DIVISION FIELDS AND AN EFFECTIVE VERSION OF THE LOCAL-GLOBAL PRINCIPLE FOR DIVISIBILITY

Laura Paladino
laura.paladino@unical.it

Specialisation and Effectiveness in Number Theory 28 Aug - 2 Sept BIRS Joint work with Roberto Dvornicich (University of Pisa)

- K a field with $char(K) \neq 2,3$;
- \overline{K} the algebraic closure of K;
- $m{ ilde{\mathcal{E}}}$ an elliptic curve with Weierstrass form

$$\mathcal{E}: \quad y^2 = x^3 + Ax + B, \quad \text{where } A, B \in K;$$

ullet ${\cal E}[m]$ the m-torsion subgroup of ${\cal E}$, for every positive integer m

- K a field with $char(K) \neq 2,3$;
- \overline{K} the algebraic closure of K;
- ullet ${\mathcal E}$ an elliptic curve with Weierstrass form

$$\mathcal{E}: \quad y^2 = x^3 + Ax + B, \quad \text{where } A, B \in K;$$

ullet ${\cal E}[m]$ the m-torsion subgroup of ${\cal E}$, for every positive integer m

- K a field with $char(K) \neq 2,3$;
- \overline{K} the algebraic closure of K;
- ullet ${\cal E}$ an elliptic curve with Weierstrass form

$$\mathcal{E}: y^2 = x^3 + Ax + B$$
, where $A, B \in K$;

ullet ${\cal E}[m]$ the m-torsion subgroup of ${\cal E}$, for every positive integer m

- K a field with $char(K) \neq 2,3$;
- \overline{K} the algebraic closure of K;
- ullet ${\cal E}$ an elliptic curve with Weierstrass form

$$\mathcal{E}: y^2 = x^3 + Ax + B$$
, where $A, B \in K$;

• $\mathcal{E}[m]$ the *m*-torsion subgroup of \mathcal{E} , for every positive integer m.

DEFINITION

The m-division field $K(\mathcal{E}[m])$ of \mathcal{E} over K is the field generated over K by the coordinates of the m-torsion points of \mathcal{E} . We will also denote it by K_m .

It is well-known that $\mathcal{E}[m] \cong (\mathbb{Z}/m\mathbb{Z})^2$. Let $P_1 = (x_1, y_1), P_2 = (x_2, y_2)$ be two of the m-torsion points of \mathcal{E} , forming a basis of $\mathcal{E}[m]$. Then

$$K_m = K(x_1, x_2, y_1, y_2).$$

$$K(\zeta_m) \subseteq K_m$$
.

DEFINITION

The m-division field $K(\mathcal{E}[m])$ of \mathcal{E} over K is the field generated over K by the coordinates of the m-torsion points of \mathcal{E} . We will also denote it by K_m .

It is well-known that $\mathcal{E}[m]\cong (\mathbb{Z}/m\mathbb{Z})^2$. Let $P_1=(x_1,y_1),\; P_2=(x_2,y_2)$ be two of the m-torsion points of \mathcal{E} , forming a basis of $\mathcal{E}[m]$. Then

$$K_m = K(x_1, x_2, y_1, y_2).$$

$$K(\zeta_m)\subseteq K_m$$
.

DEFINITION

The m-division field $K(\mathcal{E}[m])$ of \mathcal{E} over K is the field generated over K by the coordinates of the m-torsion points of \mathcal{E} . We will also denote it by K_m .

It is well-known that $\mathcal{E}[m] \cong (\mathbb{Z}/m\mathbb{Z})^2$. Let $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$ be two of the m-torsion points of \mathcal{E} , forming a basis of $\mathcal{E}[m]$. Then

$$K_m = K(x_1, x_2, y_1, y_2).$$

$$K(\zeta_m) \subseteq K_m$$
.

DEFINITION

The m-division field $K(\mathcal{E}[m])$ of \mathcal{E} over K is the field generated over K by the coordinates of the m-torsion points of \mathcal{E} . We will also denote it by K_m .

It is well-known that $\mathcal{E}[m] \cong (\mathbb{Z}/m\mathbb{Z})^2$. Let $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$ be two of the m-torsion points of \mathcal{E} , forming a basis of $\mathcal{E}[m]$. Then

$$K_m = K(x_1, x_2, y_1, y_2).$$

$$K(\zeta_m) \subseteq K_m$$
.

