Field counting and arboreal degrees Banff 2022

Carlo Pagano

Concordia University

September 1, 2022

Two themes today

- Let G be a finite group and K a number field. How many Galois extensions L / K are there with $d(L) \leq X$ and $\operatorname{Gal}(L / K) \simeq G$?

Two themes today

- Let G be a finite group and K a number field. How many Galois extensions L / K are there with $d(L) \leq X$ and $\operatorname{Gal}(L / K) \simeq G$?
- Let α be in K and ϕ in $K(x)$. How fast does $\left[K\left(\phi^{-N}(\alpha)\right): K\right]$ grow as N goes to ∞ ?

Two themes today

- Let G be a finite group and K a number field. How many Galois extensions L / K are there with $d(L) \leq X$ and $\operatorname{Gal}(L / K) \simeq G$?
- Let α be in K and ϕ in $K(x)$. How fast does $\left[K\left(\phi^{-N}(\alpha)\right): K\right]$ grow as N goes to ∞ ?
Today: Progress on these two questions and an unexpected link between them!

Key players: nilpotent groups

Let G be a group, define $G^{(0)}:=G$ and $G^{(i+1)}:=\left[G, G^{(i)}\right]$.

Key players: nilpotent groups

Let G be a group, define $G^{(0)}:=G$ and $G^{(i+1)}:=\left[G, G^{(i)}\right]$. We call G nilpotent in case $G^{(n)}=\{i d\}$ for n large enough.

Key players: nilpotent groups

Let G be a group, define $G^{(0)}:=G$ and $G^{(i+1)}:=\left[G, G^{(i)}\right]$. We call G nilpotent in case $G^{(n)}=\{i d\}$ for n large enough.
The minimum such n is called nilpotency class.

Key players: nilpotent groups

Let G be a group, define $G^{(0)}:=G$ and $G^{(i+1)}:=\left[G, G^{(i)}\right]$.
We call G nilpotent in case $G^{(n)}=\{i d\}$ for n large enough.
The minimum such n is called nilpotency class.
A finite group is nilpotent if and only if it is a product of groups of sizes powers of primes.

Malle's conjecture

Let G be a finite group, K be a number field. Define

$$
N(K, G, X):=\#\left\{L \subseteq K^{\text {sep }}: \operatorname{Gal}(L / K) \simeq G,\left|N_{K / \mathbb{Q}}(\operatorname{Disc}(L / K))\right| \leq X\right\}
$$

Malle's conjecture

Let G be a finite group, K be a number field. Define
$N(K, G, X):=\#\left\{L \subseteq K^{\text {sep }}: \operatorname{Gal}(L / K) \simeq G,\left|N_{K / \mathbb{Q}}(\operatorname{Disc}(L / K))\right| \leq X\right\}$.

Malle conjectured that there are $a(G), b_{\text {Malle }}(G, K)$ and $c>0$ such that

$$
N(K, G, X) \sim c \cdot X^{a(G)} \cdot \log (X)^{b_{\text {Malle }}(G, K)-1}
$$

Malle's conjecture

Let G be a finite group, K be a number field. Define
$N(K, G, X):=\#\left\{L \subseteq K^{\text {sep }}: \operatorname{Gal}(L / K) \simeq G,\left|N_{K / \mathbb{Q}}(\operatorname{Disc}(L / K))\right| \leq X\right\}$.

Malle conjectured that there are $a(G), b_{\text {Malle }}(G, K)$ and $c>0$ such that

$$
N(K, G, X) \sim c \cdot X^{a(G)} \cdot \log (X)^{b_{\text {Malle }}(G, K)-1}
$$

Wide open! For some G we cannot yet exclude that $N(K, G, X)=0$ for all X (also known as Galois inverse problem).

Malle's conjecture

Let G be a finite group, K be a number field. Define
$N(K, G, X):=\#\left\{L \subseteq K^{\text {sep }}: \operatorname{Gal}(L / K) \simeq G,\left|N_{K / \mathbb{Q}}(\operatorname{Disc}(L / K))\right| \leq X\right\}$.

