# A Hilbert irreducibility type result for polynomials over the ring of power sums 

## Clemens Fuchs

University of Salzburg, Department of Mathematics Hellbrunnerstr. 34/I, 5020 Salzburg

# BIRS Workshop "Specialisation and Effectiveness in Number Theory" 

August 29, 2022

Let $K$ be a number field and let $S$ a finite set of places (containing the archimedean ones). We denote the absolute logarithmic Weil height of an element $x \in K^{*}$ by

$$
h(x)=\sum_{\nu} \max \left(0, \log |x|_{\nu}\right)
$$

and the $S$-height by

$$
h_{S}(x)=\sum_{\nu \notin S} \max \left(0, \log |x|_{\nu}\right)
$$

where the sums are taken over all places of $K$.
We denote by $\mathcal{O}_{S}$ the ring of $S$-integers and by $\mathcal{O}_{S}^{\times} \cong \mu(K) \times \mathbb{Z}^{|S|-1}$ its group of units. Observe that $\mathcal{O}_{S}$ is integrally closed.

## Polynomials

We look at $f \in K[X]$.
Firstly, we are interested in $x \in K$ with $f(x)=0$.

- If $f$ is monic, then $f \in \mathcal{O}_{S}[X]$ and $x \in \mathcal{O}_{S}$ for a suitable $S$,
- $h(x)=O(1)$ implies that all $\mathcal{O}_{S}$-solutions are effectively computable.

Secondly, we want to describe the $K$-factorizations of $f$.

- Letting $L$ be the splitting field of $f$, we can describe the roots effectively,
- by combination of the roots and by using elementary symmetric polynomials, we get all $K$-factorizations of $f$.

A power sum is a map $G: \mathbb{N} \rightarrow K$ such that

$$
n \mapsto a_{1} \alpha_{1}^{n}+\cdots+a_{t} \alpha_{t}^{n}=: G_{n},
$$

where $a_{i} \in K, \alpha_{i} \in K$ for $i=1, \ldots, t$. We denote by $\mathcal{E}$ the ring of $K$-power sums. Power sums are simple linear recurrence sequences. The $\alpha_{i}$ are called the (characteristic) roots and the $a_{i}$ are called the coefficients of the recurrence $G_{n}$.

In applications we usually consider

$$
\mathcal{E}_{A}=\left\{G_{n} \in \mathcal{E} ; \alpha_{i} \in A \text { for } i=1, \ldots, t\right\}
$$

for $A$ a finitely generated subgroup of $K^{*}$. If the number of generators $=r$, then $\mathcal{E}_{A} \cong K\left[X_{1}^{ \pm 1}, \ldots, X_{r}^{ \pm 1}\right]$. This ring is factorial, noetherian and, in particular, integrally closed.

Let $f \in \mathcal{E}[X]$.
Again, we are first interested in $x \in K$ with $f(x)=0$. In the literature one can find:

- $X^{2}-G_{n}=0$
- $X^{q}-G_{n}=0$
- $f(X)-G_{n}=0$
- $X^{d}+G_{n}^{i_{1}} X^{d-1}+G_{n}^{i_{2}} X^{d-2}+\cdots+G_{n}^{i_{d}}=0$
- $H_{n} X-G_{n}=0$
- $G_{n}^{(0)} X^{d}+\cdots+G_{n}^{(d)}=0$

In all cases, under suitable but restrictive conditions, the following is shown: The equation has finitely many solutions $(n, x)$ unless the equation has a solution in the ring $\mathcal{E}$ for $X$.

## Corvaja-Zannier

Let $f(\mathbf{X})=\sum_{\mathbf{i}} a_{\mathbf{i}} \mathbf{X}^{\mathbf{i}}$ be a power series with algebraic coefficients in $\mathbb{C}_{\nu}$ converging in a neighborhood of the origin in $\mathbb{C}_{\nu}^{r}$. Let $\mathbf{x}_{n}=\left(x_{n 1}, \ldots, x_{n r}\right)(n=1,2, \ldots)$ be a sequence in $K^{* r}$, tending to zero in $K_{\nu}^{r}$ and such that $f\left(\mathbf{x}_{n}\right)$ is defined and belongs to $K$.
Suppose that:
(1) For $i=1, \ldots, r$ we have $h_{S}\left(x_{n i}\right)+h_{S}\left(x_{n i}^{-1}\right)=o\left(h\left(x_{n i}\right)\right)$ as $n \rightarrow \infty$.
(2) $\widehat{h}\left(\mathbf{x}_{n}\right)=O\left(-\log \left(\max _{i}\left|x_{n i}\right|_{\nu}\right)\right)$.
(3) $h_{S}\left(f\left(\mathbf{x}_{n}\right)\right)=o\left(h\left(\mathbf{x}_{n}\right)\right)$.
(1) $h\left(f\left(\mathbf{x}_{n}\right)\right)=O\left(h\left(\mathbf{x}_{n}\right)\right)$.