DEFINITION

The m-division field $K(\mathcal{E}[m])$ of \mathcal{E} over K is the field generated over K by the coordinates of the m-torsion points of \mathcal{E} . We will also denote it by K_m .

It is well-known that $\mathcal{E}[m] \cong (\mathbb{Z}/m\mathbb{Z})^2$. Let $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$ be two of the m-torsion points of \mathcal{E} , forming a basis of $\mathcal{E}[m]$. Then

$$K_m = K(x_1, x_2, y_1, y_2).$$

$$K(\zeta_m) \subseteq K_m$$
.

DEFINITION

The m-division field $K(\mathcal{E}[m])$ of \mathcal{E} over K is the field generated over K by the coordinates of the m-torsion points of \mathcal{E} . We will also denote it by K_m .

It is well-known that $\mathcal{E}[m] \cong (\mathbb{Z}/m\mathbb{Z})^2$. Let $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$ be two of the m-torsion points of \mathcal{E} , forming a basis of $\mathcal{E}[m]$. Then

$$K_m = K(x_1, x_2, y_1, y_2).$$

$$K(\zeta_m)\subseteq K_m$$
.

- 1. In which cases $K(\zeta_m) = K(\mathcal{E}[m])$?
- 2. What about number fields $K(\mathcal{E}[m])$, when $K(\zeta_m) \subsetneq K(\mathcal{E}[m])$? Other generating systems? Degrees? Galois groups $\operatorname{Gal}(K(\mathcal{E}[m])/K)$? Discriminant? Etc.

- 1. In which cases $K(\zeta_m) = K(\mathcal{E}[m])$?
- 2. What about number fields $K(\mathcal{E}[m])$, when $K(\zeta_m) \subsetneq K(\mathcal{E}[m])$? Other generating systems? Degrees? Galois groups $\operatorname{Gal}(K(\mathcal{E}[m])/K)$? Discriminant? Etc.

- 1. In which cases $K(\zeta_m) = K(\mathcal{E}[m])$?
- 2. What about number fields $K(\mathcal{E}[m])$, when $K(\zeta_m) \subsetneq K(\mathcal{E}[m])$? Other generating systems? Degrees? Galois groups $\operatorname{Gal}(K(\mathcal{E}[m])/K)$? Discriminant? Etc.

- 1. In which cases $K(\zeta_m) = K(\mathcal{E}[m])$?
- 2. What about number fields $K(\mathcal{E}[m])$, when $K(\zeta_m) \subsetneq K(\mathcal{E}[m])$? Other generating systems? Degrees? Galois groups $\operatorname{Gal}(K(\mathcal{E}[m])/K)$? Discriminant? Etc.

THEOREM (MEREL, STEIN, 2001 + REBOLLEDO 2013)

Let p be a prime number.

If
$$\mathbb{Q}(\mathcal{E}[p]) = \mathbb{Q}(\zeta_p)$$
 then $p \in \{2,3,5\}$.

The fundamental fact in Merel's proof is showing the existence of modular curves with a rational point of prime order $p \in \{2,3,5\}$. But no numerical example were given.

ELLIPTIC CURVES WITH $\mathbb{Q}(\zeta_m) = \mathbb{Q}(\mathcal{E}[m])$

THEOREM (Merel, Stein, 2001 + Rebolledo 2013)

Let p be a prime number.

If
$$\mathbb{Q}(\mathcal{E}[p]) = \mathbb{Q}(\zeta_p)$$
 then $p \in \{2,3,5\}$.

The fundamental fact in Merel's proof is showing the existence of modular curves with a rational point of prime order $p \in \{2,3,5\}$. But no numerical example were given.

THEOREM (P., 2010)

We have $\mathbb{Q}(\mathcal{E}[3]) = \mathbb{Q}(\zeta_3)$ if and only if \mathcal{E} belongs to the family

$$\mathcal{F}_{\beta,h}: \quad y^2=x^3+A_{\beta,h}x+B_{\beta,h}, \quad \beta,h\in\mathbb{Q}\setminus\{0\},$$

$$A_{\beta,h} = - \frac{27\beta^4}{h^4} + \frac{18\beta^3}{h^2} - \frac{9\beta^2}{2} + \frac{3\beta h^2}{2} - \frac{3h^4}{16}$$
,

$$B_{\beta,h} = \frac{54\beta^6}{h^6} - \frac{54\beta^5}{h^4} + \frac{45\beta^4}{2h^2} - \frac{15\beta^2h^2}{8} - \frac{3\beta h^4}{8} - \frac{1}{32h^6}$$

Theorem (Gonzáles-Jiménez, Lozano-Robledo, 2016)

If
$$\mathbb{Q}(\mathcal{E}[m]) = \mathbb{Q}(\zeta_m)$$
 then $m \in \{2, 3, 4, 5\}$.

