The proof of Skolem's conjecture for certain three term equations

L. Hajdu

University of Debrecen

Specialisation and Effectiveness in Number Theory

Banff International Research Station

28 August - 2 September, 2022

Plan of the talk

- A (very) brief history of Skolem's conjecture
- The proof of Skolem's conjecture for equations $x^{n}-b y_{1}^{k_{1}} \cdots y_{\ell}^{k_{\ell}}= \pm 1$
- The proof of Skolem's conjecture for equations $x^{n}+b y^{n}= \pm z^{n}$

The new results are joint with A. Bérczes, F. Luca, R. Tijdeman.

Skolem's conjecture

Skolem's conjecture: if an exponential Diophantine equation is not solvable, then it is not solvable modulo m for some m

Schinzel (1975): The conjecture is true for equations

$$
b_{1}^{\alpha_{1}} \cdots b_{\ell}^{\alpha_{\ell}}=c
$$

Bartolome, Bilu and Luca (2013): The conjecture is true for equations of the form

$$
a_{1} b_{1}^{\alpha_{1}}+\cdots+a_{\ell} b_{\ell}^{\alpha_{\ell}}=0
$$

if the rank of the multiplicative group generated by b_{1}, \ldots, b_{ℓ} is one.
These results also hold over number fields.

New results

Theorem 1 (Bérczes, H, Tijdeman)

Let $b, x, y_{1}, \ldots, y_{\ell}$ be given integers. Then there exists a modulus m such that the congruence

$$
\begin{equation*}
x^{n}-b y_{1}^{k_{1}} \cdots y_{\ell}^{k_{\ell}} \equiv \pm 1 \quad(\bmod m) \tag{1}
\end{equation*}
$$

has precisely the same solutions in non-negative integers $n, k_{1}, \ldots, k_{\ell}$ as the equation

$$
\begin{equation*}
x^{n}-b y_{1}^{k_{1}} \cdots y_{\ell}^{k_{\ell}}= \pm 1 \tag{2}
\end{equation*}
$$

has.

This result extends an earlier theorem of \mathbf{H} and Tijdeman, concerning (2) with $b=\ell=1$ and one of x, y being a prime.

Some remarks

Remark 1

It will be clear from the proof that given $b, x, y_{1}, \ldots, y_{\ell}$, the modulus m can be explicitly constructed, and can be bounded in terms of $b, x, y_{1}, \ldots, y_{\ell}$.

Remark 2

Theorem 1 covers the famous equations $x^{n}-y^{k}=1$ and $\frac{x^{n}-1}{x-1}=y^{k}$ for fixed x, y.

Remark 3

Theorem 1 can be reformulated for a related class of equations, having no solutions at all. E.g., there is an m such the congruence

$$
x^{n}-y^{k} \equiv 1 \quad(\bmod m) \quad(x, y \text { fixed },(x, y) \neq(3,2))
$$

has no solutions in integers $n>1, k>1$.

Strategy of the proof

Recall the congruence and the equation

$$
\begin{gather*}
x^{n}-b y_{1}^{k_{1}} \cdots y_{\ell}^{k_{\ell}} \equiv \pm 1 \quad(\bmod m) \tag{1}\\
x^{n}-b y_{1}^{k_{1}} \cdots y_{\ell}^{k_{\ell}}= \pm 1 \tag{2}
\end{gather*}
$$

For every m all solutions of (2) are solutions of (1).
So it suffices to prove that for certain m every solution of (1) is a solution of (2).

For fixed $b, x, y_{1}, \ldots, y_{\ell}$, write S_{∞} for the set of solutions of (2) and for any modulus m let S_{m} be the set of solutions of (1).

Then $S_{\infty} \subseteq S_{m}$ for any $m \geq 2$.

Strategy of the proof - continued

On the other hand, if $m_{1}, m_{2} \mid m$ then $S_{m} \subseteq S_{m_{1}} \cap S_{m_{2}}$. So if

$$
\bigcap_{i=1}^{t} S_{m_{i}}=S_{\infty}
$$

then the following choice is appropriate:

$$
m:=\prod_{i=1}^{t} m_{i}
$$

If the terms of all the solutions of (1) are bounded modulo m^{\prime}, then we may choose $m^{\prime \prime}$ sufficiently large so that modulo $m=m^{\prime} m^{\prime \prime}$, (1) and (2) have exactly the same solutions.

Strategy of the proof - continued

Let S be a finite set of primes, and write U_{S} for the set of integers having all their prime divisors in S.

