Effective results for Diophantine equations over finitely generated domains

A. Bérczes

Banff, 2022
(1) Introduction

- Finitely generated domains
- Results over arbitrary finitely generated domains
(2) Some words on the proofs
- The method of Evertse and Györy
- Some words about the proof of the Theorem on division points

Topic of the talk

- Let $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right]$ be an integral domain of characteristic 0 which is finitely generated over \mathbb{Z}.
- Assume that $r>0$.
- We considered several types of Diophantine problems over A :
- Thue equations
- hyper- and superelliptic equations
- the Schinzel-Tijdeman equation
- unit points on curves
- division points on curves

Main goal

Prove effective results for such equations, i.e. results which imply that these equations have finitely many solutions and provide a theoretical way to find all these solutions

Historical remarks

- Győry in the 1980's introduced effective specializations to prove effective results over a special type of finitely generated domain
- Using this method Győry proved effective results over special finitely generated domains for
- unit equations
- norm form equations
- index form equations
- discriminant form equations
- polynomials and integral elements of given discriminant
- Brindza, Pintér, Végső and others used this method to prove results for several other types of equations
- In 2013 Evertse and Györy combined the method of Györy with results of Aschenbrenner and proved effective results for unit equations in two unknowns over arbitrary finitely generated domains.

Historical remarks - The new method of Evertse and Györy

- In 2013 Evertse and Győry combined the method of Györy with results of Aschenbrenner and proved effective results for unit equations in two unknowns over arbitrary finitely generated domains.
- Using this new method general effective results have been proved for several types of equations over arbitrary finitely generated domains
- Thue equations (B., Evertse, Győry)
- hyper- and superelliptic equations (B., Evertse, Györy)
- the Schinzel-Tijdeman equation (B., Evertse, Györy)
- unit points on curves (B.)
- division points on curves (B.)
- the Catalan equation (Koymans)
- discriminant form and discriminant eqiations (Evertse, Győry)
- norm form equations (Evertse, Györy)
- decomposable form equations (Evertse, Györy)

The finitely generated domain A

- Let $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right]$ be as above, and put

$$
I:=\left\{f \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] \mid f\left(z_{1}, \ldots, z_{r}\right)=0\right\} .
$$

Then we have

$$
A \cong \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] / I
$$

Further, the ideal I is finitely generated, say

$$
I=\left(f_{1}, \ldots, f_{t}\right)
$$

- We may view f_{1}, \ldots, f_{t} as a representation for A.
- A is a domain of char $0 \Longleftrightarrow I$ is a prime ideal with $I \cap \mathbb{Z}=(0)$
- Given a set of generators $\left\{f_{1}, \ldots, f_{t}\right\}$ for I this can be checked effectively

Representing elements of A

Let A be as above and let K be its quotient field.

- For $\alpha \in A$, we call f a representative for α, or we say that f represents α, if $f \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ and $\alpha=f\left(z_{1}, \ldots, z_{r}\right)$.
- Further, for $\alpha \in K$ we call (f, g) a representation pair for α, or say that (f, g) represents α if $f, g \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right], g \notin I$ and $\alpha=f\left(z_{1}, \ldots, z_{r}\right) / g\left(z_{1}, \ldots, z_{r}\right)$.
- Using an ideal membership algorithm for $\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ one can decide effectively
- whether two polynomials $f^{\prime}, f^{\prime \prime} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ represent the same element of A, i.e., $f^{\prime}-f^{\prime \prime} \in I$
- whether two pairs $\left(f^{\prime}, g^{\prime}\right),\left(f^{\prime \prime}, g^{\prime \prime}\right)$ in $\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ represent the same element of K, i.e., $g^{\prime} \notin I, g^{\prime \prime} \notin I$ and $f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime} \in I$

Effective computations in A

- Based on results of Aschenbrenner one can perform arithmetic operations on A and K by using representatives.
- For $0 \neq f \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$, denote by
- $\operatorname{deg} f$ the total degree of f
- $h(f)$ the logarithmic height of f, i.e. the logarithm of the maximum of the absolute values of its coefficients.
- $s(f)$ the size of f, which is defined by

$$
\begin{aligned}
& s(f):=\max (1, \operatorname{deg} f, h(f)) \quad \text { for } \quad f \neq 0 \\
& s(0):=1
\end{aligned}
$$

- It is clear that there are only finitely many polynomials in $\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ of size below a given bound, and these can be determined effectively.

