E})$ is a prime depending on \mathcal{E}.
Since $\operatorname{Gal}(\bar{K} / K) \simeq \operatorname{Gal}\left(K_{p} / K\right)$, then for all but finitely many p the set $\left\{x_{1}, y_{2}, \zeta_{p}\right\}$ is a minimal set of generators for K_{p} / K (among those contained in $\left.\left\{x_{1}, x_{2}, y_{1}, y_{2}, \zeta_{p}\right\}\right)$.

GALOIS REPRESENTATIONS

DEFINITION

For an elliptic curve \mathcal{E} / K and a prime p we say that p is exceptional for \mathcal{E} if $\rho_{\mathcal{E}, p}$ is not surjective, i.e., if $\left[K_{p}: K\right]<\left|\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})\right|$.

Galois representations

DEFINITION

For an elliptic curve \mathcal{E} / K and a prime p we say that p is exceptional for \mathcal{E} if $\rho_{\mathcal{E}, p}$ is not surjective, i.e., if $\left[K_{p}: K\right]<\left|\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})\right|$.

For exceptional primes the Galois group $\operatorname{Gal}\left(K_{p} / K\right)$ is a proper subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$. Hence it falls in one of the following cases.

LEMMA (Serre, 1972)

Let $G \lesseqgtr \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$. Then one of the following holds:

1. G is contained in a Borel subgroup;
2. G is a Cartan subgroup;
3. G is contained in the normalizer of a Cartan subgroup, but it is not a Cartan subgroup;
4. the image of G under $\pi: \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z}) \rightarrow \mathrm{PGL}_{2}(\mathbb{Z} / p \mathbb{Z})$ is contained in a subgroup which is isomorphic to A_{4} or A_{5} or S_{4}.

LEmMA (Serre, 1972)

Let $G \lesseqgtr \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$. Then one of the following holds:

1. G is contained in a Borel subgroup;
2. G is a Cartan subgroup;
3. G is contained in the normalizer of a Cartan subgroup, but it is not a Cartan subgroup;
4. the image of G under $\pi: \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z}) \rightarrow \mathrm{PGL}_{2}(\mathbb{Z} / p \mathbb{Z})$ is contained in a subgroup which is isomorphic to A_{4} or A_{5} or S_{4}.

LEMMA (Larson, Vaintrob, 2014)

If $p \geq 53$ is unramified in K / \mathbb{Q} and exceptional for \mathcal{E}, then $\operatorname{Gal}\left(K_{p} / K\right)$ does not verify 4.

Theorem (Bandini, P., 2016)

Assume that $p \geq 5$ is exceptional. If $\mathrm{Gal}\left(K_{p} / K\right)$ is contained in a Borel subgroup or in the normalizer of a split Cartan subgroup, then

- if $p \not \equiv 1(\bmod 3)$, then $K_{p}=K\left(\zeta_{p}, y_{2}\right)$;
- if $p \equiv 1(\bmod 3)$, then $\left[K_{p}: K\left(\zeta_{p}, y_{2}\right)\right]$ is 1 or 3 .

If $\operatorname{Gal}\left(K_{p} / K\right)$ is contained in the normalizer of a non-split Cartan subgroup, then

- if $p \equiv 1(\bmod 3)$, then $K_{p}=K\left(\zeta_{p}, y_{2}\right)$;
- if $p \not \equiv 1(\bmod 3)$, then $\left[K_{p}: K\left(\zeta_{p}, y_{2}\right)\right]$ is 1 or 3 .

When $m=p^{n}$, with $n \geq 2$, the generating set $\left\{x_{1}, \zeta_{p^{n}}, y_{2}\right\}$ of K_{m} / K is not minimal and can be improved as follows.