Malle conjectured that there are $a(G), b_{\text {Malle }}(G, K)$ and $c>0$ such that

$$
N(K, G, X) \sim c \cdot X^{a(G)} \cdot \log (X)^{b_{\text {Malle }}(G, K)-1}
$$

Wide open! For some G we cannot yet exclude that $N(K, G, X)=0$ for all X (also known as Galois inverse problem).
For G nilpotent the last was excluded by a celebrated theorem of Shafarevich, recently reproved by Harpaz and Wittenberg.

Previous results: asymptotics

Established for:

- All G abelian over any K number field (Wright, 1989).
- For $G:=S_{3}$ standard action and $K:=\mathbb{Q}$ (Davenport-Heilbronn, 1971).
- For $G:=S_{4}, S_{5}$ standard action and $K:=\mathbb{Q}$ (Bhargava, 2005, 2010).
- For generalized quaternions (Klüners, 2005).
- For $G:=S_{3}$ regular action and $K:=\mathbb{Q}$ (Bhargava-Wood, 2008).
- For $G:=S_{n} \times A$, with $n \in\{3,4,5\}$ and A abelian, $K:=\mathbb{Q}$ (Wang, 2017).
- For D_{4} by conductor (Shankar-Varma-Wilson, 2017).
- For nonic Heisenberg (Koymans-Fouvry, 2021).

Previous results: upper bounds

The upper bound $N(K, G, X)=O\left(X^{a(G)+\epsilon}\right)$ (weak Malle's conjecture) is known in the cases:

Previous results: upper bounds

The upper bound $N(K, G, X)=O\left(X^{a(G)+\epsilon}\right)$ (weak Malle's conjecture) is known in the cases:

- General G and $K:=\mathbb{F}_{q}(t)$ (Ellenberg-Tran-Westerland, 2017).

Previous results: upper bounds

The upper bound $N(K, G, X)=O\left(X^{a(G)+\epsilon}\right)$ (weak Malle's conjecture) is known in the cases:

- General G and $K:=\mathbb{F}_{q}(t)$ (Ellenberg-Tran-Westerland, 2017).
- All nilpotent groups G and all number fields K (Klüners-Malle, 2004).

Previous results: upper bounds

The upper bound $N(K, G, X)=O\left(X^{a(G)+\epsilon}\right)$ (weak Malle's conjecture) is known in the cases:

- General G and $K:=\mathbb{F}_{q}(t)$ (Ellenberg-Tran-Westerland, 2017).
- All nilpotent groups G and all number fields K (Klüners-Malle, 2004).
- The upper bound $N(K, G, X)=O\left(X^{a(G)} \log (X)^{b_{K 1}(G, K)-1}\right)$ with $b_{\mathrm{KI}}(G, K) \geq b_{\text {Malle }}(G, K)$ established for all nilpotent G and all number fields K (Klüners, 2020).

Main results: a general upper bound

We improve $b(G, K) \leq b^{\prime}(G, K) \leq b_{K I}(G, K)$, with
$b^{\prime}(G, K)+4 \leq b_{\mathrm{KI}}(G, K)$ for some G 's. Having the following
Theorem 1, Koymans-P., 2021
For every G, K, we have that

$$
N(K, G, X)=O\left(X^{a(G)} \cdot \log (X)^{b^{\prime}(G, K)-1}\right) .
$$

Main results: a general upper bound

We improve $b(G, K) \leq b^{\prime}(G, K) \leq b_{K I}(G, K)$, with $b^{\prime}(G, K)+4 \leq b_{\mathrm{KI}}(G, K)$ for some G 's. Having the following

Theorem 1, Koymans-P., 2021
For every G, K, we have that

$$
N(K, G, X)=O\left(X^{a(G)} \cdot \log (X)^{b^{\prime}(G, K)-1}\right) .
$$

- Method: We introduce a parametrization of nilpotent extensions.