Unit points on curves

- $A:=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right]$ a domain which is finitely generated over \mathbb{Z}, as \mathbb{Z}-algebra
- K the quotient field of A
- \bar{K} the algebraic closure of K
- $A^{*}, K^{*}, \bar{K}^{*}$ denotes the unit group of A, K, \bar{K}, respectively.
- 「 a finitely generated subgroup of K^{*}
- $\bar{\Gamma}$ the division group of Γ
- $F(X, Y) \in A[X, Y]$ a polynomial, such that F is not divisible by any polynomial of the form

$$
\begin{equation*}
X^{m} Y^{n}-\alpha \quad \text { or } \quad X^{m}-\alpha Y^{n} \tag{1}
\end{equation*}
$$

for any $m, n \in \mathbb{Z}_{\geq 0}$, not both zero, and any $\alpha \in A$.

Consider the equation

$$
\begin{equation*}
F(x, y)=0 \quad \text { in } x, y \in \Gamma \tag{2}
\end{equation*}
$$

Historical remarks for unit points and division points on
 curves

Let

$$
\mathcal{C}:=\left\{(x, y) \in\left(\mathbb{C}^{*}\right)^{2} \mid f(x, y)=0\right\}
$$

- Lang (1960) - finiteness of $\mathcal{C} \cap \Gamma^{2}$ (ineffective)
- Liardet (1974) - finiteness of $\mathcal{C} \cap \bar{\Gamma}^{2}$ (ineffective)
- Bombieri and Gubler (2006) - effective finiteness of $\mathcal{C} \cap \Gamma^{2}$ in the algebraic case
- B., Evertse and Győry (2009) - explicit effective finiteness of $\mathcal{C} \cap \bar{\Gamma}^{2}$ in the algebraic case

Goal:

Prove effective versions of the results of Lang and Liardet in the case of arbitrary finitely generated groups.

Recall that

- $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right]$ integral domain finitely generated over \mathbb{Z}
- We assume that $r>0$
- $A \cong \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] / \mathcal{I}$ for

$$
\mathcal{I}:=\left\{f \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] \mid f\left(z_{1}, \ldots, z_{r}\right)=0\right\}
$$

- we have $\mathcal{I}=\left(f_{1}, \ldots, f_{t}\right)$

Let $I \subset \mathbb{Z}_{\geq 0}^{2}$ be a non-empty set, and let

$$
F(X, Y)=\sum_{(i, j) \in I} a_{i j} X^{i} Y^{j} \in A[X, Y]
$$

be a polynomial which fulfils the following condition:
F is not divisible by any non-constant polynomial of the form

$$
\begin{equation*}
X^{m} Y^{n}-\alpha \quad \text { or } \quad X^{m}-\alpha Y^{n}, \text { where } m, n \in \mathbb{Z}_{\geq 0} \text { and } \alpha \in \bar{K}^{*} . \tag{3}
\end{equation*}
$$

Unit points on curves over finitely generated domains

- F is given by representatives $\tilde{a}_{i j} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ of its coefficients $a_{i j} \in A$
- We assume that $d>1$ and $h>1$ are real numbers with

$$
\left\{\begin{array}{l}
\operatorname{deg} f_{1}, \ldots, \operatorname{deg} f_{t}, \operatorname{deg} \tilde{a}_{i j} \leq d \text { for every }(i, j) \in I \tag{4}\\
h\left(f_{1}\right), \ldots, h\left(f_{t}\right), h\left(\tilde{a}_{i j}\right) \leq h \text { for every }(i, j) \in I .
\end{array}\right.
$$

Theorem (Bérczes, 2015)

If A is a finitely generated domain as above, and F fulfils the condition (3) then for all elements (x, y) of the set

$$
\begin{equation*}
\mathcal{C}:=\left\{(x, y) \in\left(A^{*}\right)^{2} \mid F(x, y)=0\right\} \tag{5}
\end{equation*}
$$

there exist representatives $\tilde{x}, \tilde{y}, \tilde{x}^{\prime}$ and \tilde{y}^{\prime} of x, y, x^{-1} and y^{-1}, respectively, with their sizes bounded by

$$
\exp \left\{(2 d)^{\exp O(r)}(2 N)^{\left(\log ^{*} N\right) \cdot \exp O(r)} \cdot(h+1)^{3}\right\} .
$$

Effectiveness of the above Theorem

The above result is effective, i.e. it provides an algorithm to determine, at least in principle, all elements of the set \mathcal{C}.