Then there exists a finite number of cosets $\mathbf{u}_{1} H_{1}, \ldots, \mathbf{u}_{t} H_{t} \subseteq \mathbb{G}_{\mathrm{m}}^{r}$ such that $\left\{\mathbf{x}_{n}\right\}_{n \in \mathbb{N}} \subseteq \bigcup_{i=1}^{t} \mathbf{u}_{i} H_{i}$ and such that, for $i=1, \ldots, t$, the restriction of $f(\mathbf{X})$ to $\mathbf{u}_{i} H_{i}$ coincides with a polynomial in $K[\mathbf{X}]$.

We consider

$$
G_{n}^{(0)} Z^{d}+\cdots+G_{n}^{(d-1)} Z+G_{n}^{(d)}=0
$$

where $G_{n}^{(i)}$ are $K$-power sums. We are, in a first step, interested in solutions $(n, z) \in \mathbb{N} \times \mathcal{O}_{S}$.

It follows that we can choose a common numbering $\beta_{1}, \ldots, \beta_{r}$ of all occurring characteristic roots and rewrite the equation as

$$
a_{0}\left(\beta_{1}^{n}, \ldots, \beta_{r}^{n}\right) Z^{d}+\cdots+a_{d}\left(\beta_{1}^{n}, \ldots, \beta_{r}^{n}\right)=0
$$

with linear polynomials $a_{0}\left(X_{1}, \ldots, X_{r}\right), \ldots, a_{d}\left(X_{1}, \ldots, X_{r}\right)$.
Therefore the problem translates into an equation given by a (rather special lacunary) polynomial for which we seek integral solutions in $\mathbb{G}_{\mathrm{m}}^{r} \times \mathbb{A}^{1}$.

Conversely, every hypersurface in $\mathbb{G}_{\mathrm{m}}^{r} \times \mathbb{A}^{1}$ can be written in the form

$$
a_{0}\left(X_{1}, \ldots, X_{r}\right) Z^{d}+\cdots+a_{d}\left(X_{1}, \ldots, X_{r}\right)=0
$$

for (not necessarily linear) polynomials $a_{j}\left(X_{1}, \ldots, X_{r}\right)$. The integral points on such a hypersurface are the elements of $\left(\mathcal{O}_{S}^{\times}\right)^{r} \times \mathcal{O}_{S}$ which satisfy the given equation. If the equation is monic in $Z$ or the leading coefficient is a constant times a monomial in $X_{1}, \ldots, X_{r}$, then it describes a finite cover $W \rightarrow \mathbb{G}_{\mathrm{m}}^{r}$ given by projection on the first $r$ components. We remark that all regular maps $\mathbb{G}_{\mathrm{m}} \rightarrow W$, i.e. function field integral points, of the finite cover $W \rightarrow \mathbb{G}_{\mathrm{m}}^{r}$ can be described.

Here, we specialize to a 1-parameter subgroup of $\mathbb{G}_{\mathrm{m}}^{r}$ for which $(\star)$ is the typical description.

Let an equation of the form ( $\star$ ) be given.
Define

$$
g\left(X_{1}, \ldots, X_{r}, Z\right)=a_{0}\left(X_{1}, \ldots, X_{r}\right) Z^{d}+\cdots+a_{d}\left(X_{1}, \ldots, X_{r}\right)
$$

Furthermore, let $\widetilde{g} \in K\left[X_{1}, \ldots, X_{r}, \widetilde{Z}\right]$ be the polynomial given by the equation
$\tilde{g}\left(X_{1}, \ldots, X_{r}, a_{0}\left(X_{1}, \ldots, X_{r}\right) Z\right)=a_{0}\left(X_{1}, \ldots, X_{r}\right)^{d-1} g\left(X_{1}, \ldots, X_{r}, Z\right)$.
We assume that

- either $a_{0}(0, \ldots, 0) \neq 0$ and $g(0, \ldots, 0, Z)$ has no multiple zero as a polynomial in $Z$,
- or $a_{0}(0, \ldots, 0)=0$ and $\widetilde{g}(0, \ldots, 0, \widetilde{Z})$ has no multiple zero as a polynomial in $\widetilde{Z}$.