Theorem (Dvornicich, P., 2022)

Let $m=p^{n}$, where p is a prime and n is a positive integer. Then

$$
K_{p^{n}}=K\left(x_{1}, \zeta_{p}, y_{2}\right) .
$$

Theorem (Dvornicich, P., 2022)

Let $F:=K\left(x_{1}, y_{1}\right)$. For all $p>3$ and $r \geq 1$, we have

$$
K\left(\mathcal{E}\left[p^{n}\right]\right) / F=F\left(\zeta_{p^{n}}, \sqrt[m_{1}]{a}\right)
$$

with $a \in F\left(\zeta_{p^{n}}\right)$ and $\operatorname{Gal}\left(K\left(\mathcal{E}\left[p^{n}\right]\right) / F\right)=C_{m_{1}} . C_{m_{2}}$, where m_{1}, m_{2} are positive integers such that $m_{1} \mid p^{n}$ and $m_{2} \mid p^{n-1}(p-1)$.

Theorem (Dvornicich, P., 2022)

Let $F:=K\left(x_{1}, y_{1}\right)$. For all $p>3$ and $r \geq 1$, we have

$$
K\left(\mathcal{E}\left[p^{n}\right]\right) / F=F\left(\zeta_{p^{n}}, \sqrt[m_{1}]{a}\right)
$$

with $a \in F\left(\zeta_{p^{n}}\right)$ and $\operatorname{Gal}\left(K\left(\mathcal{E}\left[p^{n}\right]\right) / F\right)=C_{m_{1}} . C_{m_{2}}$, where m_{1}, m_{2} are positive integers such that $m_{1} \mid p^{n}$ and $m_{2} \mid p^{n-1}(p-1)$. In the representation of $\operatorname{Gal}\left(K\left(\mathcal{E}\left[p^{n}\right]\right) / F\right)$ in $\mathrm{GL}_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$, the group $C_{m_{1}}$ is generated by a power of

$$
\omega:=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

A bound for the discriminant of $K(\mathcal{E}[m])$

A BOUND FOR THE DISCRIMINANT OF K_{m}

Theorem (Dvornicich, P., 2022)

Let $D_{K_{m} / K}$ denote the discriminant of the extension K_{m} / K and let $h\left(D_{K_{m} / K}\right)$ be its logarithmic height. For every $m \geq 3$, we have
$h\left(D_{K_{m} / K}\right) \leq \begin{cases}3\left(m^{2}-1\right)^{4}\left(m^{2}-3\right)(\log m+h(A)+h(B)), & \text { if } m \text { is odd } ; \\ 3\left(m^{2}-4\right)^{4}\left(m^{2}-6\right)(\log m+h(A)+h(B)), & \text { if } m \text { is even } .\end{cases}$

An effective version

Theorem (Lagarias, Montgomery, Odlyzko, 1979)

For any number field K, any finite Galois extension L / K, with $L \neq \mathbb{Q}$ and any conjugacy class C in $\operatorname{Gal}(L / K)$, there exists a prime v of K which is unramified in L, for which the Artin symbol $\left(\frac{L \mid K}{V}\right)$ is equal to C and

$$
N_{K / \mathbb{Q}}(v) \leq\left|D_{L / \mathbb{Q}}\right|^{C_{1}} .
$$

An effective version

Theorem (Lagarias, Montgomery, Odlyzko, 1979)

For any number field K, any finite Galois extension L / K, with $L \neq \mathbb{Q}$ and any conjugacy class C in $\operatorname{Gal}(L / K)$, there exists a prime v of K which is unramified in L, for which the Artin symbol $\left(\frac{L \mid K}{V}\right)$ is equal to C and

$$
N_{K / \mathbb{Q}}(v) \leq\left|D_{L / \mathbb{Q}}\right|^{C_{1}} .
$$

To have an explicit effective version one has to know explicitly C_{1} and the discriminant $D_{L / \mathbb{Q}}$ or an upper bound for it.