The following theorem will play an important role later on.

Theorem A

The equation $v_{1}-v_{2}=c$ where c is a non-zero integer has only finitely many solutions in $v_{1}, v_{2} \in U_{S}$, whose number can be effectively bounded in terms of S, c. (See results of Evertse, Györy and others.)

Proof sketch for $x^{n}-b y^{k}=1$

We focus on the case $\ell=1$ and +1 on the RHS:

$$
\begin{equation*}
x^{n}-b y^{k}=1 \tag{3}
\end{equation*}
$$

The case -1 on the RHS is more involved but similar, and $\ell>1$ can be handled inductively.

If $|x| \leq 1,|y| \leq 1$ or $\operatorname{gcd}(x, b y)>1$ then the situation is simple.

Consider $x^{n}-b y^{k}=1$ for fixed b, x, y. It is an S-unit equation.

Write N for the number of solutions.

Proof sketch for $x^{n}-b y^{k}=1$

Let s_{1} be the smallest integer such that

$$
|y|^{s_{1}}>|x|+1 .
$$

Observe that s_{1} can be easily expressed in terms of x, y.

If $k<s_{1}$, then k is bounded and can be considered to be fixed. So we may suppose $k \geq s_{1}$.

Then we get

$$
x^{n} \equiv 1 \quad\left(\bmod |y|^{s_{1}}\right)
$$

Proof sketch for $x^{n}-b y^{k}=1$

Thus the order o_{1} of x modulo $|y|^{s_{1}}$ must divide n.

This order is not one, so

$$
2 \leq o_{1} \leq|y|^{s_{1}}
$$

Let now s_{2} be the smallest integer such that

$$
|y|^{s_{2}}>|x|^{0_{1}}+1
$$

Observe that o_{1} and s_{2} are bounded in terms of x, y.

If $k<s_{2}$ we can proceed as in the case $k<s_{1}$. So we may assume that $k \geq s_{2}$.

Proof sketch for $x^{n}-b y^{k}=1$

Hence we obtain

$$
x^{n} \equiv 1 \quad\left(\bmod |y|^{s_{2}}\right)
$$

Therefore the order o_{2} of x modulo $|y|^{s_{2}}$ must also divide n.

We have $o_{1} \mid o_{2}$, too.

Further, by our choice of s_{2} we see that

$$
1<o_{1}<o_{2} \leq|y|^{s_{2}}
$$

Proof sketch for $x^{n}-b y^{k}=1$

Continuing this procedure, we have two options.

Either the process terminates in at most N steps, yielding modulo $|y|^{s_{i}}$ for some $i \leq N$ that k is bounded in terms of b, x, y.

Then we are done.

Or, after N steps we obtain that there exist divisors o_{1}, \ldots, o_{N} of n with

$$
1<o_{1}<\cdots<o_{N} \leq|y|^{S_{N}}
$$

where s_{N} is bounded in terms of x, y, such that

$$
o_{1}\left|o_{2}, \ldots, o_{N-1}\right| o_{N}, o_{N} \mid n .
$$

Proof sketch for $x^{n}-b y^{k}=1$

Put $o_{0}=1$ and consider (3) modulo $x^{o_{i}}-1$ for $i=0,1, \ldots, N$.
We get that for $k \geq s_{N}$

$$
b y^{k} \equiv 0 \quad\left(\bmod x^{o_{i}}-1\right)
$$

holds, hence $x^{o_{i}}-1 \in U_{S}(i=0,1, \ldots, N)$.
However, then there are $N+1$ solutions, contradicting the definition of N. (Note that it is a funny 'global-local principle'.)

So taking the modulus

$$
m^{\prime}=|y|^{s_{N}}
$$

we get that in all solutions of $x^{n}-b y^{k}=1$ modulo m^{\prime}, we have $k<s_{N}$.
From this, as we already mentioned, our claim follows.

New results

Theorem 2 (H, Luca, Tijdeman)

Let x, y, z, b be integers with $\operatorname{gcd}(x, y, z)=1$ and $|y| \neq 1$, and let $\varepsilon \in\{-1,1\}$. Then there exists a modulus m such that the congruence

$$
x^{n}+b y^{n} \equiv \varepsilon z^{n} \quad(\bmod m)
$$

has the same solutions in non-negative integers n as the equation

$$
x^{n}+b y^{n}=\varepsilon z^{n}
$$

Further, such a modulus m can be effectively calculated in terms of x, y, z, b.