Main results: a general upper bound

We improve $b(G, K) \leq b^{\prime}(G, K) \leq b_{K I}(G, K)$, with $b^{\prime}(G, K)+4 \leq b_{\mathrm{KI}}(G, K)$ for some G 's. Having the following

Theorem 1, Koymans-P., 2021
For every G, K, we have that

$$
N(K, G, X)=O\left(X^{a(G)} \cdot \log (X)^{b^{\prime}(G, K)-1}\right) .
$$

- Method: We introduce a parametrization of nilpotent extensions.
- Once the parametrization is set-up the proof is extremely easy!

Main results: a general upper bound

We improve $b(G, K) \leq b^{\prime}(G, K) \leq b_{K I}(G, K)$, with $b^{\prime}(G, K)+4 \leq b_{\mathrm{KI}}(G, K)$ for some G 's. Having the following

Theorem 1, Koymans-P., 2021

For every G, K, we have that

$$
N(K, G, X)=O\left(X^{a(G)} \cdot \log (X)^{b^{\prime}(G, K)-1}\right)
$$

- Method: We introduce a parametrization of nilpotent extensions.
- Once the parametrization is set-up the proof is extremely easy!
- It makes possible making the estimate effective.

Main results: asymptotics

Basically: Whenever $b_{\text {Malle }}(G, K)=b^{\prime}(G, K)$ we promote Theorem 1 to an asymptotic:

Theorem 2, Koymans-P., 2021

Let G a nilpotent group where all the elements of minimal non-trivial order are central. Then Malle's conjecture holds, i.e. there is $c>0$ such that

$$
N(K, G, X) \sim c \cdot X^{a(G)} \cdot \log (X)^{b_{\text {Malle }}(G, K)-1}
$$

Remarks

- Wright's theorem for abelian groups is a special case. The proof is new and more elementary.

Remarks

- Wright's theorem for abelian groups is a special case. The proof is new and more elementary.
- There are 2-groups G of arbitrarily large nilpotency class for which this theorem applies.

Remarks

- Wright's theorem for abelian groups is a special case. The proof is new and more elementary.
- There are 2-groups G of arbitrarily large nilpotency class for which this theorem applies.
- We have a sharp upper bound in case all elements of minimal order are pairwise commuting, a yet even larger class of groups.

Remarks

- Wright's theorem for abelian groups is a special case. The proof is new and more elementary.
- There are 2-groups G of arbitrarily large nilpotency class for which this theorem applies.
- We have a sharp upper bound in case all elements of minimal order are pairwise commuting, a yet even larger class of groups.
- Our parametrization yields a heuristic understanding of $b_{\text {Malle }}(G, K)$ and of Malle's conjecture when ordering fields by discriminants.

The growth of arboreal degrees

Let K be a number field, $\phi \in K(x)$ a map of degree at least 2 and α in K and focus on the fields $K\left(\phi^{-N}(\alpha)\right) / K$.

The growth of arboreal degrees

Let K be a number field, $\phi \in K(x)$ a map of degree at least 2 and α in K and focus on the fields $K\left(\phi^{-N}(\alpha)\right) / K$.
It is widely believed (analogy with Serre's open image theorem) that:

The growth of arboreal degrees

Let K be a number field, $\phi \in K(x)$ a map of degree at least 2 and α in K and focus on the fields $K\left(\phi^{-N}(\alpha)\right) / K$.
It is widely believed (analogy with Serre's open image theorem) that:

- The degrees $\left[K\left(\phi^{-N}(\alpha)\right): K\right]$ should grow double-exponentially in N, unless the map ϕ is PCF (the orbits of its critical points are all finite).