An effective VERSION

Theorem (Ahn, Kwon, 2019)

For any number field K, any finite Galois extension L / K, with $L \neq \mathbb{Q}$ and any conjugacy class C in $\operatorname{Gal}(L / K)$, there exists a prime v of K which is unramified in L, for which the Artin symbol $\left(\frac{L \mid K}{v}\right)$ is equal to C and

$$
N_{K / \mathbb{Q}}(v) \leq\left|D_{L / \mathbb{Q}}\right|^{12577} .
$$

An effective version of the hypotheses of the local-global divisibility

An effective version

Problem (Dvornicich, Zannier, 2001)

Let $P \in \mathcal{E}(K)$. Assume that for all but finitely many places $v \in K$, there exists $D_{v} \in \mathcal{E}\left(K_{v}\right)$ such that $P=m D_{v}$, where K_{v} is the completion of K at the place v. Is it possible to conclude that there exists $D \in \mathcal{E}(K)$ such that $P=m D$?

An effective version

Problem (Dvornicich, Zannier, 2001)

Let $P \in \mathcal{E}(K)$. Assume that for all but finitely many places $v \in K$, there exists $D_{v} \in \mathcal{E}\left(K_{v}\right)$ such that $P=m D_{v}$, where K_{v} is the completion of K at the place v. Is it possible to conclude that there exists $D \in \mathcal{E}(K)$ such that $P=m D$?

It suffices to solve the problem for $m=p^{n}$ to get an anwer for a general m.

An effective version

- Tate 1962; (reproved by Dvornicich, Zannier in 2001 and by Wong in 2001): YES, for all p, when $n=1$;

An effective version

- Tate 1962; (reproved by Dvornicich, Zannier in 2001 and by Wong in 2001): YES, for all p, when $n=1$;
- Dvornicich, Zannier, 2007: YES, for all $p>163, n \geq 1$, when $k=\mathbb{Q}$;

An effective version

- Tate 1962; (reproved by Dvornicich, Zannier in 2001 and by Wong in 2001): YES, for all p, when $n=1$;
- Dvornicich, Zannier, 2007: YES, for all $p>163, n \geq 1$, when $k=\mathbb{Q}$;
- P., Ranieri, Viada, 2012: YES, for all $p>\left(3^{[k: \mathbb{Q}] / 2}+1\right)^{2}, n \geq 1$;

An effective version

- Tate 1962; (reproved by Dvornicich, Zannier in 2001 and by Wong in 2001): YES, for all p, when $n=1$;
- Dvornicich, Zannier, 2007: YES, for all $p>163, n \geq 1$, when $k=\mathbb{Q}$;
- P., Ranieri, Viada, 2012: YES, for all $p>\left(3^{[k: \mathbb{Q}] / 2}+1\right)^{2}, n \geq 1$;
- P., Ranieri, Viada, 2014: YES, for all $p>3, n \geq 1$, when $k=\mathbb{Q}$;

An effective version

- Tate 1962; (reproved by Dvornicich, Zannier in 2001 and by Wong in 2001): YES, for all p, when $n=1$;
- Dvornicich, Zannier, 2007: YES, for all $p>163, n \geq 1$, when $k=\mathbb{Q}$;
- P., Ranieri, Viada, 2012: YES, for all $p>\left(3^{[k: \mathbb{Q}] / 2}+1\right)^{2}, n \geq 1$;
- P., Ranieri, Viada, 2014: YES, for all $p>3, n \geq 1$, when $k=\mathbb{Q}$;
- Creutz, 2016: NO , for $p=2,3$ and $n \geq 2$.

An effective version

In particular

$$
\amalg\left(K, \mathcal{E}\left[p^{n}\right]\right)=0 .
$$

As a consequence of a result of Creutz of 2013, we have that the triviality of $\amalg\left(K, \mathcal{E}\left[p^{n}\right]\right)$, for every r, implies an affirmative answer to the following question posed by Cassels in 1962.

CASSELS' QUESTION
Are the elements of $\amalg(K, \mathcal{E})$ infinitely divisible by a prime p when considered as elements of the Weil-Châtelet group $H^{1}(K, \mathcal{E})$ of all classes of principal homogeneous spaces for \mathcal{E} defined over K?