Let $\gamma_{1}, \ldots, \gamma_{r} \in K^{*}$ such that $\left|\gamma_{i}\right|<1$ for all $1 \leq i \leq r$ and such that no ratio $\gamma_{i} / \gamma_{j}$ for $i \neq j$ is a root of unity.

Assume that $S$ is a finite set of places of $K$, containing all archimedean ones, and such that $\gamma_{1}, \ldots, \gamma_{r}$ and all non-zero coefficients of $a_{i}\left(X_{1}, \ldots, X_{r}\right)$ for $i=0, \ldots, d$ are $S$-units.

## Results \& remarks

## Theorem 1 (F.-Heintze)

Let $K, g, \widetilde{g}, \gamma_{1}, \ldots, \gamma_{r}$ and $S$ be as above. Then there are finitely many cosets $\mathbf{u}_{1} H_{1}, \ldots, \mathbf{u}_{t} H_{t} \subseteq \mathbb{G}_{\mathrm{m}}^{r}$ and for each $\operatorname{coset} \mathbf{u}_{i} H_{i}$ a polynomial $P_{i}$ in $r$ unknowns such that the following holds: For each solution $(n, z) \in \mathbb{N} \times \mathcal{O}_{S}$ of $g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, z\right)=0$ with $z \neq 0$ and $n$ large enough, there exists an index $i$ such that $\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right) \in \mathbf{u}_{i} H_{i}$ and $z^{\prime}=P_{i}\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right)$, where $z^{\prime}=z$ in the case $a_{0}(0, \ldots, 0) \neq 0$ and $z^{\prime}=a_{0}\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right) z$ if $a_{0}(0, \ldots, 0)=0$, respectively.

## Results \& remarks

- Let us emphasize that this result goes in the same direction as Corvaja and Zannier's result on $f\left(G_{n}, Z\right)=0$ from 2002 and uses similar assumptions, though the results are not quite equal (in the sense that our result does not directly follow from theirs and vice-versa). Moreover, we completely build on the methods developed by them.
- In contrast to earlier results we have now a much more powerful tool in our hands; instead of applying the Subspace theorem we can apply Corvaja-Zannier, which leads to a much quicker proof.
- The main and most restrictive technical condition is the existence of "dominant roots". Without this condition one can currently expect only weaker results.


## Results \& remarks

## Corollary (F.-Heintze)

Let $K, g, \widetilde{g}, \gamma_{1}, \ldots, \gamma_{r}$ and $S$ be as in Theorem 1. Then there are finitely many linear recurrences $R_{1}(n), \ldots, R_{s}(n)$ with algebraic roots and algebraic coefficients, arithmetic progressions $\mathcal{P}_{1}, \ldots, \mathcal{P}_{s}$, as well as finite sets $M$ and $N$ such that the set of solutions $(n, z) \in \mathbb{N} \times \mathcal{O}_{S}$ of the equation $g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, z\right)=0$ is equal to

$$
\bigcup^{s}\left\{\left(n, R_{j}(n)\right): n \in \mathcal{P}_{j}, R_{j}(n) \in \mathcal{O}_{S}\right\} \cup\left\{(n, z): n \in N, z \in \mathcal{O}_{S}\right\} \cup M
$$ $j=1$

## Results \& remarks

## Theorem 2 (F.-Heintze)

Let $K, g, \gamma_{1}, \ldots, \gamma_{r}$ and $S$ be as above. Moreover, assume that $g$ is monic as a polynomial in $Z$, i.e. $a_{0}\left(X_{1}, \ldots, X_{r}\right)=1$. Then $g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, Z\right)$ is reducible in $K[Z]$ for infinitely many $n \in \mathbb{N}$ if and only if there exist monic polynomials $h_{1}(n, Z), h_{2}(n, Z)$, whose coefficients are linear recurrences with algebraic characteristic roots and algebraic coefficients, and an arithmetic progression $\mathcal{P}$ such that $g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, Z\right)=h_{1}(n, Z) h_{2}(n, Z)$ is a factorization in $K[Z]$ for all $n \in \mathcal{P}$.

