Covering points by hyperplanes and related problems

Zuzana Patáková Micha Sharir

Charles University

August 15, 2022

Motivation from computational geometry

Hyperplane cover problem:

given a set P of n points in \mathbb{R}^d and a number h, can we find h hyperplanes that cover all points from P?

Motivation from computational geometry

Hyperplane cover problem:

given a set P of n points in \mathbb{R}^d and a number h, can we find h hyperplanes that cover all points from P?

Hyperplane cover problem:

given a set P of n points in \mathbb{R}^d and a number h, can we find h hyperplanes that cover all points from P?

- geometric variant of a set-cover problem
- NP-hard and APX-hard for d = 2 [Meggido-Tamir '82; Kumar-Arya-Ramesh '00]

Hyperplane cover problem:

given a set P of n points in \mathbb{R}^d and a number h, can we find h hyperplanes that cover all points from P?

- geometric variant of a set-cover problem
- NP-hard and APX-hard for d = 2 [Meggido-Tamir '82; Kumar-Arya-Ramesh '00]
- several FPT-algorithms known (fixed h) d = 2, 3 use of incidence bounds

gido-Tamir '82; Kumar-Arya-Ramesh '00] [e.g. Wang-Li-Chen '10] [Afshani-Berglin-van Duijn-Nielsen '16]

- $P \dots n$ points in \mathbb{R}^d $\mathcal{H} \dots m$ hyperplanes in \mathbb{R}^d
- incidence ... a pair (p, H) s.t. $p \in P, H \in \mathcal{H}$ and $p \in H$

Basic question: What is the max number of incidences between P and \mathcal{H} in \mathbb{R}^d ?

- $P \dots n$ points in \mathbb{R}^d $\mathcal{H} \dots m$ hyperplanes in \mathbb{R}^d
- incidence ... a pair (p, H) s.t. $p \in P, H \in \mathcal{H}$ and $p \in H$

Basic question: What is the max number of incidences between P and \mathcal{H} in \mathbb{R}^d ?

• $O(m^{2/3}n^{2/3} + m + n)$ for d = 2 tight! [Szemerédi-Trotter '83]

- $P \dots n$ points in \mathbb{R}^d $\mathcal{H} \dots m$ hyperplanes in \mathbb{R}^d
- incidence ... a pair (p, H) s.t. $p \in P, H \in \mathcal{H}$ and $p \in H$

Basic question: What is the max number of incidences between P and \mathcal{H} in \mathbb{R}^d ?

- $P \dots n$ points in \mathbb{R}^d $\mathcal{H} \dots m$ hyperplanes in \mathbb{R}^d
- incidence ... a pair (p, H) s.t. $p \in P, H \in \mathcal{H}$ and $p \in H$

Basic question: What is the max number of incidences between P and \mathcal{H} in \mathbb{R}^d ?

• $O(m^{2/3}n^{2/3} + m + n)$ for d = 2 tight! [Szemerédi-Trotter '83]

• mn for $d \ge 3$

Improvements under further assumptions, e.g.:

- no lower-dim flat contains too many points
 - or is contained in too many hyperplanes [Edelsbrunner-Guibas-Sharir '90]
- incidence graph between P and \mathcal{H} doesn't contain $K_{r,r}$
- P = vertices of the arrangement of $\mathcal H$

-[Braß-Knauer '03] [Agarwal-Aronov '92]

Hopcroft's problem (80's):

given a set P of n points and H a set of m hyperplanes, both in \mathbb{R}^d , is there a point-hyperplane incidence?

• special case of many other geometric problems

(collision detection, ray shooting, range searching, ...)

- other variants: compute the number of incidences, report all of them
- prompted a strain of research in CG community, mainly in 2D
 [Chazelle '86, '93], [Edelsbrunner '87], [Edelsbrunner, Guibas, Sharir '90],
 [Agarwal '90], [Chazelle, Sharir, Welzl '92], [Matoušek '93], [Erickson '96]
- recent progress after cca 30 years

[Chan, Zheng '21]

Setting:

- $P \ldots n$ points in \mathbb{R}^d
- k-rich hyperplane wrt $P \dots$ contains $\geq k$ points from P

Problem (by Peyman Afshani): $\gtrsim \left(\frac{n^d}{k^{d+1}} + \frac{n}{k}\right)$ k-rich hyperplanes \Rightarrow is there a low-dim flat with "many" points of P?

Setting:

- $P \ldots n$ points in \mathbb{R}^d
- k-rich hyperplane wrt $P \dots$ contains $\geq k$ points from P

Problem (by Peyman Afshani): $\gtrsim \left(\frac{n^d}{k^{d+1}} + \frac{n}{k}\right) k$ -rich hyperplanes \Rightarrow is there a low-dim flat with "many" points of *P*?