Creutz 2013 + P., Ranieri, Viada, 2012-2014 \Rightarrow YES, for all $p>3$, when $K=\mathbb{Q}$ and for all $p>\left(3^{[k: \mathbb{Q}] / 2}+1\right)^{2}$, when $K \neq \mathbb{Q}$.

In particular

$$
\amalg\left(K, \mathcal{E}\left[p^{n}\right]\right)=0
$$

As a consequence of a result of Creutz of 2013, we have that the triviality of $\amalg\left(K, \mathcal{E}\left[p^{n}\right]\right)$, for every r, implies an affirmative answer to the following question posed by Cassels in 1962.

CASSELS' QUESTION

Are the elements of $\amalg(K, \mathcal{E})$ infinitely divisible by a prime p when considered as elements of the Weil-Châtelet group $H^{1}(K, \mathcal{E})$ of all classes of principal homogeneous spaces for \mathcal{E} defined over K ?

In particular

$$
\amalg\left(K, \mathcal{E}\left[p^{n}\right]\right)=0 .
$$

As a consequence of a result of Creutz of 2013, we have that the triviality of $\amalg\left(K, \mathcal{E}\left[p^{n}\right]\right)$, for every r, implies an affirmative answer to the following question posed by Cassels in 1962.

CASSELS' QUESTION

Are the elements of $\amalg(K, \mathcal{E})$ infinitely divisible by a prime p when considered as elements of the Weil-Châtelet group $H^{1}(K, \mathcal{E})$ of all classes of principal homogeneous spaces for \mathcal{E} defined over K ?

Creutz 2013 + P., Ranieri, Viada, 2012-2014 \Rightarrow YES , for all $p>3$, when $K=\mathbb{Q}$ and for all $p>\left(3^{[k: \mathbb{Q}] / 2}+1\right)^{2}$, when $K \neq \mathbb{Q}$.

An effective version

In the proofs we need that v varies among all places unramified in $K_{p^{n}}$ to have that the Galois group $G_{v}:=\operatorname{Gal}\left(\left(K_{p^{n}}\right)_{w} / K_{v}\right)$, where $w \mid v$, varies over all cyclic subgroups of G.

By the Chebotarev Density Theorem the local Galois group G_{V} varies over all cyclic subgroups of G as v varies in a set of primes with Dirichlet

An effective version

In the proofs we need that v varies among all places unramified in $K_{p^{n}}$ to have that the Galois group $G_{v}:=\operatorname{Gal}\left(\left(K_{p^{n}}\right)_{w} / K_{v}\right)$, where $w \mid v$, varies over all cyclic subgroups of G.

By the Chebotarev Density Theorem the local Galois group G_{v} varies over all cyclic subgroups of G as v varies in a set of primes with Dirichlet density 1.

An Effective VERSION

Indeed G_{v} varies over all cyclic subgroups of G as v varies in a set of primes v such that $h\left(N_{K / \mathbb{Q}}(v)\right) \leq 12577 \cdot B\left(p^{n}, A, B\right)$, where $B\left(p^{n}, A, B\right)$ is the upper bound showed above for $h\left(D_{\left.\mathbb{Q}\left(\mathcal{E}\left[p^{n}\right]\right) / \mathbb{Q}\right)}\right)$.

Corollary (Dvornicich, P., 2022)

Let $p \geq 5$ and $n \geq 1$. Let $P \in \mathcal{E}(\mathbb{Q})$ and let

$$
S=\left\{v \in M_{K} \mid h\left(N_{K / \mathbb{Q}}(v)\right) \leq 12577 \cdot B\left(p^{n}, A, B\right)\right\}
$$

Assume that for all $v \in S$, there exists $D_{v} \in \mathcal{E}\left(\mathbb{Q}_{v}\right)$ such that $P=p^{n} D_{v}$. Then there exists $D \in \mathcal{E}(\mathbb{Q})$ such that $P=p^{n} D$.

Thank you for your attention!