THEOREM (GONZÁLES-JIMÉNEZ, LOZANO-ROBLEDO, 2016) If $\mathbb{Q}(\mathcal{E}[m])/\mathbb{Q}$ is abelian, then m = 2, 3, 4, 5, 6, or 8.

THEOREM (Gonzáles-Jiménez, Lozano-Robledo, 2016)

If
$$\mathbb{Q}(\mathcal{E}[m]) = \mathbb{Q}(\zeta_m)$$
 then $m \in \{2, 3, 4, 5\}$.

THEOREM (Gonzáles-Jiménez, Lozano-Robledo, 2016)

If $\mathbb{Q}(\mathcal{E}[m])/\mathbb{Q}$ is abelian, then m = 2, 3, 4, 5, 6, or 8.

THEOREM (REYNOLDS, 2011)

Let m be divisible by an integer $d \ge 3$. Then

$$K_m = K\left(x_1, y\left(\frac{m}{d}P_1\right), x_2, y\left(\frac{m}{d}P_2\right)\right),$$

where $y\left(\frac{m}{d}P_i\right)$ denotes the ordinate of the point $\frac{m}{d}P_i$, for i=1,2.

Since K_m/K is a Galois extension, then by the Primitive Element Theorem we have that it is monogenous. Anyway, it is not easy to find explicitly $\alpha \in K_m$ such that $K_m = K(\alpha)$. Then we searched for minimal generating sets inside $\{x_1, x_2, \zeta_m, y_1, y_2\}$.

THEOREM (BANDINI, P., 2016)

Let ${\mathcal E},\ P_1$ and P_2 as above. For every odd integer m \geq 5 we have

$$K_m = K(x_1, \zeta_m, y_2).$$

Since K_m/K is a Galois extension, then by the Primitive Element Theorem we have that it is monogenous. Anyway, it is not easy to find explicitly $\alpha \in K_m$ such that $K_m = K(\alpha)$. Then we searched for minimal generating sets inside $\{x_1, x_2, \zeta_m, y_1, y_2\}$.

THEOREM (BANDINI, P., 2016)

Let ${\mathcal E},\ {\mathsf P}_1$ and ${\mathsf P}_2$ as above. For every odd integer ${\mathsf m} \geq {\mathsf 5}$ we have

$$K_m = K(x_1, \zeta_m, y_2).$$

Since K_m/K is a Galois extension, then by the Primitive Element Theorem we have that it is monogenous. Anyway, it is not easy to find explicitly $\alpha \in K_m$ such that $K_m = K(\alpha)$. Then we searched for minimal generating sets inside $\{x_1, x_2, \zeta_m, y_1, y_2\}$.

THEOREM (BANDINI, P., 2016)

Let \mathcal{E} , P_1 and P_2 as above. For every odd integer $m \geq 5$ we have

$$K_m = K(x_1, \zeta_m, y_2).$$

Since K_m/K is a Galois extension, then by the Primitive Element Theorem we have that it is monogenous. Anyway, it is not easy to find explicitly $\alpha \in K_m$ such that $K_m = K(\alpha)$. Then we searched for minimal generating sets inside $\{x_1, x_2, \zeta_m, y_1, y_2\}$.

THEOREM (BANDINI, P., 2016)

Let \mathcal{E} , P_1 and P_2 as above. For every odd integer $m \geq 5$ we have

$$K_m = K(x_1, \zeta_m, y_2).$$

Let p be an odd prime number and consider the following statement.

LEMMA (BANDINI, P., 2016)

For any prime $p \ge 5$ one has

$$[K_p:K(x_1,\zeta_p)]\leq 2p.$$

Moreover the Galois group $Gal(K_p/K(x_1,\zeta_p))$ is cyclic, generated by a power of

$$\eta = \left(\begin{array}{cc} -1 & 1\\ 0 & -1 \end{array}\right)$$

Let p be an odd prime number and consider the following statement.