## Results \& remarks

- In the case that the polynomial $g$ is not monic in $Z$, one can use the transformation to $\widetilde{g}$ written down in Theorem 1. Then $\widetilde{g}$ is monic in $\widetilde{Z}$ and the above theorem can be applied to it. Going back to $g$ then yields the result that $g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, Z\right)$ is reducible in $K[Z]$ for infinitely many $n \in \mathbb{N}$ if and only if there exist polynomials $h_{1}(n, Z), h_{2}(n, Z)$, whose coefficients are linear recurrences with algebraic characteristic roots and algebraic coefficients, and an arithmetic progression $\mathcal{P}$ such that

$$
a_{0}\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right)^{d-1} g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, Z\right)=h_{1}(n, Z) h_{2}(n, Z)
$$

is a factorization in $K[Z]$ for all $n \in \mathcal{P}$.

- We remark that generic decompositions, as they occur in the statement of the above theorem, can be computed.


## Results \& remarks

- It follows, under the conditions we work in, that if $g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, Z\right)$ is irreducible as a polynomial in $Z$ over the ring of $K$-power sums (or, more general, the Hadamard ring of linear recurrences in $K$ ), then it cannot be reducible in $K[Z]$ for infinitely many $n \in \mathbb{N}$.
- As usual one may deduce that all decompositions can be described in "finite terms" coming from finitely many generic decompositions of $g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, Z\right)$ over the ring whose coefficients are linear recurrences in $K$ with finitely many exceptions.


## Sketch of the proofs

## Theorem 1

## Theorem 1 (F.-Heintze)

Let $K, g, \widetilde{g}, \gamma_{1}, \ldots, \gamma_{r}$ and $S$ be as above. Then there are finitely many cosets $\mathbf{u}_{1} H_{1}, \ldots, \mathbf{u}_{t} H_{t} \subseteq \mathbb{G}_{\mathrm{m}}^{r}$ and for each coset $\mathbf{u}_{i} H_{i}$ a polynomial $P_{i}$ in $r$ unknowns such that the following holds: For each solution $(n, z) \in \mathbb{N} \times \mathcal{O}_{S}$ of $g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, z\right)=0$ with $z \neq 0$ and $n$ large enough, there exists an index $i$ such that $\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right) \in \mathbf{u}_{i} H_{i}$ and $z^{\prime}=P_{i}\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right)$, where $z^{\prime}=z$ in the case $a_{0}(0, \ldots, 0) \neq 0$ and $z^{\prime}=a_{0}\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right) z$ if $a_{0}(0, \ldots, 0)=0$, respectively.

## Sketch of the proofs

- We assume that $a_{0}(0, \ldots, 0) \neq 0$ and that $g(0, \ldots, 0, Z)$ has only simple zeros. The other case uses $\widetilde{g}$ instead of $g$ and goes similarly.
- Consider now an infinite sequence $\left(\left(n, z_{n}\right)\right)_{n \in W}$ of solutions of the equation

$$
g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, z\right)=0
$$

in $(n, z) \in \mathbb{N} \times \mathcal{O}_{S}$ with $z \neq 0$, where $W$ is an infinite subset of $\mathbb{N}$.

- We first show that the $z$-component must be bounded.
- It follows that $g\left(0, \ldots, 0, z_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus the $z_{n}$ lie in the union of arbitrary small neighborhoods of the solutions of $g(0, \ldots, 0, z)=0$ for $n$ large enough. Thus we can split the sequence into finitely many subsequences and consider in what follows only an infinite sequence $\left(z_{n}\right)$ which converges to a solution $z_{*}$ of $g(0, \ldots, 0, z)=0$.


## Sketch of the proofs

## Theorem 1. II

- Afterwards we calculate a bound on the height of the $z$-component.
- Then we can apply the Implicit Function theorem which gives a power series $f\left(X_{1}, \ldots, X_{r}\right)$ with algebraic coefficients such that for $n$ large enough we have $z_{n}=f\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right)$.
- Then we apply Corvaja-Zannier which gives finitely many cosets $\mathbf{u}_{1} H_{1}, \ldots, \mathbf{u}_{t} H_{t} \subseteq \mathbb{G}_{\mathrm{m}}^{r}$ such that $\left\{\left(\gamma_{1}^{w_{n}}, \ldots, \gamma_{r}^{w_{n}}\right)\right\}_{n \in \mathbb{N}}$ $\subseteq \bigcup_{i=1}^{t} \mathbf{u}_{i} H_{i}$ and such that, for $i=1, \ldots, t$, the restriction of $f$ to $\mathbf{u}_{i} H_{i}$ coincides with a polynomial $P_{i}$ in $K\left[X_{1}, \ldots, X_{r}\right]$.
- Hence for all $n \in W$ there exists an index $i$ such that $\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right) \in \mathbf{u}_{i} H_{i}$ and $z_{n}=P_{i}\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right)$.