Answer: YES! [P., Sharir '22]

- $3 \le d \le k$ $d \le \alpha < 2d 1$
- $\gtrsim \left(\frac{n^d}{k^{lpha}} + \frac{n}{k}\right)$ k-rich hyperplanes

 \Rightarrow there is a (d-2)-flat containing $\gtrsim k^{(2d-1-\alpha)/(d-1)}$ points of P

Note: Tight in some cases

High-level overview of the proof

Main result:

- $P \dots n$ points in \mathbb{R}^d $3 \le d \le k$ $d \le \alpha < 2d 1$
- $\gtrsim \left(\frac{n^d}{k^{\alpha}} + \frac{n}{k}\right) k$ -rich hyperplanes
 - \Rightarrow there is a (d-2)-flat containing $\gtrsim k^{(2d-1-\alpha)/(d-1)}$ points of P
 - \mathcal{H} ... all k-rich hyperplanes determined by P
 - \mathcal{H} is finite
- $k|\mathcal{H}| \leq l(P, \mathcal{H})$... number of incidences between P and \mathcal{H}
- compute an upper bound on $I(P, \mathcal{H})$; compare
- we need point-hyperplane duality, simplicial partitions, Cauchy-Schwartz

Proof sketch – upper bound

- apply point-hyperplane duality
 - preserves incidences
 - each (d-2)-flat contains $\leq \ell$ points of P

 \longleftrightarrow each line is contained in $\leq \ell$ hyperplanes of P^*

Proof sketch – upper bound

- apply point-hyperplane duality
 - preserves incidences
 - each (d-2)-flat contains $\leq \ell$ points of P

 \longleftrightarrow each line is contained in $\leq \ell$ hyperplanes of P^*

• apply simplicial partitions

Proof sketch - upper bound

- apply point-hyperplane duality
 - preserves incidences
 - each (d-2)-flat contains $\leq \ell$ points of P

 \longleftrightarrow each line is contained in $\leq \ell$ hyperplanes of P^*

• apply simplicial partitions

Simplicial partitions (Matoušek '92)

- $m/(2r) \leq |Q_i| \leq m/r$
- Q_i contained in the *relative interior* of a simplex Δ_i
- every hyperplane crosses $O(r^{1-1/d})$ of these simplices

```
H crosses S if H \cap S \neq \emptyset but S \nsubseteq H
```


- $m/(2r) \le |Q_i| \le m/r$
- Q_i contained in the *relative interior* of a simplex Δ_i
- every hyperplane crosses $O(r^{1-1/d})$ of these simplices

- $m/(2r) \leq |Q_i| \leq m/r$
- Q_i contained in the *relative interior* of a simplex Δ_i
- every hyperplane crosses $O(r^{1-1/d})$ of these simplices

- $m/(2r) \leq |Q_i| \leq m/r$
- Q_i contained in the *relative interior* of a simplex Δ_i
- every hyperplane crosses $O(r^{1-1/d})$ of these simplices

 $Q \dots m$ points in \mathbb{R}^d , $1 < r \le m$, Q can be partitioned into $q \le 2r$ sets $Q_1, \dots Q_q$ s.t.

- $m/(2r) \leq |Q_i| \leq m/r$
- Q_i contained in the *relative interior* of a simplex Δ_i
- every hyperplane crosses $O(r^{1-1/d})$ of these simplices

Note: dim Δ_i can be < d ... necessary in degenerate cases

••••• •••• ••••

 $Q \dots m$ points in \mathbb{R}^d , $1 < r \le m$, Q can be partitioned into $q \le 2r$ sets $Q_1, \dots Q_q$ s.t.

- $m/(2r) \leq |Q_i| \leq m/r$
- Q_i contained in the *relative interior* of a simplex Δ_i
- every hyperplane crosses $O(r^{1-1/d})$ of these simplices

Note: dim Δ_i can be < d ... necessary in degenerate cases

H q = O(r) H cross all the simplices

Proof sketch II – upper bound

• inside simplices use a simple bound $I(P_i, \mathcal{H}_i) \leq |\mathcal{H}_i||P_i|^{1/2}\ell^{1/2} + |P_i|$, where ℓ is the max number of points of P lying on a (d-2)-flat

Proof sketch II - upper bound

... adds another $\ell |\mathcal{H}|$ incidences

- inside simplices use a simple bound $I(P_i, \mathcal{H}_i) \leq |\mathcal{H}_i||P_i|^{1/2}\ell^{1/2} + |P_i|$, where ℓ is the max number of points of P lying on a (d-2)-flat
- sum up over all simplices (Cauchy-Schwartz) $\leq |\mathcal{H}|\ell^{1/2}|P|^{1/2}r^{-1/(2d)} + r^{1-1/d}|P|$
- deal with low-dim simplices separately
- specify the parameter r
- obtain upper bound on $I(P, \mathcal{H})$

Question: How come that using a *simple* bound gives something significantly better?