LEMMA (BANDINI, P., 2016)

For any prime $p \ge 5$ one has

$$[K_p:K(x_1,\zeta_p)]\leq 2p.$$

Moreover the Galois group $\operatorname{Gal}(K_p/K(x_1,\zeta_p))$ is cyclic, generated by a power of

$$\eta = \left(\begin{array}{cc} -1 & 1 \\ 0 & -1 \end{array}\right).$$

By the previous lemma, we have

$$[K_p:K] \leq \frac{p^2-1}{2} \cdot (p-1) \cdot 2p = (p^2-p)(p^2-1) = |\mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})|.$$

If K is a number field and $\mathcal E$ has no complex multiplication, then, by the famous Serre's theorem, the Galois representation

$$ho_{\mathcal{E},p}:\operatorname{Gal}(\overline{K}/K) o\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$$

is surjective for all $ho >
ho(\mathcal{E})$, where $ho(\mathcal{E})$ is a prime depending on \mathcal{E} .

Since $\operatorname{Gal}(\overline{K}/K) \simeq \operatorname{Gal}(K_p/K)$, then for all but finitely many p the set $\{x_1, y_2, \zeta_p\}$ is a minimal set of generators for K_p/K (among those contained in $\{x_1, x_2, y_1, y_2, \zeta_p\}$).

By the previous lemma, we have

$$[K_p:K] \leq \frac{p^2-1}{2} \cdot (p-1) \cdot 2p = (p^2-p)(p^2-1) = |\mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})|.$$

If K is a number field and $\mathcal E$ has no complex multiplication, then, by the famous Serre's theorem, the Galois representation

$$\rho_{\mathcal{E},p}: \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$$

is surjective for all $p>p(\mathcal{E})$, where $p(\mathcal{E})$ is a prime depending on \mathcal{E} .

Since $\operatorname{Gal}(\overline{K}/K) \simeq \operatorname{Gal}(K_p/K)$, then for all but finitely many p the set $\{x_1, y_2, \zeta_p\}$ is a minimal set of generators for K_p/K (among those contained in $\{x_1, x_2, y_1, y_2, \zeta_p\}$).

By the previous lemma, we have

$$[K_p:K] \leq \frac{p^2-1}{2} \cdot (p-1) \cdot 2p = (p^2-p)(p^2-1) = |\mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})|.$$

If K is a number field and $\mathcal E$ has no complex multiplication, then, by the famous Serre's theorem, the Galois representation

$$\rho_{\mathcal{E},p}: \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$$

is surjective for all $p>p(\mathcal{E})$, where $p(\mathcal{E})$ is a prime depending on \mathcal{E} .

Since $\operatorname{Gal}(\overline{K}/K) \simeq \operatorname{Gal}(K_p/K)$, then for all but finitely many p the set $\{x_1, y_2, \zeta_p\}$ is a minimal set of generators for K_p/K (among those contained in $\{x_1, x_2, y_1, y_2, \zeta_p\}$).

DEFINITION

For an elliptic curve \mathcal{E}/K and a prime p we say that p is exceptional for \mathcal{E} if $\rho_{\mathcal{E},p}$ is not surjective, i.e., if $[K_p:K]<|\mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})|$.

For exceptional primes the Galois group $\operatorname{Gal}(K_p/K)$ is a proper subgroup of $\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$. Hence it falls in one of the following cases.

Galois representations

DEFINITION

For an elliptic curve \mathcal{E}/K and a prime p we say that p is exceptional for \mathcal{E} if $\rho_{\mathcal{E},p}$ is not surjective, i.e., if $[K_p:K]<|\mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})|$.

For exceptional primes the Galois group $\operatorname{Gal}(K_p/K)$ is a proper subgroup of $\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$. Hence it falls in one of the following cases.

Galois representations

LEMMA (SERRE, 1972)

Let $G \subsetneq \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$. Then one of the following holds:

- 1. G is contained in a Borel subgroup;
- 2. G is a Cartan subgroup;
- 3. G is contained in the normalizer of a Cartan subgroup, but it is not a Cartan subgroup;
- **4.** the image of G under $\pi: \mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z}) \to \mathrm{PGL}_2(\mathbb{Z}/p\mathbb{Z})$ is contained in a subgroup which is isomorphic to A_4 or A_5 or S_4 .