The growth of arboreal degrees

Let K be a number field, $\phi \in K(x)$ a map of degree at least 2 and α in K and focus on the fields $K\left(\phi^{-N}(\alpha)\right) / K$.
It is widely believed (analogy with Serre's open image theorem) that:

- The degrees $\left[K\left(\phi^{-N}(\alpha)\right): K\right]$ should grow double-exponentially in N, unless the map ϕ is PCF (the orbits of its critical points are all finite).
- At least exponentially, unless $\left\{\phi^{-N}(\alpha)\right\}_{N \geq 1}$ is finite.

The growth of arboreal degrees

Let K be a number field, $\phi \in K(x)$ a map of degree at least 2 and α in K and focus on the fields $K\left(\phi^{-N}(\alpha)\right) / K$.
It is widely believed (analogy with Serre's open image theorem) that:

- The degrees $\left[K\left(\phi^{-N}(\alpha)\right): K\right]$ should grow double-exponentially in N, unless the map ϕ is PCF (the orbits of its critical points are all finite).
- At least exponentially, unless $\left\{\phi^{-N}(\alpha)\right\}_{N \geq 1}$ is finite.

Wide open in general!

An application of nilpotent Malle: linear lower bounds for quadratic ϕ

Is there any lower bound one can prove?

An application of nilpotent Malle: linear lower bounds for quadratic ϕ

Is there any lower bound one can prove?
In joint work in progress with Mello-Ostafe-Shparlinski we obtain the following:

An application of nilpotent Malle: linear lower bounds for quadratic ϕ

Is there any lower bound one can prove?
In joint work in progress with Mello-Ostafe-Shparlinski we obtain the following:

- As soon as $\left\{\phi^{-N}(\alpha)\right\}_{N \geq 1}$ is infinite, then we have a positive constant $c(\phi, \alpha)$ such that

$$
\left[K\left(\phi^{-N}(\alpha)\right): K\right] \geq c(\phi, \alpha) \cdot \sqrt{N}
$$

An application of nilpotent Malle: linear lower bounds for

 quadratic ϕIs there any lower bound one can prove?
In joint work in progress with Mello-Ostafe-Shparlinski we obtain the following:

- As soon as $\left\{\phi^{-N}(\alpha)\right\}_{N \geq 1}$ is infinite, then we have a positive constant $c(\phi, \alpha)$ such that

$$
\left[K\left(\phi^{-N}(\alpha)\right): K\right] \geq c(\phi, \alpha) \cdot \sqrt{N}
$$

- If ϕ has degree 2 then leveraging on the new results on nilpotent Malle we can promote it to:

$$
\left[K\left(\phi^{-N}(\alpha)\right): K\right] \geq c(\phi, \alpha, \epsilon) \cdot N^{1-\epsilon}
$$

Methods

For the first up to constants:

- One has about d^{N} algebraic numbers of uniformly bounded height. Let D be the largest of their degrees.
- A theorem of Schmidt permits no more than $\exp \left(c D^{2}\right)$ numbers of degree D and of unformly bounded height. Hence D must be at least \sqrt{N}.

Methods

For the first up to constants:

- One has about d^{N} algebraic numbers of uniformly bounded height. Let D be the largest of their degrees.
- A theorem of Schmidt permits no more than $\exp \left(c D^{2}\right)$ numbers of degree D and of unformly bounded height. Hence D must be at least \sqrt{N}.
For the second:
- We use the same rationale, but replace Schmidt's theorem with Theorem 1 on Malle's for 2-groups to do the following:

Methods

For the first up to constants:

- One has about d^{N} algebraic numbers of uniformly bounded height. Let D be the largest of their degrees.
- A theorem of Schmidt permits no more than $\exp \left(c D^{2}\right)$ numbers of degree D and of unformly bounded height. Hence D must be at least \sqrt{N}.
For the second:
- We use the same rationale, but replace Schmidt's theorem with Theorem 1 on Malle's for 2-groups to do the following:
- Show there are no more than $\exp \left(c^{\prime} D^{1+\epsilon}\right)$ algebraic numbers with uniformly bounded height, with minimal polynomial having Galois group of size at most D and a power of 2 .