• $I(P, \mathcal{H}) \leq |P|^{1/2} \ell^{1/2} |\mathcal{H}| + |P|$ in general weak, but if $\ell^{1/2} |\mathcal{H}| \leq |P|^{1/2}$ $\Rightarrow I(P, \mathcal{H}) \leq |P|$, which is optimal

- $I(P, \mathcal{H}) \lesssim |P|^{1/2} \ell^{1/2} |\mathcal{H}| + |P|$ in general weak, but if $\ell^{1/2} |\mathcal{H}| \lesssim |P|^{1/2}$ $\Rightarrow I(P, \mathcal{H}) \lesssim |P|$, which is optimal
- simplicial partition guarantees we have much less hyperplanes than points (we did the partition in the dual)

• $I(P, \mathcal{H}) \lesssim |P|^{1/2} \ell^{1/2} |\mathcal{H}| + |P|$ in general weak, but if $\ell^{1/2} |\mathcal{H}| \lesssim |P|^{1/2}$ $\Rightarrow I(P, \mathcal{H}) \lesssim |P|$, which is optimal

• simplicial partition guarantees we have much less hyperplanes than points (we did the partition in the dual)

Moral: having a tight bound for unbalanced case can be helpful

make the setting unbalanced (divide the space) \rightarrow use the tight bound \rightarrow sum it up \rightarrow optimize the dividing parameter & deal with "non-crossing" intersections

Setting: $\alpha = d + 1$ for simplicity d = 3, k is a square **Thm:** number of k-rich planes $\geq n^3/k^4 + n/k \Rightarrow \exists$ a line with $\geq \sqrt{k}$ points of P

Setting: $\alpha = d + 1$ for simplicity d = 3, k is a square **Thm:** number of k-rich planes $\geq n^3/k^4 + n/k \Rightarrow \exists$ a line with $\geq \sqrt{k}$ points of P

Construction: *P* ... set of vertices of $\sqrt{k} \times \sqrt{k} \times \sqrt{k}$ integer grid in \mathbb{R}^3

Setting: $\alpha = d + 1$ for simplicity d = 3, k is a square **Thm:** number of k-rich planes $\geq n^3/k^4 + n/k \Rightarrow \exists$ a line with $\geq \sqrt{k}$ points of P

Construction: *P* ... set of vertices of $\sqrt{k} \times \sqrt{k} \times \sqrt{k}$ integer grid in \mathbb{R}^3

- $n = |P| = k^{3/2}$
- number of k-rich planes $\geq \sqrt{k}$

Setting: $\alpha = d + 1$ for simplicity d = 3, k is a square **Thm:** number of k-rich planes $\geq n^3/k^4 + n/k \Rightarrow \exists$ a line with $\geq \sqrt{k}$ points of P

Construction: *P*... set of vertices of $\sqrt{k} \times \sqrt{k} \times \sqrt{k}$ integer grid in \mathbb{R}^3

- $n = |P| = k^{3/2}$
- number of k-rich planes $\geq \sqrt{k}$
- no line contains more than \sqrt{k} points of P

Setting: $\alpha = d + 1$ for simplicity d = 3, k is a square **Thm:** number of k-rich planes $\geq n^3/k^4 + n/k \Rightarrow \exists$ a line with $\geq \sqrt{k}$ points of P

Construction: *P*...set of vertices of $\sqrt{k} \times \sqrt{k} \times \sqrt{k}$ integer grid in \mathbb{R}^3

- $n = |P| = k^{3/2}$
- number of k-rich planes $\geq \sqrt{k}$
- no line contains more than \sqrt{k} points of P

Conclusion: Our bound is worst-case asymptotically tight when $k = \Theta(n^{1-1/d})$ **Open problem:** What happens for other values of k?

Setting: $\alpha = d = 3$ $k, u \ge 2$ integers Thm: number of k-rich planes $\ge n^3/k^3 \implies \exists a \text{ line with } \ge k \text{ points of } P$

Setting: $\alpha = d = 3$ $k, u \ge 2$ integers Thm: number of k-rich planes $\ge n^3/k^3 \implies \exists a \text{ line with } \ge k \text{ points of } P$

Construction: $L \dots$ a set of *u* pairwise skew lines in \mathbb{R}^3 $P \dots k$ distinguished points on each line

•
$$n := |P| = ku$$

Setting: $\alpha = d = 3$ $k, u \ge 2$ integers **Thm:** number of *k*-rich planes $\ge n^3/k^3 \implies \exists$ a line with $\ge k$ points of *P*

Construction: $L \dots$ a set of *u* pairwise skew lines in \mathbb{R}^3 $P \dots k$ distinguished points on each line

- n := |P| = ku
- infinitely many k-rich planes wrt P
- no line contains > k points of P

Setting: $\alpha = d = 3$ $k, u \ge 2$ integers

Thm: number of k-rich planes $\geq n^3/k^3 \Rightarrow \exists$ a line with $\geq k$ points of P

Construction: $L \dots$ a set of *u* pairwise skew lines in \mathbb{R}^3 $P \dots k$ distinguished points on each line

- n := |P| = ku
- infinitely many k-rich planes wrt P
- no line contains > k points of P

Conclusion: Our thm is tight for $\alpha = d = 3$

Open problem: What happens for other values of α ?