- there are only finitely many polynomials of $\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ below our bound in the theorem
- $(x, y) \in \mathcal{C}$ is clearly fulfilled if and only if there are polynomials $\tilde{x}, \tilde{y}, \tilde{x}^{\prime}, \tilde{y}^{\prime} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ with their sizes below the bound (1), which fulfil

$$
\begin{equation*}
\tilde{x} \cdot \tilde{x}^{\prime}-1, \tilde{y} \cdot \tilde{y}^{\prime}-1, \tilde{F}(\tilde{x}, \tilde{y}) \in \mathcal{I} \tag{6}
\end{equation*}
$$

- so we can enlist all 4-tuples ($\tilde{x}, \tilde{y}, \tilde{x}^{\prime}, \tilde{y}^{\prime}$) with $s(\tilde{x}), s(\tilde{y}), s\left(\tilde{x}^{\prime}\right), s\left(\tilde{y}^{\prime}\right)$ being smaller than our bound
- using an ideal membership algorithm check if (6) is fulfilled
- finally, group all the tuples in which (\tilde{x}, \tilde{y}) represent the same pair $(x, y) \in\left(A^{*}\right)^{2}$ and pick out one pair from each group
- so we get a list consisting of one representative for each element of the set \mathcal{C}.

Assumptions for the results on division points

- $F(X, Y) \in A[X, Y]$ is a polynomial as above
- $\gamma_{1}, \ldots, \gamma_{s} \in K^{*}$ are arbitrary non-zero elements of K
- they are given by corresponding representation pairs

$$
\left(g_{1}, h_{1}\right), \ldots,\left(g_{s}, h_{s}\right)
$$

- $\Gamma:=\left\{\gamma_{1}^{l_{1}} \ldots \gamma_{s}^{l_{s}} \mid l_{1}, \ldots, l_{s} \in \mathbb{Z}\right\}$
- $\bar{\Gamma}:=\left\{\delta \in \bar{K} \mid \exists m \in \mathbb{Z}_{>0}: \delta^{m} \in \Gamma\right\}$

Further, we assume that
$\operatorname{deg} f_{1}, \ldots, \operatorname{deg} f_{t}, \operatorname{deg} g_{1}, \ldots, \operatorname{deg} g_{s}, \operatorname{deg} h_{1}, \ldots, \operatorname{deg} h_{s}, \operatorname{deg} \tilde{a}_{i j} \leq d$ $h\left(f_{1}\right), \ldots, h\left(f_{t}\right), h\left(g_{1}\right), \ldots, h\left(g_{s}\right), h\left(h_{1}\right), \ldots, h\left(h_{s}\right), h\left(\tilde{a}_{j j}\right) \leq h$, where $(i, j) \in I$ and d, h are real numbers with $d>1$ and $h>1$.

Division points on curves I.

Theorem (Theorem for division points on curves - part (i))

(i) Let $A, \bar{\Gamma}$, and F be as specified above. Define the set

$$
\begin{equation*}
\mathcal{C}:=\left\{(x, y) \in(\bar{\Gamma})^{2} \mid F(x, y)=0\right\} . \tag{7}
\end{equation*}
$$

Then there exists a suitably large effectively computable constant C_{1} such that for

$$
M_{0}:=\left[N^{6}(2 d)^{\exp \left\{C_{1}(r+s)\right\}}(h+1)^{4 s}\right]
$$

and $m:=\operatorname{lcm}\left(1, \ldots, M_{0}\right)$ we have

$$
x^{m} \in \Gamma \quad \text { and } \quad y^{m} \in \Gamma
$$

for every $(x, y) \in \mathcal{C}$.

Division points on curves II.