Methods

For the first up to constants:

- One has about d^{N} algebraic numbers of uniformly bounded height. Let D be the largest of their degrees.
- A theorem of Schmidt permits no more than $\exp \left(c D^{2}\right)$ numbers of degree D and of unformly bounded height. Hence D must be at least \sqrt{N}.
For the second:
- We use the same rationale, but replace Schmidt's theorem with Theorem 1 on Malle's for 2-groups to do the following:
- Show there are no more than $\exp \left(c^{\prime} D^{1+\epsilon}\right)$ algebraic numbers with uniformly bounded height, with minimal polynomial having Galois group of size at most D and a power of 2 .
- This requires running Theorem 1 with a moving G, which is handled by the effectivity of the upper bound: the wonders of the parametrization.

Methods

For the first up to constants:

- One has about d^{N} algebraic numbers of uniformly bounded height. Let D be the largest of their degrees.
- A theorem of Schmidt permits no more than $\exp \left(c D^{2}\right)$ numbers of degree D and of unformly bounded height. Hence D must be at least \sqrt{N}.
For the second:
- We use the same rationale, but replace Schmidt's theorem with Theorem 1 on Malle's for 2-groups to do the following:
- Show there are no more than $\exp \left(c^{\prime} D^{1+\epsilon}\right)$ algebraic numbers with uniformly bounded height, with minimal polynomial having Galois group of size at most D and a power of 2 .
- This requires running Theorem 1 with a moving G, which is handled by the effectivity of the upper bound: the wonders of the parametrization.
- Controlling fibers: $\alpha \mapsto K(\alpha)$ (Lemke-Olivier-Thorne) and number of 2-groups of given size (Highman-Sims).

Exponential lower bounds: PCF polynomials

Let K be a number field. We have the following.
Theorem 3, P., 2021
Assume GRH. Suppose that f is a PCF polynomials of degree $d \geq 2$. Let α be outside the critical orbits of f. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

Exponential lower bounds: PCF polynomials

Let K be a number field. We have the following.

Theorem 3, P., 2021

Assume GRH. Suppose that f is a PCF polynomials of degree $d \geq 2$. Let α be outside the critical orbits of f. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

For PCF this is essentially sharp: $\left(x^{2}, \alpha\right),\left(x^{2}-2,0\right)$.

Exponential lower bounds: PCF polynomials

Let K be a number field. We have the following.

Theorem 3, P., 2021

Assume GRH. Suppose that f is a PCF polynomials of degree $d \geq 2$. Let α be outside the critical orbits of f. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

For PCF this is essentially sharp: $\left(x^{2}, \alpha\right),\left(x^{2}-2,0\right)$.
Previous literature: exploits infinite orbits, which with Vojta's gives at every step a new ramifying prime.

Exponential lower bounds: PCF polynomials

Let K be a number field. We have the following.

Theorem 3, P., 2021

Assume GRH. Suppose that f is a PCF polynomials of degree $d \geq 2$. Let α be outside the critical orbits of f. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

For PCF this is essentially sharp: $\left(x^{2}, \alpha\right),\left(x^{2}-2,0\right)$.
Previous literature: exploits infinite orbits, which with Vojta's gives at every step a new ramifying prime.
It was left unclear for PCF where the big degrees should come from.
Ramification now is at a finite set.

Exponential lower bounds: PCF polynomials

Let K be a number field. We have the following.

Theorem 3, P., 2021

Assume GRH. Suppose that f is a PCF polynomials of degree $d \geq 2$. Let α be outside the critical orbits of f. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

For PCF this is essentially sharp: $\left(x^{2}, \alpha\right),\left(x^{2}-2,0\right)$.
Previous literature: exploits infinite orbits, which with Vojta's gives at every step a new ramifying prime.
It was left unclear for PCF where the big degrees should come from.
Ramification now is at a finite set.
Idea: If ramification insists to be a finite set: smallest splitting prime is no less d^{N}. Hence (GRH) huge ramification at these primes. Hence (finite set of prime once again) huge degrees.

