On divisors of sums of polynomials

László Mérai

Austrian Academy of Sciences

Johann Radon Institute for Computational and Applied Mathematics
Linz, Austria
August 30, 2022

Sums of polynomials

Let \mathbb{F}_{q} be the finite field of size $\left|\mathbb{F}_{q}\right|=q$ of odd characteristic.
Let $\mathcal{A}, \mathcal{B} \subset \mathcal{M}_{n} \subset \mathbb{F}_{q}[T]$ be arbitrary subsets of monic polynomials.
We expect that the arithmetic properties of sumsets

$$
\mathcal{A}+\mathcal{B}=\{A+B: A \in \mathcal{A}, B \in \mathcal{B}\}
$$

have similar properties to those of \mathcal{M}_{n}.
In particular, what can we say about the arithmetic properties of $\mathcal{A}+\mathcal{B}$ by only knowing the sizes $|\mathcal{A}|,|\mathcal{B}|$?

Sum of polynomials

Let $\mathcal{A}, \mathcal{B} \subset \mathcal{M}_{n}$ be arbitrary subsets.
For a polynomial $F \in \mathbb{F}_{q}[X]$, let

$$
\mathrm{D}(F)=\max \{\operatorname{deg} P: P \mid F, P \text { is irreducible }\}
$$

We expect, that

$$
\mathrm{D}(A+B): A \in \mathcal{A}, B \in \mathcal{B}
$$

cannot be all small.

For integers, see works of Balog, Ruzsa, Sárközy, Stewart, ...

The result

Let

$$
\mathrm{D}(F)=\max \{\operatorname{deg} P: P \mid F, P \text { is irreducible }\} .
$$

and for $\mathcal{A}, \mathcal{B} \subset \mathcal{M}_{n}$

$$
\sigma=\sigma(\mathcal{A}, \mathcal{B})=\frac{(|\mathcal{A}||\mathcal{B}|)^{1 / 2}}{q^{n}}, \quad 0 \leq \sigma \leq 1
$$

Theorem

Let $\mathcal{A}, \mathcal{B} \subset \mathcal{M}_{n}$ and assume, that $(|\mathcal{A}||\mathcal{B}|)^{1 / 2} \geq q^{(6 / 7+\varepsilon) n}$. Then, there exist $\gg|\mathcal{A}||\mathcal{B}| / n$ polynomials $A \in \mathcal{A}, B \in \mathcal{B}$ such that

$$
\mathrm{D}(A+B) \geq n-\log _{q} \sigma^{-1}-\log _{q} \log _{q} \log _{q} \sigma^{-1}-\frac{c}{\log q}-1 .
$$

Trivial upper bound: $\mathrm{D}(A+B) \leq n$.

The result

Let

$$
\mathrm{D}(F)=\max \{\operatorname{deg} P: P \mid F, P \text { is irreducible }\} .
$$

and for $\mathcal{A}, \mathcal{B} \subset \mathcal{M}_{n}$

$$
\sigma=\sigma(\mathcal{A}, \mathcal{B})=\frac{(|\mathcal{A}||\mathcal{B}|)^{1 / 2}}{q^{n}}, \quad 0 \leq \sigma \leq 1
$$

Corollary

Let $\mathcal{A}, \mathcal{B} \subset \mathcal{M}_{n}$ and assume, that $|\mathcal{A}|,|\mathcal{B}| \gg q^{n}$, then there are polynomials $A \in \mathcal{A}$, $B \in \mathcal{B}$, such that

$$
\mathrm{D}(A+B) \geq n-c .
$$

The result is sharp apart from constants:
Let $\mathcal{A}, \mathcal{B} \subset \mathbb{F}_{q}[T]$ are sets s.t. $T \mid A, B$ for all $A \in \mathcal{A}, B \in \mathcal{B}$. Then $\mathrm{D}(A+B) \leq n-1$.

The method

The proof uses the Hardy-Littlewood circle method.
For $F \in \mathbb{F}_{q}[T]$, define $|F|=q^{\operatorname{deg} F}$ (with the convention $|0|=0$).
Let

$$
\mathbb{F}_{q}\left(\left(T^{-1}\right)\right)=\mathbb{K}_{\infty}=\left\{\xi=\sum_{i \leq k} x_{i} T^{i}, x_{i} \in \mathbb{F}_{q}, k \in \mathbb{Z}\right\}
$$

We extend $|\cdot|$ to \mathbb{K}_{∞} in a natural way. Then \mathbb{K}_{∞} is complete with respect to $|\cdot|$. Define the unit interval

$$
\mathbf{T}=\{\xi:|\xi|<1\}=\left\{\sum_{i=-\infty}^{-1} x_{i} T^{i}, x_{i} \in \mathbb{F}_{q}\right\}
$$

We define the measure μ on \mathbf{T} by

$$
\mu\left(\xi: x_{-1}=r_{-1}, \ldots, x_{-k}=r_{-k}\right)=\frac{1}{q^{k}}
$$

Then $\mu(\mathbf{T})=1$.