Theorem (Theorem for division points on curves - part (ii))
(ii) Let m be the exponent fixed in part (i) and recall that

$$
\begin{equation*}
\mathcal{C}:=\left\{(x, y) \in(\bar{\Gamma})^{2} \mid F(x, y)=0\right\} . \tag{8}
\end{equation*}
$$

Then there exists an effectively computable constant C_{2} and integers $t_{1, x}, \ldots, t_{s, x}, t_{1, y}, \ldots, t_{s, y}$ with

$$
\begin{equation*}
\left|t_{i, x}\right|,\left|t_{i, y}\right| \leq \exp \left\{\exp \left\{N^{12}(2 d)^{\exp \left\{C_{2}(r+s)\right\}}(h+1)^{8 s}\right\}\right\} \tag{9}
\end{equation*}
$$

for $i=1, \ldots, s$, such that

$$
\begin{equation*}
x^{m}=\gamma_{1}^{t_{1, x}} \ldots \gamma_{s}^{t_{s, x}}, \quad y^{m}=\gamma_{1}^{t_{1, y}} \ldots \gamma_{s}^{t_{s, y}} \tag{10}
\end{equation*}
$$

Reduction to a larger domain B

- z_{1}, \ldots, z_{q} - maximal alg. independent subset of z_{1}, \ldots, z_{r}
- $A_{0}:=\mathbb{Z}\left[z_{1}, \ldots, z_{q}\right], K_{0}:=\mathbb{Q}\left(z_{1}, \ldots, z_{q}\right)$
- The field K is a finite extension of K_{0}, i.e. $K=K_{0}(w)$
- We shall construct an integral extension B of A in K such that

$$
\begin{equation*}
A \subseteq B:=A_{0}\left[w, f^{-1}\right] \tag{11}
\end{equation*}
$$

where $f \in A_{0}$ and w is a primitive element of K over K_{0} which is integral over A_{0}, with minimal polynomial $\mathcal{F}(X)=X^{D}+\mathcal{F}_{1} X^{D-1}+\cdots+\mathcal{F}_{D} \in A_{0}[X]$, and with

$$
D, \operatorname{deg} f, \operatorname{deg} \mathcal{F}_{k}, h(f), h\left(\mathcal{F}_{k}\right) \leq C(d, h, r)
$$

- Further, we choose f in such a way that some "important" elements are units in B.
- We bound the size of the solutions of our equation in $x \in B$, which yields the same bound for the solutions $x \in A$.

Measuring in the domain B

- To $\alpha \in K$ we associate the up to sign unique tuple

$$
\begin{align*}
& \left(P_{\alpha, 0}, \ldots, P_{\alpha, D-1}, Q_{\alpha}\right) \in A_{0}^{D+1} \text { such that } \\
& \alpha=Q_{\alpha}^{-1} \sum_{j=0}^{D-1} P_{\alpha, j} w^{j} \text { with } \tag{12}\\
& \quad Q_{\alpha} \neq 0, \operatorname{gcd}\left(P_{\alpha, 0}, \ldots, P_{\alpha, D-1}, Q_{\alpha}\right)=1
\end{align*}
$$

- We put

$$
\left\{\begin{array}{l}
\overline{\operatorname{deg}} \alpha:=\max \left(\operatorname{deg} P_{\alpha, 0}, \ldots, \operatorname{deg} P_{\alpha, D-1}, \operatorname{deg} Q_{\alpha}\right) \tag{13}\\
\bar{h}(\alpha):=\max \left(h\left(P_{\alpha, 0}\right), \ldots, h\left(P_{\alpha, D-1}\right), h\left(Q_{\alpha}\right)\right),
\end{array}\right.
$$

where $\operatorname{deg} P, h(P)$ denote the total degree and logarithmic height of a polynomial P with rational integer coefficients.

- For $\alpha \in A \overline{\operatorname{deg}} \alpha, \bar{h}(\alpha)$ and $\operatorname{deg} \tilde{\alpha}, h(\tilde{\alpha})$ can be bounded by each other. (The bounds also contain some parameter of A.)

Bounding the deg of elements of B using function field results

- We look at K (more precisely at an extension of K) as a function field in one variable, over an algebraically closed field
- We do this for all variables z_{1}, \ldots, z_{q}, where this is a maximal algebraically independent subset of z_{1}, \ldots, z_{r}
- Using results (mainly of Mason) we bound the function field heights of the element in question in each such function field
- Next we use a result of Evertse and Györy, to estimate the $\overline{\mathrm{deg}}$ of the element by a bound depending on their function field heights and parameters of the domain A.

