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Irreducibility of random polynomials

Odlyzko and Poonen ’93 conjectured that most polynomials of the
form

P = 1 +
n∑

i=1
aiX i

where ai ∈ {0, 1} are irreducible.

Recently two approaches have emerged about this question.
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Irreducibility of random polynomials
• Konyagin (1999) showed that for 0, 1 polynomials

P(P is irreducible ) ≫ 1/ log n.

• Bary-Soroker and Kozma (2017) showed that if the distribution
of coefficients is uniform over [1, H] and H is divisible by at least 4
distinct primes, then

P(P is irreducible ) →n→+∞ 1.

• B.+ Varju (2018): GRH implies the Odlyzko-Poonen conjecture.

• Koukoulopoulos, Bary-Soroker and Kozma (2020) showed that
for 0, 1 polynomials

P(P is irreducible ) ≥ c > 0.
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Irreducibility of random polynomials

• Koukoulopoulos, Bary-Soroker and Kozma showed much more.
In particular they showed that for n large (say ≥ nH)

P(P is irreducible ) ≥ 1 − 1/nO(1)

under very mild assumptions on the probability measure, e.g. for
independent coefficients with uniform distribution on [−H, H],
H ≥ 17 conditionally on P(0) ̸= 0.

→ the proof is a remarkable tour-de-force (exploiting recent
advances on random permutations, level distribution for integers
with missing digits, and more). They also show that the Galois
group is large (i.e. at least Alt(n))
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Irreducibility of random polynomials

Assume the ai ’s are independent and distributed according to a
common law on [−H, H] ⊂ Z and set:

P =
n∑

i=0
aiX i

Theorem (B.-Varjú ’18)

Assume GRH. Then with probability at least 1 − exp(−O(
√

n
log n ))

P = ΦP̃ where

(i) P̃ is irreducible,
(ii) deg(Φ) = O(

√
n) and Φ is a product of cyclotomic factors,

(iii) moreover the Galois group of P contains Alt(n).
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Irreducibility of random polynomials: proof method

Step 1
If P is an irreducible polynomial, then as X → +∞,

Ep∈[X ,2X ](# roots of P mod p) = 1 + error

Note: this is an instance of the Prime Ideal Theorem as roots of P
mod p correspond to prime ideals of KP := Q[X ]/(P) of norm p:
there are roughly as many prime ideals of prime norm ⩽ X as there
are rational primes ⩽ X .

Note: the quality of the error term depends on the zeroes of the
Dedekind zeta function ζKP .

In particular, for an arbitrary polynomial P,

Ep∈[X ,2X ](# roots of P mod p) = #irred. factors of P + error
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Irreducibility of random polynomials: proof method

Step 2
On the other hand, for a given prime p, averaging over P yields:

EP(# roots of P mod p)) =
∑
a∈Fp

PP(P(a) = 0) ≃ p.
1
p ≃ 1

provided PP(P(a) = 0) ≃ 1
p for all (most) a’s.

Note that the random variable P(a) on Fp is the n-th step of a
random walk/Markov chain xk+1 = axk + ak, where the ai’s are
the random coefficients of P.
Showing PP(P(a) = 0) ≃ 1

p amounts to prove that the random
walk reaches equilibrium before time n, i.e.

mixing time on Fp ≪ n
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Irreducibility of random polynomials: mixing times
But Konyagin proved (using Dobrowolski’s bound towards
Lehmer’s conjecture) that the mixing time of the random walk
P 7→ P(a) is at most (log p)2+o(1) , provided a ∈ Fp has
multiplicative order ≫ (log p)1+o(1).

→ dividing out the cyclotomic factors and those with small Mahler
measure, we can discard the a’s in Fp with small multiplicative
order.

→ putting Steps 1 and 2 together we can take n ≃ (log p)2+o(1),
or equivalently p ≃ exp(X 1/2−o(1)). The double averaging (over P
and p) of the number NP(p) of roots mod p yields:

EP(#irred. factors of P) = EPEp∈[X ,2X ]NP(p)
= Ep∈[X ,2X ]EPNP(p) ≃ 1 QED

→ GRH is used in controlling the error term in the Prime Ideal
Theorem: O(X 1

2 +o(1) log Disc(P)) (Stark, Odlyzko)
9 / 33



Irreducibility of random polynomials

Theorem (B.-Varjú ’18)

Assume GRH. Then with probability at least 1 − exp(−O(
√

n
log n ))

P = ΦP̃ where

(i) P̃ is irreducible,
(ii) deg(Φ) = O(

√
n) and Φ is a product of cyclotomic factors,

(iii) moreover the Galois group of P contains Alt(n).

Remark: It is plausible that the error term here can actually be
taken to be exponential in n.