LEMMA (LARSON, VAINTROB, 2014)

If $p \ge 53$ is unramified in K/\mathbb{Q} and exceptional for \mathcal{E} , then $\operatorname{Gal}(K_p/K)$ does not verify 4.

LEMMA (SERRE, 1972)

Let $G \subseteq GL_2(\mathbb{Z}/p\mathbb{Z})$. Then one of the following holds:

- 1. G is contained in a Borel subgroup;
- 2. G is a Cartan subgroup;
- 3. G is contained in the normalizer of a Cartan subgroup, but it is not a Cartan subgroup;
- **4.** the image of G under $\pi: \mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z}) \to \mathrm{PGL}_2(\mathbb{Z}/p\mathbb{Z})$ is contained in a subgroup which is isomorphic to A_4 or A_5 or S_4 .

LEMMA (Larson, Vaintrob, 2014)

If $p \ge 53$ is unramified in K/\mathbb{Q} and exceptional for \mathcal{E} , then $\operatorname{Gal}(K_p/K)$ does not verify 4.

THEOREM (BANDINI, P., 2016)

Assume that $p \ge 5$ is exceptional.

If $\mathrm{Gal}(K_p/K)$ is contained in a Borel subgroup or in the normalizer of a split Cartan subgroup, then

- if $p \not\equiv 1 \pmod{3}$, then $K_p = K(\zeta_p, y_2)$;
- if $p \equiv 1 \pmod{3}$, then $[K_p : K(\zeta_p, y_2)]$ is 1 or 3.

If $\operatorname{Gal}(K_p/K)$ is contained in the normalizer of a non-split Cartan subgroup, then

- if $p \equiv 1 \pmod{3}$, then $K_p = K(\zeta_p, y_2)$;
- if $p \not\equiv 1 \pmod{3}$, then $[K_p : K(\zeta_p, y_2)]$ is 1 or 3.

Generators for $K(\mathcal{E}[p^n])$

When $m = p^n$, with $n \ge 2$, the generating set $\{x_1, \zeta_{p^n}, y_2\}$ of K_m/K is not minimal and can be improved as follows.

THEOREM (DVORNICIOH, P., 2022)

Let $m = p^n$, where p is a prime and n is a positive integer. Then

$$K_{p^n}=K(x_1,\zeta_p,y_2).$$

Generators for $K(\mathcal{E}[p^n])$

THEOREM (DVORNICICH, P., 2022)

Let $F := K(x_1, y_1)$. For all p > 3 and $r \ge 1$, we have

$$K(\mathcal{E}[p^n])/F = F(\zeta_{p^n}, \sqrt[m_1]{a}),$$

with $a \in F(\zeta_{p^n})$ and $Gal(K(\mathcal{E}[p^n])/F) = C_{m_1}.C_{m_2}$, where m_1 , m_2 are positive integers such that $m_1|p^n$ and $m_2|p^{n-1}(p-1)$.

In the representation of $Gal(K(\mathcal{E}[p^n])/F)$ in $GL_2(\mathbb{Z}/p^n\mathbb{Z})$, the group C_{m_1} is generated by a power of

$$\omega := \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \,.$$

Generators for $K(\mathcal{E}[p^n])$

THEOREM (DVORNICICH, P., 2022)

Let $F := K(x_1, y_1)$. For all p > 3 and $r \ge 1$, we have

$$K(\mathcal{E}[p^n])/F = F(\zeta_{p^n}, \sqrt[m_1]{a}),$$

with $a \in F(\zeta_{p^n})$ and $\operatorname{Gal}(K(\mathcal{E}[p^n])/F) = C_{m_1}.C_{m_2}$, where m_1 , m_2 are positive integers such that $m_1|p^n$ and $m_2|p^{n-1}(p-1)$.

In the representation of $\operatorname{Gal}(K(\mathcal{E}[p^n])/F)$ in $\operatorname{GL}_2(\mathbb{Z}/p^n\mathbb{Z})$, the group C_{m_1} is generated by a power of

$$\omega := \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right)$$
 .