Kronecker-Györy Specializations - Bounding heights $\bar{h}(x)$

- Let $A=Z\left[z_{1}, \ldots, z_{r}\right]=Z\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{m}\right)$ and let

$$
\varphi: A \rightarrow \mathbb{Q}: z_{i} \mapsto \xi_{i} \in \overline{\mathbb{Q}} \quad(i=1, \ldots, r)
$$

be a specialization homomorphism. Then

$$
\varphi(A) \subseteq \varphi(B) \subseteq \mathcal{O}_{S}
$$

where \mathcal{O}_{S} is a suitable S -integer ring in some number field K.

- Thus, φ maps the solutions of the equation under investigation to the solutions of a similar equation over \mathcal{O}_{S}.
- We apply 'many' specializations to A and apply our effective results to the resulting equations over \mathcal{O}_{S}
- This gives, for each solution x and specialization φ, effective upper bounds for the number field heights of $\varphi(x)$ and its field conjugates.
- Using these and a result of Evertse and Győry we deduce upper bounds for $\bar{h}(x)$.

Main steps of the proof of the Theorem on division points

Recall part (i) of the Theorem for division points on curves
(i) Let $A, \bar{\Gamma}$, and F be as specified above. Define the set

$$
\begin{equation*}
\mathcal{C}:=\left\{(x, y) \in(\bar{\Gamma})^{2} \mid F(x, y)=0\right\} . \tag{14}
\end{equation*}
$$

Then there exists a suitably large effectively computable constant
C_{1} such that for

$$
M_{0}:=\left[N^{6}(2 d)^{\exp \left\{C_{1}(r+s)\right\}}(h+1)^{4 s}\right]
$$

and $m:=\operatorname{Icm}\left(1, \ldots, M_{0}\right)$ we have

$$
x^{m} \in \Gamma \quad \text { and } \quad y^{m} \in \Gamma,
$$

for every $(x, y) \in \mathcal{C}$.

Main steps of the proof of part (i) of the Theorem on division points

- for $(x, y) \in \mathcal{C}$ we bound the degree of the field $K(x, y)$
- we estimate the smallest positive integer exponent M such that for $(x, y) \in \mathcal{C}$ we have $x^{M}, y^{M} \in \Gamma_{K}$, where Γ_{K} denotes the K closure of Γ, i.e. the largest subgroup of $\bar{\Gamma}$ which belongs to K^{*}
- for $\gamma \in \Gamma_{K}$ we estimate the smallest positive integer exponent $m(\gamma)$ such that $\gamma^{m(\gamma)} \in \Gamma$
- The number $m_{0}:=M \cdot m\left(x^{M}\right) \cdot m\left(y^{M}\right)$ will have the property $x^{m_{0}}, y^{m_{0}} \in \Gamma$, however it depends on (x, y).
- Since we have the estimate

$$
m_{0} \leq N^{6}(2 d)^{\exp (O(r+s))}(h+1)^{4 s}:=M_{0}
$$

the number $m:=\operatorname{Icm}\left(1, \ldots, M_{0}\right)$ will be a uniform exponent with $x^{m}, y^{m} \in \Gamma$.

Recall part (ii) of the Theorem on division points

Theorem (Theorem for division points on curves - part (ii))

(ii) Let m be the exponent fixed in part (i) and recall that

$$
\begin{equation*}
\mathcal{C}:=\left\{(x, y) \in(\bar{\Gamma})^{2} \mid F(x, y)=0\right\} . \tag{15}
\end{equation*}
$$

Then there exists an effectively computable constant C_{2} and integers $t_{1, x}, \ldots, t_{s, x}, t_{1, y}, \ldots, t_{s, y}$ with

$$
\begin{equation*}
\left|t_{i, x}\right|,\left|t_{i, y}\right| \leq \exp \left\{\exp \left\{N^{12}(2 d)^{\exp \left\{C_{2}(r+s)\right\}}(h+1)^{8 s}\right\}\right\} \tag{16}
\end{equation*}
$$

for $i=1, \ldots, s$, such that

$$
\begin{equation*}
x^{m}=\gamma_{1}^{t_{1, x}} \ldots \gamma_{s}^{t_{s, x}}, \quad y^{m}=\gamma_{1}^{t_{1, y}} \ldots \gamma_{s}^{t_{s, y}} \tag{17}
\end{equation*}
$$