Exponential lower bounds: unicritical polynomials

Let K be a number field. We have the following.
Theorem 3, P., 2021
Suppose that $f:=x^{d}+c$ is not a PCF polynomials of degree $d \geq 2$. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

Exponential lower bounds: unicritical polynomials

Let K be a number field. We have the following.
Theorem 3, P., 2021
Suppose that $f:=x^{d}+c$ is not a PCF polynomials of degree $d \geq 2$. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

- Main idea: use the magic of PCF polynomials with periodic critical orbit.

Exponential lower bounds: unicritical polynomials

Let K be a number field. We have the following.
Theorem 3, P., 2021
Suppose that $f:=x^{d}+c$ is not a PCF polynomials of degree $d \geq 2$. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

- Main idea: use the magic of PCF polynomials with periodic critical orbit.
- The magic: An element γ becomes a d-th power in $K\left(f^{-n_{0}}(\gamma)\right)$ where n_{0} is the period.

Exponential lower bounds: unicritical polynomials

Let K be a number field. We have the following.
Theorem 3, P., 2021
Suppose that $f:=x^{d}+c$ is not a PCF polynomials of degree $d \geq 2$. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

- Main idea: use the magic of PCF polynomials with periodic critical orbit.
- The magic: An element γ becomes a d-th power in $K\left(f^{-n_{0}}(\gamma)\right)$ where n_{0} is the period.
- Apply the magic modulo a suitably chosen prime.

Arboreal fields are not only believed to be large but also to have very complicated Galois groups.

Arboreal fields are not only believed to be large but also to have very complicated Galois groups.
For example for $f:=x^{2}+c$ over a number field, it is believed that only $c:=-2,0$ can yield abelian arboreal Galois groups for all N.

Arboreal fields are not only believed to be large but also to have very complicated Galois groups.
For example for $f:=x^{2}+c$ over a number field, it is believed that only $c:=-2,0$ can yield abelian arboreal Galois groups for all N.
This is part of a more general conjecture of Andrews-Petsche.

Theorem 4, Ferraguti-P., 2020

If a quadratic polynomial $x^{2}+c$ over any number field K, gives abelian arboreal Galois group for some α, then the orbit of 0 is preperiodic.

Arboreal fields are not only believed to be large but also to have very complicated Galois groups.
For example for $f:=x^{2}+c$ over a number field, it is believed that only $c:=-2,0$ can yield abelian arboreal Galois groups for all N.
This is part of a more general conjecture of Andrews-Petsche.
Theorem 4, Ferraguti-P., 2020
If a quadratic polynomial $x^{2}+c$ over any number field K, gives abelian arboreal Galois group for some α, then the orbit of 0 is preperiodic.

The proof uses Faltings' theorem as follows:

Arboreal fields are not only believed to be large but also to have very complicated Galois groups.
For example for $f:=x^{2}+c$ over a number field, it is believed that only $c:=-2,0$ can yield abelian arboreal Galois groups for all N.
This is part of a more general conjecture of Andrews-Petsche.
Theorem 4, Ferraguti-P., 2020
If a quadratic polynomial $x^{2}+c$ over any number field K, gives abelian arboreal Galois group for some α, then the orbit of 0 is preperiodic.

The proof uses Faltings' theorem as follows:

- Detects a necessary condition for automorphisms of a binary tree to commute;

Arboreal fields are not only believed to be large but also to have very complicated Galois groups.
For example for $f:=x^{2}+c$ over a number field, it is believed that only $c:=-2,0$ can yield abelian arboreal Galois groups for all N.
This is part of a more general conjecture of Andrews-Petsche.

Theorem 4, Ferraguti-P., 2020

If a quadratic polynomial $x^{2}+c$ over any number field K, gives abelian arboreal Galois group for some α, then the orbit of 0 is preperiodic.