But this would imply the Lehmer
conjecture.
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Lehmer conjecture

The Mahler measure of a monic polynomial P ∈ Z[X ] is defined as
the modulus of the product of its roots located outside the unit
disc, i.e.

M(P) :=
∏

|θi |>1
|θi |,

when

P(X ) :=
n∏

i=1
(X − θi).

Kronecker: M(P) = 1 if and only if all θi ’s are roots of unity.

Conjecture (Lehmer 1930’s)
There is an absolute constant ε0 > 0 such that for every monic
polynomial P ∈ Z[X ], either M(P) = 1 or M(P) ≥ 1 + ε0.
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Relation with Lehmer’s conjecture
Motto: putative counter-examples to Lehmer give rise (in reduction
to residue fields) to values of a ∈ Fp with slow mixing rate.

Say that a prime p is δ-bad if there exists a ∈ F×
p with

multiplicative order ≥ (log p)2 such that for some n ≥ 1
δ log p

|{P(a) mod p|P a 0,1 polynomial of deg n}| ⩽ pδ.

Theorem (B.-Varjú ’18)
The following are equivalent:

1 There is δ ∈ (0, 1) s.t. almost no prime is δ-bad, i.e.

|{p ≤ x |p is δ-bad}| = ox→+∞(|{p ≤ x}|).

2 The Lehmer conjecture holds.

→ hence mixing in O(log p) for all a with large order implies Lehmer.
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II. Height gap, uniform expanders.
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Random walks on finite groups of Lie type

The random walk on Fp considered earlier: xn+1 = axn ± 1, whose
n-th step is distributed exactly as P(a) for a random P, can be seen
as a random walk on the (upper triangular) affine group Aff (Fp):

{(a b
0 1

)
, a ∈ F×

p , b ∈ Fp
}

Similarly, we can consider a random walk on SL2(p), or G(p) for a
simple group G over Fp.

Mixing time for such walks has been studied a lot in the last
twenty years (Bourgain, Gamburd, Sarnak, Helfgott, etc.).

A finite k-regular graph Γ is an ε-expander graph if the random
walk on it has mixing time ≪ε,k log |Γ|.

14 / 33



Random walks on finite groups of Lie type

The random walk on Fp considered earlier: xn+1 = axn ± 1, whose
n-th step is distributed exactly as P(a) for a random P, can be seen
as a random walk on the (upper triangular) affine group Aff (Fp):

{(a b
0 1

)
, a ∈ F×

p , b ∈ Fp
}

Similarly, we can consider a random walk on SL2(p), or G(p) for a
simple group G over Fp.

Mixing time for such walks has been studied a lot in the last
twenty years (Bourgain, Gamburd, Sarnak, Helfgott, etc.).

A finite k-regular graph Γ is an ε-expander graph if the random
walk on it has mixing time ≪ε,k log |Γ|.

14 / 33



Random walks on finite groups of Lie type

The random walk on Fp considered earlier: xn+1 = axn ± 1, whose
n-th step is distributed exactly as P(a) for a random P, can be seen
as a random walk on the (upper triangular) affine group Aff (Fp):

{(a b
0 1

)
, a ∈ F×

p , b ∈ Fp
}

Similarly, we can consider a random walk on SL2(p), or G(p) for a
simple group G over Fp.

Mixing time for such walks has been studied a lot in the last
twenty years (Bourgain, Gamburd, Sarnak, Helfgott, etc.).

A finite k-regular graph Γ is an ε-expander graph if the random
walk on it has mixing time ≪ε,k log |Γ|.

14 / 33



Random walks on finite groups of Lie type

Conjecture (folklore)
For each k, r ≥ 1 there is ε > 0 s.t. every k-regular Cayley graph
of a finite simple group of rank at most r is an ε-expander.

This is open even for the subfamily of groups {PSL2(p), p prime }.

Remark: the restriction on the rank is necessary. Indeed if
Alt(n) = ⟨τ, σ⟩, with τ = (123), σ = (12...n), n odd, then the
Cayley graph has diameter ≫ n2, but log |Alt(n)| ≃ n log n.
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Expanders - uniformity

Let G(p) denote a finite simple group of Lie type over Fp.

Theorem (B+Becker, ’22)
for all ε > 0 there is E(ε) ⊂ P an exceptional set of primes s.t.
(i) |E(ε) ∩ [1, T ]| ⩽ T ε for all T ≥ 1
(ii) if p /∈ E(ε) then every k-regular Cayley graph of G(p) is an
ε-expander. In particular mixing time is ≪ε log p.

The result generalizes previous joint work of mine with Gamburd
(∼ 2010), where we had proved this for G = SL(2).