## Sketch of the proofs

## Corollary

## Corollary (F.-Heintze)

Let $K, g, \widetilde{g}, \gamma_{1}, \ldots, \gamma_{r}$ and $S$ be as in Theorem 1. Then there are finitely many linear recurrences $R_{1}(n), \ldots, R_{s}(n)$ with algebraic roots and algebraic coefficients, arithmetic progressions $\mathcal{P}_{1}, \ldots, \mathcal{P}_{s}$, as well as finite sets $M$ and $N$ such that the set of solutions $(n, z) \in \mathbb{N} \times \mathcal{O}_{S}$ of the equation $g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, z\right)=0$ is equal to

$$
\bigcup_{j=1}^{s}\left\{\left(n, R_{j}(n)\right): n \in \mathcal{P}_{j}, R_{j}(n) \in \mathcal{O}_{S}\right\} \cup\left\{(n, z): n \in N, z \in \mathcal{O}_{S}\right\} \cup M
$$

## Sketch of the proofs

## Corollary. I

- Clearly, it suffices to classify the solutions of the form $(n, z) \in \mathbb{N} \times \mathcal{O}_{S}$ with $z \neq 0$ and $n$ large.
- We apply Theorem 1 and get finitely many cosets $\mathbf{u}_{1} H_{1}, \ldots$, $\mathbf{u}_{t} H_{t} \subseteq \mathbb{G}_{\mathrm{m}}^{r}$ as well as for each coset $\mathbf{u}_{i} H_{i}$ a polynomial $P_{i}$ such that for all remaining solutions $(n, z)$ there is an index $i \in\{1, \ldots, t\}$ with the property that either

$$
z=P_{i}\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right) \quad \text { or } \quad z=\frac{P_{i}\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right)}{a_{0}\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right)}
$$

- For each $i$ we distinguish four cases.
- If there are only finitely many solutions satisfying the first or second equations they are contained in $M$.
- If the first equation has infinitely many solutions we put $z$ into the original equation and use the Skolem-Mahler-Lech theorem.


## Sketch of the proofs

## Corollary. II

- If the second equation has infinitely many solutions we first apply the Hadamard Quotient theorem and then proceed as in case three.
- This concludes the proof.


## Sketch of the proofs

Theorem 2

## Theorem 2 (F.-Heintze)

Let $K, g, \gamma_{1}, \ldots, \gamma_{r}$ and $S$ be as above. Moreover, assume that $g$ is monic as a polynomial in $Z$, i.e. $a_{0}\left(X_{1}, \ldots, X_{r}\right)=1$. Then $g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, Z\right)$ is reducible in $K[Z]$ for infinitely many $n \in \mathbb{N}$ if and only if there exist monic polynomials $h_{1}(n, Z), h_{2}(n, Z)$, whose coefficients are linear recurrences with algebraic characteristic roots and algebraic coefficients, and an arithmetic progression $\mathcal{P}$ such that $g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, Z\right)=h_{1}(n, Z) h_{2}(n, Z)$ is a factorization in $K[Z]$ for all $n \in \mathcal{P}$.

## Sketch of the proofs

## Theorem 2. I

- We first prove, as in Theorem 1, that all zeros $z$ of $g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, z\right)$ can be described by finitely many power series $f\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right)$. Thus we have

$$
g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, Z\right)=\left(Z-f_{1}\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right)\right) \cdots\left(Z-f_{d}\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right)\right)
$$

- We get that for infinitely many $n$ we have

$$
g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, Z\right)=h_{1}(n, Z) h_{2}(n, Z)
$$

with fixed monic polynomials $h_{1}(n, Z), h_{2}(n, Z)$ in $Z$ having power series of the form $f\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right)$ as coefficients.

- Applying Corvaja-Zannier to the coefficients of $h_{1}(n, Z)$, $h_{2}(n, Z)$, we get that these coefficients coincide with polynomials of the form $P\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right)$.


## Sketch of the proofs

## Theorem 2. II

- Thus for infinitely many $n$ we get the factorization

$$
g\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}, Z\right)=h_{1}(n, Z) h_{2}(n, Z)
$$

with fixed monic polynomials $h_{1}(n, Z), h_{2}(n, Z)$ in $Z$ having polynomials of the form $P\left(\gamma_{1}^{n}, \ldots, \gamma_{r}^{n}\right)$ as coefficients; hence the coefficients are linear recurrence sequences.

- The statement about the arithmetic progressions follows by using Skolem-Mahler-Lech.


## Thank you for your attention!