The method

For $\xi \in \mathbb{K}_{\infty}$ (i.e. $\xi=\sum_{i \leq k} x_{i} T^{i}$) let

$$
\mathbf{e}(\xi)=\exp \left(\frac{2 \pi i}{p} \operatorname{tr}_{\mathbb{F}_{q}}\left(x_{-1}\right)\right),
$$

where $p=\operatorname{char}\left(\mathbb{F}_{q}\right)$ and $\operatorname{tr}_{\mathbb{F}_{q}}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$ is the trace.
Then e : $\mathbb{K}_{\infty} \rightarrow \mathbb{C}^{*}$ is an additive character.
We have the orthogonality

$$
\int_{\mathbf{T}} \mathbf{e}(\xi A) \mathrm{d} \mu(\xi)= \begin{cases}1 & \text { if } A=0 \\ 0 & \text { if } A \neq 0\end{cases}
$$

for $A \in \mathbb{F}_{q}[T]$.

The method

Write

$$
f_{\mathcal{A}}(\xi)=\sum_{A \in \mathcal{A}} \mathbf{e}(A \xi) \quad f_{\mathcal{B}}(\xi)=\sum_{B \in \mathcal{B}} \mathbf{e}(B \xi) .
$$

Then

$$
f_{\mathcal{A}}(\xi) f_{\mathcal{B}}(\xi)=\sum_{A \in \mathcal{A}, B \in \mathcal{B}} \mathbf{e}((A+B) \xi)=\sum_{G \in \mathcal{M}_{n}} u_{G} \mathbf{e}(G \xi),
$$

where $u_{G}>0$ iff $G \in \mathcal{A}+\mathcal{B}$.
Let j be a positive integer, put

$$
\mathcal{S}=\left\{S \in \mathcal{M}_{n}: \mathrm{D}(S)=n-j\right\} .
$$

and define

$$
f_{\mathcal{S}}(\xi)=\sum_{S \in \mathcal{S}} \mathbf{e}(S \xi)=\sum_{G \in \mathcal{M}_{n}} v_{G} \mathbf{e}(G \xi),
$$

where $v_{G}>0$ iff $\mathrm{D}(G)=n-j$.

The method

By the orthogonality

$$
\begin{aligned}
I & =\int_{\mathbf{T}} f_{\mathcal{A}}(\xi) f_{\mathcal{B}}(\xi) f_{\mathcal{S}}(-\xi) \mathrm{d} \mu(\xi) \\
& =\int_{\mathbf{T}} \sum_{A \in \mathcal{A}} \sum_{B \in \mathcal{B}} \sum_{S \in \mathcal{S}} \mathbf{e}((A+B-S) \xi) \mathrm{d} \mu(\xi) \\
& =\int_{\mathbf{T}} \sum_{G \in \mathcal{M}_{n}} \sum_{H \in \mathcal{M}_{n}} u_{G} v_{H} \mathbf{e}((G-H) \xi) \mathrm{d} \mu(\xi) \\
& =\sum_{G \in \mathcal{M}_{n}} u_{G} v_{G} .
\end{aligned}
$$

If $I>0$, then there is a $G \in \mathcal{A}+\mathcal{B}$ such that $\mathrm{D}(G)=n-j$.
Main part: investigate $f_{\mathcal{S}}$ on minor and major arcs.

Further problems

We have shown $\mathrm{D}(A+B)>n-c(\sigma)$ for $A \in \mathcal{A}, B \in \mathcal{B}$ if $(|\mathcal{A}||\mathcal{B}|)^{1 / 2} \geq q^{(6 / 7+\varepsilon) n}$.

- Smaller \mathcal{A}, \mathcal{B} ?

Let $z=\min \{\log |\mathcal{A}| / \log q, \log |\mathcal{B}| / \log q\}$, and estimate $\max \mathrm{D}(A+B)$ in terms of z.

- Multiplivative version: $\max \mathrm{D}(A B+1)$ for $A \in \mathcal{A}, B \in \mathcal{B}$ (ongoing).
- Is it true, that

$$
\mathrm{D}((A B+1)(A C+1)(B C+1)) \rightarrow \infty
$$

as $\max \{\operatorname{deg} A, \operatorname{deg} B, \operatorname{deg} C\} \rightarrow \infty$?
For integers, see Hernández and Luca (2003) or Corvaja and Zannier (2003).

Thank you!