The proof uses Faltings' theorem as follows:

- Detects a necessary condition for automorphisms of a binary tree to commute;
- This condition (essentially) translates into making the critical orbit modulo squares unidimensional;

Arboreal fields are not only believed to be large but also to have very complicated Galois groups.
For example for $f:=x^{2}+c$ over a number field, it is believed that only $c:=-2,0$ can yield abelian arboreal Galois groups for all N.
This is part of a more general conjecture of Andrews-Petsche.

Theorem 4, Ferraguti-P., 2020

If a quadratic polynomial $x^{2}+c$ over any number field K, gives abelian arboreal Galois group for some α, then the orbit of 0 is preperiodic.

The proof uses Faltings' theorem as follows:

- Detects a necessary condition for automorphisms of a binary tree to commute;
- This condition (essentially) translates into making the critical orbit modulo squares unidimensional;
- If the orbit were infinite one would get curves of very high genus having infinitely many rational points.

Progress on Andrews-Petsche

We have the following:
Theorem 5, Ferraguti-P., 2021
Andrews-Petsche conjecture holds for all PCF unicritical polynomials with periodic critical orbit.

Progress on Andrews-Petsche

We have the following:

Theorem 5, Ferraguti-P., 2021

Andrews-Petsche conjecture holds for all PCF unicritical polynomials with periodic critical orbit.

This follows from the magic of period critical orbit (and, for example, Amoroso-Zannier lower bounds in K^{ab}).

Andrews-Petsche over \mathbb{Q}

We have the following:
Theorem 6, Ferraguti-P., 2020
Andrews-Petsche conjecture holds for any quadratic polynomial over \mathbb{Q}.

- This can now be deduced from Theorem 4,5 quite easily.
- Our original proof relied on local class field theory and results of Anderson-Poonen et alii on local arboreal representations.

Andrews-Petsche over \mathbb{Q}

We have the following:
Theorem 6, Ferraguti-P., 2020
Andrews-Petsche conjecture holds for any quadratic polynomial over \mathbb{Q}.

- This can now be deduced from Theorem 4,5 quite easily.
- Our original proof relied on local class field theory and results of Anderson-Poonen et alii on local arboreal representations.
- Previously, partial results were obtained by Andrews-Petsche using Arakelov theory.

Andrews-Petsche over \mathbb{Q}

We have the following:
Theorem 6, Ferraguti-P., 2020
Andrews-Petsche conjecture holds for any quadratic polynomial over \mathbb{Q}.

- This can now be deduced from Theorem 4,5 quite easily.
- Our original proof relied on local class field theory and results of Anderson-Poonen et alii on local arboreal representations.
- Previously, partial results were obtained by Andrews-Petsche using Arakelov theory.
- One is now left with the case of strictly preperiodic polynomials: new ideas are needed.

Andrews-Petsche over \mathbb{Q}

We have the following:
Theorem 6, Ferraguti-P., 2020
Andrews-Petsche conjecture holds for any quadratic polynomial over \mathbb{Q}.

- This can now be deduced from Theorem 4,5 quite easily.
- Our original proof relied on local class field theory and results of Anderson-Poonen et alii on local arboreal representations.
- Previously, partial results were obtained by Andrews-Petsche using Arakelov theory.
- One is now left with the case of strictly preperiodic polynomials: new ideas are needed.
- Superexponential lower bounds would settle this conjecture.

Andrews-Petsche over \mathbb{Q}

We have the following:
Theorem 6, Ferraguti-P., 2020
Andrews-Petsche conjecture holds for any quadratic polynomial over \mathbb{Q}.

- This can now be deduced from Theorem 4,5 quite easily.
- Our original proof relied on local class field theory and results of Anderson-Poonen et alii on local arboreal representations.
- Previously, partial results were obtained by Andrews-Petsche using Arakelov theory.
- One is now left with the case of strictly preperiodic polynomials: new ideas are needed.
- Superexponential lower bounds would settle this conjecture.
- Recently, Ferraguti-Ostafe-Zannier explored the case of rational functions and Lattes maps.

Thanks for the attention!