Reformulation of part (ii) of the Theorem on division points

Let us fix m to be the integer specified in part (i) of our Theorem and consider the set
$\mathcal{C}_{1}:=\left\{\left(x_{0}, y_{0}\right) \in \Gamma^{2} \mid \exists x, y \in \bar{\Gamma}: x^{m}=x_{0}, y^{m}=y_{0}, F(x, y)=0\right\}$.

Proposition

Let $\left(x_{0}, y_{0}\right) \in \mathcal{C}_{1}$. Then there exist representatives \tilde{x}_{0} and \tilde{y}_{0} for x_{0} and y_{0}, respectively, with the property

$$
\begin{align*}
& \operatorname{deg} \tilde{x}_{0}, \operatorname{deg} \tilde{y}_{0} \leq \exp \left\{N^{6}(2 d)^{\exp O(r+s)}(h+1)^{4 s}\right\} \tag{19}\\
& h\left(\tilde{x}_{0}\right), h\left(\tilde{y}_{0}\right) \leq \exp \left\{\exp \left\{N^{12}(2 d)^{\exp O(r+s)}(h+1)^{8 s}\right\}\right\}
\end{align*}
$$

Reducing our equation to an equation over Γ

- Let ρ be a primitive $m^{\text {th }}$ root of unity. There exists $G(U, V)=\sum_{(i, j) \in \mathcal{J}} b_{i j} U^{i} V^{j} \in A[U, V]$ with $b_{i j} \neq 0$ and

$$
\begin{equation*}
G\left(X^{m}, Y^{m}\right)=\prod_{k=0}^{m-1} \prod_{l=0}^{m-1} F\left(\rho^{k} X, \rho^{\prime} Y\right) \tag{20}
\end{equation*}
$$

and such that $b_{i j}$ have representatives $\tilde{b}_{i j}$ with bounded size.

- $G(X, Y)$ is divisible by a non-constant polynomial of the form $X^{a} Y^{b}-\alpha$ or $X^{a}-\alpha Y^{b}$ with $\alpha \in \bar{K}^{*}, a, b \in \mathbb{Z}_{\geq 0}$ if and only if $F(X, Y)$ is divisible by a non-constant polynomial of the form $X^{u} Y^{v}-\beta$ or $X^{u}-\beta Y^{v}$ with $\beta \in \bar{K}^{*}, u, v \in \mathbb{Z}_{\geq 0}$.
- The set

$$
\mathcal{C}_{1}:=\left\{\left(x_{0}, y_{0}\right) \in \Gamma^{2} \mid \exists x, y \in \bar{\Gamma}: x^{m}=x_{0}, y^{m}=y_{0}, F(x, y)=0\right\}
$$

is equal to the set

$$
\mathcal{C}_{2}:=\left\{\left(x_{0}, y_{0}\right) \in \Gamma^{2} \mid G\left(x_{0}, y_{0}\right)=0\right\} .
$$

Effectiveness of the Theorem on division points

- Consider the above defined polynomial $G(X, Y)$
- For all values of the exponents $t_{i x}, t_{i y}$ below the bound specified in part (ii) of our Theorem we check

$$
G\left(\gamma_{1}^{t_{1 x}} \ldots \gamma_{s}^{t_{s x}}, \gamma_{1}^{t_{1 y}} \ldots \gamma_{s}^{t_{s y}}\right)=0
$$

- If this is true then the elements

$$
x_{0}=\gamma_{1}^{t_{1 x}} \ldots \gamma_{s}^{t_{s x}}, \quad y_{0}=\gamma_{1}^{t_{1 y}} \ldots \gamma_{s}^{t_{s y}}
$$

have at least one $m^{\text {th }}$ root x and y, respectively, such that

$$
F(x, y)=0
$$

Further, each element of \mathcal{C} can be obtained in such a way.

Thank you for your attention!