The uniformity here (i.e. every generating set) parallels the
uniformity (i.e. every a of large multiplicative order) in Konyagin’s
mixing estimate on Aff (Fp).
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Expanders - uniformity - height gap

Just as Konyagin’s estimate relied on Dobrowolski’s bounds, at the
heart of the above uniformity for G(p) is a result in diophantine
analysis about the height of eigenvalues in Zariski-dense subgroups
of semisimple algebraic groups G (e.g. G = SL2):

Theorem (Height gap theorem, B. ’08)
There are ε0 = ε0(G) > 0 and N0 = N0(G) s.t. for every
S ⊂ G(Q) with ⟨S⟩ Zariski-dense in G(Q) there is g ∈ SN0 and an
eigenvalue λ of g such that

h(λ) > ε0.

Here h(λ) denotes the (normalized) Weil height of the algebraic
number λ.
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III: Random groups, character varieties.
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Characters of finitely presented groups

Let
Γw = ⟨x1, . . . , xk |w1 = . . . = wr = 1⟩

be a finitely presented group with k generators and r relators.
Let G = G(C) be a semisimple algebraic group (defined over Q
say). For example G = SL2(C).
Let Xw = Hom(Γw , G) be the representation variety. It is a closed
algebraic set in Gk .
Let Xw = Xw //G be the character variety. It is the affine variety
with coordinate ring C[Xw ]G .
Let X Z

w = Xw //G be the Zariski dense part of the character
variety i.e. Xw ∩ Ω//G , where

Ω := ⟨x ∈ Gk , ⟨x⟩ is Zariski dense in G}

Fact: Ω is Zariski open in Gk .
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Characters of finitely presented groups - questions

Recall X Z
w = Hom(Γw , G) ∩ Ω//G denotes the ‘Zariski-dense

character variety‘. Some natural questions:

1 dim X Z
w ?

2 # irreducible components?
3 Action of Galois on the components?
4 singularities on X Z

w ?
5 locus of faithful reps? discrete reps?

Examples:
(a) When Γw is a higher-rank lattice (e.g. SLn(Z) n ≥ 3), then X Z

w
is finite (Margulis’ super-rigidity theorem), and even Q-irreducible
(the Galois group acts transitively): we say that Γw is Galois rigid.
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Characters of finitely presented groups

Further examples:
(b) Γw = π1(Σg) a surface group of genus g ≥ 2.

Γw = ⟨a1, . . . , ag , b1, . . . , bg |[a1, b1] . . . [ag , bg ] = 1⟩.

Then we know (Rapinchuk et al., Liebeck-Shalev) that X Z
w is

absolutely irreducible and that

dim X Z
w = (2g − 2) dim G .

(c) X Z
w can be empty, for example it is so for

Γw = ⟨a, b|banb−1a−m = 1⟩ with gcd(n, m) = 1, the
Baumslag-Solitar group with |n| > |m| > 1.
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Characters of finitely presented groups - examples

(d) When G = SL2(C) with k = 2 generators and r = 1 relator we
can be very explicit:
Fricke-Klein coordinates: x = tr(a), y = tr(b), z = tr(ab).

Fact: ∀w∃Pw ∈ Z[x , y , z ]

tr(w(a, b)) = Pw (x , y , z)

Moreover Ω = G2 \ Vdeg where Vdeg is the union of:

• the cubic hypersurface x2 + y2 + z2 − xyz − 4 = 0 (locus of
reducible reps)
• 3 lines x = y = 0, x = z = 0, y = z = 0 (dihedral reps),
• a finite set with x , y , z ∈ {0, ±1, ±

√
2, ϕ, 1 − ϕ}, ϕ = golden

mean (finite reps).
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Characters of finitely presented groups - examples - SL2

(d) (continued) We can then find equations for X Z
w as follows:

X Z
w = {Pw = 2, Paw = x , Pbw = y} \ Vdeg .

Computer algebra system (e.g. ‘singular‘) does then compute
dim X Z

w and the number of components.

Sage routine for Pw (cf. Ashley-Burelle-Lawton).

Exple: ⟨a, b|[a, u] = 1⟩, u = [b, a]b−1ab is the π1 of the Whitehead
link complement. Then X Z

w is open in the hypersurface
x2z + y2z + z3 − xy − 2z − xyz2 = 0.
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Representations of random groups - main theorem

We attempt to answer the above questions for random
presentations. Let Bℓ the set of r -tuples of words of length ℓ in k
letters x±1

1 , . . . , x±1
k . Here k, r are fixed, but ℓ is large.