Remark 4

In fact we obtained a more general, but also more technical result.

Proof sketch for $x^{n}+b y^{n}=z^{n}$

We restrict to the equation $x^{n}+b y^{n}=z^{n}$ (i.e, $\varepsilon=1$), the case $\varepsilon=-1$ is similar.

The cases where $|x|=|z|=1, b x y z=0$ or when $x, b y, z$ are not pairwise coprime can be handled easily.

Also, if we can find a modulus M such that the solutions n to $x^{n}+b y^{n} \equiv z^{n}(\bmod M)$ are bounded, we are easily done.

A proof similar to that of Theorem 1 would work.

However, now a simpler argument is available, related to recurrence sequences and primitive divisors.

Proof sketch for $x^{n}+b y^{n}=z^{n}$

Let $p \mid y$; then $p \nmid x z$.
Let $o(p)$ be the order of appearance of p in $\left\{x^{n}-z^{n}\right\}_{n \geq 0}$.
Write $x^{o(p)}-z^{o(p)}=p^{\lambda_{p}} q$ for some integers $\lambda_{p} \geq 1$ and q coprime to p.
Let $K=\omega($ by $)+6$, where $\omega(N)$ denotes the number of distinct prime factors of N.

Let $p^{\lambda_{p}+K} \mid m$, and assume that $x^{n}+b y^{n} \equiv z^{n}(\bmod m)$. If n is a solution with $n \geq \lambda_{p}+K$ then $p^{\lambda_{p}+K} \mid x^{n}-z^{n}$.

By the properties of $o(p)$ we have $o(p) p^{k-1} \mid n$. Thus $x^{o(p) p^{k}}-z^{o(p) p^{k}}$ divides $x^{n}-z^{n}$ for $k=0, \ldots, K-1$.

Proof sketch for $x^{n}+b y^{n}=z^{n}$

By a classical result of Zsigmondy, for each $k \geq 0$ with at most 5 exceptions the number $x^{o(p) p^{k}}-z^{o(p) p^{k}}$ has a primitive prime divisor q_{k}.

Set $q_{k}=1$ if k is an exception. Then $x^{n}-z^{n}$ is a multiple of $Q:=q_{0} \cdots q_{k-1}$.

Look at the congruence $x^{n}+b y^{n} \equiv z^{n}\left(\bmod p^{\lambda_{p}+K} Q\right)$.

If n is a solution with $n \geq \lambda_{p}+K$, then n is divisible by $o(p) p^{K-1}$, so $x^{n}-z^{n}$ is divisible by Q.

Thus by ${ }^{n}$ is divisible by Q. This is false, since $\omega(Q) \geq K-5>\omega\left(\right.$ by $\left.^{n}\right)$. Therefore $n<\lambda_{p}+K$.

Two interesting corollaries

Corollary 1

Let x, y be positive integers. Then there exists a modulus m such that

$$
x^{k}-y^{\ell} \equiv 1 \quad(\bmod m)
$$

has no solutions in integers k, ℓ with $k, \ell \geq 2,(k, \ell) \neq(2,3)$ for $(x, y)=(3,2)$. Further, such a modulus m can be effectively calculated in terms of x, y.

Corollary 2

Let x, y, z be coprime positive integers. Then there exists a modulus m such that

$$
x^{n}+y^{n} \equiv z^{n} \quad(\bmod m)
$$

has no solution in integer n with $n \geq 3$. Further, such a modulus m can be effectively calculated in terms of x, y, z.

The mentioned papers related to Skolem's conjecture

- B. Bartolome, Yu. Bilu and F. Luca, On the exponential local-global principle, Acta Arith. 159 (2013), 101-111.
- A. Bérczes, L. Hajdu and R. Tijdeman, Skolem's conjecture confirmed for a family of exponential equations, II, Acta Arith. 197 (2021), 129-136.
- L. Hajdu, F. Luca and R. Tijdeman, Skolem's conjecture confirmed for a family of exponential equations III, J. Number Theory 224 (2021), 41-49.
- L. Hajdu and R. Tijdeman, Skolem's conjecture confirmed for a family of exponential equations, Acta Arith. 192 (2020), 105-110.
- A. Schinzel, On power residues and exponential congruences, Acta Arith. 27 (1975), 397-420.
- Th. Skolem, Anwendung exponentieller Kongruenzen zum Beweis der Unlösbarkeit gewisser diophantischer Gleichungen, Avhdl. Norske Vid. Akad. Oslo I, 1937, no. 12, 16 pp.