A bound for the discriminant of $K(\mathcal{E}[m])$

A BOUND FOR THE DISCRIMINANT OF K_m

THEOREM (DVORNICIGH, P., 2022)

Let $D_{K_m/K}$ denote the discriminant of the extension K_m/K and let $h(D_{K_m/K})$ be its logarithmic height. For every $m \geq 3$, we have

$$h(D_{K_m/K}) \leq \begin{cases} 3(m^2-1)^4(m^2-3)(\log m + h(A) + h(B)), & \text{if } m \text{ is odd;} \\ \\ 3(m^2-4)^4(m^2-6)(\log m + h(A) + h(B)), & \text{if } m \text{ is even.} \end{cases}$$

An effective version

THEOREM (Lagarias, Montgomery, Odlyzko, 1979)

For any number field K, any finite Galois extension L/K, with $L \neq \mathbb{Q}$ and any conjugacy class C in $\operatorname{Gal}(L/K)$, there exists a prime v of K which is unramified in L, for which the Artin symbol $\left(\frac{L|K}{v}\right)$ is equal to C and $N_{K/\mathbb{Q}}(v) \leq |D_{L/\mathbb{Q}}|^{C_1}$.

To have an explicit effective version one has to know explicitly C_1 and the discriminant $D_{L/\mathbb{Q}}$ or an upper bound for it.

THEOREM (LAGARIAS, MONTGOMERY, ODLYZKO, 1979)

For any number field K, any finite Galois extension L/K, with $L \neq \mathbb{Q}$ and any conjugacy class C in $\operatorname{Gal}(L/K)$, there exists a prime v of K which is unramified in L, for which the Artin symbol $\left(\frac{L|K}{v}\right)$ is equal to C and $N_{K/\mathbb{Q}}(v) \leq |D_{L/\mathbb{Q}}|^{C_1}$.

To have an explicit effective version one has to know explicitly C_1 and the discriminant $D_{L/\mathbb{O}}$ or an upper bound for it.

THEOREM (Ahn, Kwon, 2019)

For any number field K, any finite Galois extension L/K, with $L \neq \mathbb{Q}$ and any conjugacy class C in $\operatorname{Gal}(L/K)$, there exists a prime v of K which is unramified in L, for which the Artin symbol $\left(\frac{L|K}{v}\right)$ is equal to C and

$$N_{K/\mathbb{Q}}(v) \leq |D_{L/\mathbb{Q}}|^{12577}.$$

An effective version of the hypotheses of the local-global divisibility

An effective version

PROBLEM (DVORNICICH, ZANNIER, 2001)

Let $P \in \mathcal{E}(K)$. Assume that for all but finitely many places $v \in K$, there exists $D_v \in \mathcal{E}(K_v)$ such that $P = mD_v$, where K_v is the completion of K at the place v. Is it possible to conclude that there exists $D \in \mathcal{E}(K)$ such that P = mD?

It suffices to solve the problem for $m=p^n$ to get an anwer for a general m.

PROBLEM (DVORNICICH, ZANNIER, 2001)

Let $P \in \mathcal{E}(K)$. Assume that for all but finitely many places $v \in K$, there exists $D_v \in \mathcal{E}(K_v)$ such that $P = mD_v$, where K_v is the completion of K at the place v. Is it possible to conclude that there exists $D \in \mathcal{E}(K)$ such that P = mD?

It suffices to solve the problem for $m=p^n$ to get an anwer for a general m.

- Tate 1962; (reproved by Dvornicich, Zannier in 2001 and by Wong in 2001): YES, for all p, when n = 1;
- Dvornicich, Zannier, 2007: YES, for all p > 163, $n \ge 1$;
- ullet P., Ranieri, Viada, 2012-2014: YES , for all $p\geq 5$, $n\geq 1$;
- Creutz, 2016: NO , for p=2,3 and $n\geq 2$.

An effective version

- Tate 1962; (reproved by Dvornicich, Zannier in 2001 and by Wong in 2001): YES, for all p, when n = 1;
- Dvornicich, Zannier, 2007: YES, for all p > 163, $n \ge 1$;
- P., Ranieri, Viada, 2012-2014: YES, for all $p \geq 5$, $n \geq 1$;
- Creutz, 2016: NO , for p=2,3 and $n\geq 2$.

- Tate 1962; (reproved by Dvornicich, Zannier in 2001 and by Wong in 2001): YES, for all p, when n = 1;
- Dvornicich, Zannier, 2007: YES, for all p > 163, $n \ge 1$;
- P., Ranieri, Viada, 2012-2014: YES, for all $p \ge 5$, $n \ge 1$;
- Creutz, 2016: NO , for p=2,3 and $n\geq 2$.