- $P \ldots n$ points in \mathbb{R}^d
- *k*-rich sphere wrt P ... contains $\geq k$ points from P
- $d \ge 3$ $k \ge d+1$ $d+1 \le \alpha < 2d+1$ • $\gtrsim \left(\frac{n^{d+1}}{k^{\alpha}} + \frac{n}{k}\right)$ k-rich (d-1)-spheres \Rightarrow there is a (d-2)-sphere containing $\gtrsim k^{(2d+1-\alpha)/d}$ points of P

- $P \dots n$ points in \mathbb{R}^d
- *k*-rich sphere wrt P ... contains $\geq k$ points from P

•
$$d \ge 3$$
 $k \ge d+1$ $d+1 \le \alpha < 2d+1$
• $\gtrsim \left(\frac{n^{d+1}}{k^{\alpha}} + \frac{n}{k}\right)$ k-rich $(d-1)$ -spheres
 \Rightarrow there is a $(d-2)$ -sphere containing $\gtrsim k^{(2d+1-\alpha)/d}$ points of P

Proof sketch:

ullet transform (d-1)-spheres in \mathbb{R}^d to hyperplanes in \mathbb{R}^{d+1}

$$(x_1,\ldots,x_d)\mapsto (x_1,\ldots,x_d,x_1^2+\cdots+x_d^2)$$

• observe it's the same problem as before, just in \mathbb{R}^{d+1}

Main result (P., Sharir):

- $P \dots n$ points in \mathbb{R}^d $3 \le d \le k$ $d \le \alpha < 2d 1$
- $\gtrsim \left(\frac{n^d}{k^{lpha}} + \frac{n}{k}\right)$ k-rich hyperplanes

 \Rightarrow there is a (d-2)-flat containing $\gtrsim k^{(2d-1-\alpha)/(d-1)}$ points of P

Open problems:

 ${\, \bullet \,}$ tightness for various values of α

tightness for spheres

Main result (P., Sharir):

- $P \dots n$ points in \mathbb{R}^d $3 \le d \le k$ $d \le \alpha < 2d 1$
- $\gtrsim \left(\frac{n^d}{k^{lpha}} + \frac{n}{k}\right)$ k-rich hyperplanes

 \Rightarrow there is a (d-2)-flat containing $\gtrsim k^{(2d-1-\alpha)/(d-1)}$ points of P

Open problems:

- $\bullet\,$ tightness for various values of $\alpha\,$ \qquad tightness for spheres
- What are further conditions, in $d \ge 4$, enforcing the existence of even lower-dim flat containing many points of P?

Main result (P., Sharir):

- $P \dots n$ points in \mathbb{R}^d $3 \le d \le k$ $d \le \alpha < 2d 1$
- $\gtrsim \left(\frac{n^d}{k^{lpha}} + \frac{n}{k}\right)$ k-rich hyperplanes

 \Rightarrow there is a (d-2)-flat containing $\gtrsim k^{(2d-1-\alpha)/(d-1)}$ points of P

Open problems:

- $\bullet\,$ tightness for various values of $\alpha\,$ \qquad tightness for spheres
- What are further conditions, in $d \ge 4$, enforcing the existence of even lower-dim flat containing many points of P?

- *P* in general position
- ∞ many *k*-rich hyperplanes
- \forall (d 3)-flat has \leq (d 2) points of P

Thank vou!

Main result (P., Sharir):

- $P \dots n$ points in \mathbb{R}^d $3 \le d \le k$ $d \le \alpha < 2d 1$
- $\gtrsim \left(\frac{n^d}{k^{lpha}} + \frac{n}{k}\right)$ k-rich hyperplanes

 \Rightarrow there is a (d-2)-flat containing $\gtrsim k^{(2d-1-\alpha)/(d-1)}$ points of P

Open problems:

- $\bullet\,$ tightness for various values of $\alpha\,$ \qquad tightness for spheres
- What are further conditions, in $d \ge 4$, enforcing the existence of even lower-dim flat containing many points of P?

- *P* in general position
- ∞ many *k*-rich hyperplanes
- \forall (d-3)-flat has \leq (d-2) points of P