Theorem (B.+Becker+Varjú)
(under GRH) There is an exceptional set Eℓ ⊂ Bℓ with
|Eℓ| ⩽ e−cℓ|Bℓ| for some c = c(G) > 0 s.t. for all w ∈ Bℓ \ Eℓ:

1 if r ≥ k, X Z
w is empty,

2 if r = k − 1, X Z
w is finite and non-empty and Q-irreducible

(Galois-rigid),
3 r ⩽ k − 2, X Z

w is absolutely irreducible and of dimension

dim X Z
w = (k − r − 1) dim G .
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w is finite and non-empty and Q-irreducible

(Galois-rigid),
3 r ⩽ k − 2, X Z

w is absolutely irreducible and of dimension

dim X Z
w = (k − r − 1) dim G .

Note that we obtain an exponentially small probability of
exceptions. In particular this result is meaningful even if the w are
constrained to lie in the commutator subgroup [Fk , Fk ], or in
Dm(Fk) the m-th term of the derived series of the free group.
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Representations of random groups - main theorem

Corollary
Fix d and r ≥ k. For all w ∈ Bℓ \ Eℓ, every homomorphism from
Γw to GLd(C) has virtually solvable image.

Our work was motivated by a recent paper of Kozma and Lubotkzy
(2019), who proved that if one takes r ≫ log ℓ random relators,
then, with high probability, every homomorphism from Γw to
GLd(C) has trivial (or Z/2Z) image.
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Representations of random groups - the method

Lang-Weil: X variety over Fq

|X (q)| = c(X , q)qdim X + O(qdim X−1/2)

where
c(X , q) = #geometric components defined over Fq.

strategy: estimate |XZ
w (p)| for various primes.

main idea: similar as in Part I: double counting: average |XZ
w (p)|

- over the primes in a moving window [1
2T , T ] with T → +∞.

- over words of length ℓ.

To get exponential control on the size of the exceptional set of
words, we will need to take T to be of size exp(Cℓ) for some
C > 0, hence the uniform expander results of Part II are essential
here.
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Representations of random groups - the method
Chebotarev: X variety over Q, then

dim X = lim sup
p→+∞

log |X (p)|
p

Ep∈[T/2,T ]
|X (p)|
pdim X →T−→+∞ #Q − irred components of X

(see Serre’s Lectures on NX (p)).

This is for fixed X . But we need this for Xw for all w and the
degree of Xw grows with ℓ = length of w .

→ we need an effective version of all these facts (i.e. Lang-Weil
and Chebotarev).
→ need polynomial control (in the degree aspect) for Lang-Weil,
and the prime ideal theorem (on whose proof Chebotarev is based).
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Effective Chebotarev

Let L be a Galois number field with Galois group G , K ⩽ L a
subfield, ∆K its discriminant. For k ≥ 1, let NK

k (T ) the number of
prime ideals of norm pk in K for p prime in [T/2, T ].

Theorem (effective Prime ideal Theorem, under GRH)

|kNK
k (T ) − PkNQ

1 (T )| ⩽ CT 1/2[K : Q]Ck(log ∆K + log T )

Pk is the k-th Parker number, a non-negative integer depending on
k and G (and

∑n
1 Pk = [K : Q]) defined by:

Pk = 1
|G |

∑
g∈G

kck(g)

where ck(g) is the number of k-cycles of g .
→ proof requires expressing kck(g) as an integer combination of
permutation characters of controlled dimension, and applying the
proof of the Prime Ideal Theorem to each.
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Representations of random groups - proof idea

Double counting (E denotes expectation):

Ep∈[T/2,T ]Ew |Xw (p)| = EwEp∈[T/2,T ]|Xw (p)|

Ew |Xw (p)| =
∑

x∈G(p)k

Pw (w(x) = 1)

If Cay(G(p), x) is an expander, then

|Pw (w(x) = 1) − 1
|G(p)| | ≪ small error

for all ℓ ≫ log p.
−→ use of uniform expansion (as in Part II of the talk) is essential
here.
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Representations of random groups - proof idea

When k = r + 1, this leads to Ep∈[T/2.T ]|XZ
w (p)| ≃ 1 w.o.p in w ,

and thus that XZ
w is finite and Q-irreducible.

When k > r + 1, we obtain the right dimension for XZ
w . Absolute

irreducibility is obtained by considering the character variety of Γw
with values in the cartesian product G × G
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Galois lower bound, work in progress

Theorem
(under GRH) Suppose G = SL2. When k = r + 1, then away from
an exceptional set of words w of exponentially small proportion,

|X Z
w | ≫ ℓ/ log ℓ

and the Galois group acts transitively as Alt or Sym.

Note: By Bézout, |X Z
w | = O(ℓO(1)).

idea: similar counting, but in G(pk) for k as large as ℓ/ log ℓ. This
complicates matters as there can be many subfields subgroups in
G(pk).
We show that w.h.p. Ep∈[T/2,T ]|XZ

w (pk)| ≃ τ(k) the number of
divisors of k. This will give that Pk = 1 for all k ≪ ℓ/ log ℓ. This
is enough info on the permutation group to conclude.
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Thank you!
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