- Tate 1962; (reproved by Dvornicich, Zannier in 2001 and by Wong in 2001): YES, for all p, when n = 1;
- Dvornicich, Zannier, 2007: YES, for all p > 163, $n \ge 1$;
- P., Ranieri, Viada, 2012-2014: YES, for all $p \ge 5$, $n \ge 1$;
- Creutz, 2016: NO, for p = 2, 3 and $n \ge 2$.

In particular

$$\mathrm{III}(K,\mathcal{E}[p^n])=0, \ \mathrm{for \ all} \ p\geq 5, n\geq 1$$

As a consequence of a result of Creutz of 2013, we have that the triviality of $\mathrm{III}(K,\mathcal{E}[p^n])$, for every r, implies an affirmative answer to the following question posed by Cassels in 1962.

Cassels' Question

Are the elements of $\mathrm{III}(K,\mathcal{E})$ infinitely divisible by a prime p when considered as elements of the Weil-Châtelet group $H^1(K,\mathcal{E})$ of all classes of principal homogeneous spaces for \mathcal{E} defined over K?

Creutz 2013 + P., Ranieri, Viada, 2012-2014 \Rightarrow YES, for all $p \ge 5$.

In particular

$$\mathrm{III}(K,\mathcal{E}[p^n])=0, \ \mathrm{for \ all} \ p\geq 5, n\geq 1$$

As a consequence of a result of Creutz of 2013, we have that the triviality of $\mathrm{III}(K,\mathcal{E}[p^n])$, for every r, implies an affirmative answer to the following question posed by Cassels in 1962.

CASSELS' QUESTION

Are the elements of $\coprod(K,\mathcal{E})$ infinitely divisible by a prime p when considered as elements of the Weil-Châtelet group $H^1(K,\mathcal{E})$ of all classes of principal homogeneous spaces for \mathcal{E} defined over K?

Creutz 2013 + P., Ranieri, Viada, 2012-2014 \Rightarrow YES, for all $p \ge 5$.

In particular

$$\mathrm{III}(K,\mathcal{E}[p^n])=0, \ \mathrm{for \ all} \ p\geq 5, n\geq 1$$

As a consequence of a result of Creutz of 2013, we have that the triviality of $\coprod(K,\mathcal{E}[p^n])$, for every r, implies an affirmative answer to the following question posed by Cassels in 1962.

CASSELS' QUESTION

Are the elements of $\coprod(K,\mathcal{E})$ infinitely divisible by a prime p when considered as elements of the Weil-Châtelet group $H^1(K,\mathcal{E})$ of all classes of principal homogeneous spaces for \mathcal{E} defined over K?

Creutz 2013 + P., Ranieri, Viada, 2012-2014 \Rightarrow YES, for all $p \ge 5$.

In the proofs we need that v varies among all places unramified in K_{p^n} to have that the Galois group $G_v := \operatorname{Gal}((K_{p^n})_w/K_v)$, where w|v, varies over all cyclic subgroups of G.

By the Chebotarev Density Theorem the local Galois group G_v varies over all cyclic subgroups of G as v varies in a set of primes with Dirichlet density 1.

In the proofs we need that v varies among all places unramified in K_{p^n} to have that the Galois group $G_v := \operatorname{Gal}((K_{p^n})_w/K_v)$, where w|v, varies over all cyclic subgroups of G.

By the Chebotarev Density Theorem the local Galois group G_v varies over all cyclic subgroups of G as v varies in a set of primes with Dirichlet density 1.

An effective version

Indeed G_v varies over all cyclic subgroups of G as v varies in a set of primes v such that $h(N_{K/\mathbb{Q}}(v)) \leq 12577 \cdot B(p^n, b, c)$, where $B(p^n, b, c)$ is the upper bound showed above for $h(D_{K_{p^n}/K})$.

COROLLARY (DVORNICICH, P., 2022)

Let $p \geq 5$ and $n \geq 1$. Let $P \in \mathcal{E}(K)$ and let

$$S = \{ v \in M_K | h(N_{K/\mathbb{Q}}(v)) \le 12577 \cdot B(p^n, b, c) \},$$

Assume that for all $v \in S$, there exists $D_v \in \mathcal{E}(K_v)$ such that $P = p^n D_v$. Then there exists $D \in \mathcal{E}(K)$ such that $P = p^n D$.

Thank you for your attention!