Covering points by hyperplanes and related problems

Zuzana Patáková Micha Sharir

Charles University

August 15, 2022

Motivation from computational geometry

Hyperplane cover problem:
given a set P of n points in \mathbb{R}^{d} and a number h, can we find h hyperplanes that cover all points from P ?

Motivation from computational geometry

Hyperplane cover problem:
given a set P of n points in \mathbb{R}^{d} and a number h, can we find h hyperplanes that cover all points from P ?

Motivation from computational geometry

Hyperplane cover problem:

given a set P of n points in \mathbb{R}^{d} and a number h, can we find h hyperplanes that cover all points from P ?

- geometric variant of a set-cover problem
- NP-hard and APX-hard for $d=2$

Motivation from computational geometry

Hyperplane cover problem:

given a set P of n points in \mathbb{R}^{d} and a number h, can we find h hyperplanes that cover all points from P ?

- geometric variant of a set-cover problem
- NP-hard and APX-hard for $d=2$ [Meggido-Tamir '82; Kumar-Arya-Ramesh '00]
- several FPT-algorithms known (fixed h)

$$
d=2,3 \text { use of incidence bounds }
$$

[e.g. Wang-Li-Chen '10]

Motivation II: point-hyperplane incidences

- $P \ldots n$ points in $\mathbb{R}^{d} \quad \mathcal{H} \ldots m$ hyperplanes in \mathbb{R}^{d}
- incidence \ldots a pair (p, H) s.t. $p \in P, H \in \mathcal{H}$ and $p \in H$

Basic question: What is the max number of incidences between P and \mathcal{H} in \mathbb{R}^{d} ?

Motivation II: point-hyperplane incidences

- $P \ldots n$ points in $\mathbb{R}^{d} \quad \mathcal{H} \ldots m$ hyperplanes in \mathbb{R}^{d}
- incidence \ldots a pair (p, H) s.t. $p \in P, H \in \mathcal{H}$ and $p \in H$

Basic question: What is the max number of incidences between P and \mathcal{H} in \mathbb{R}^{d} ?

- $O\left(m^{2 / 3} n^{2 / 3}+m+n\right) \quad$ for $d=2 \quad$ tight!
[Szemerédi-Trotter '83]

Motivation II: point-hyperplane incidences

- $P \ldots n$ points in $\mathbb{R}^{d} \quad \mathcal{H} \ldots m$ hyperplanes in \mathbb{R}^{d}
- incidence \ldots a pair (p, H) s.t. $p \in P, H \in \mathcal{H}$ and $p \in H$

Basic question: What is the max number of incidences between P and \mathcal{H} in \mathbb{R}^{d} ?

- $O\left(m^{2 / 3} n^{2 / 3}+m+n\right) \quad$ for $d=2 \quad$ tight!
[Szemerédi-Trotter '83]
- $m n$ for $d \geq 3$

Motivation II: point-hyperplane incidences

- $P \ldots n$ points in $\mathbb{R}^{d} \quad \mathcal{H} \ldots m$ hyperplanes in \mathbb{R}^{d}
- incidence \ldots a pair (p, H) s.t. $p \in P, H \in \mathcal{H}$ and $p \in H$

Basic question: What is the max number of incidences between P and \mathcal{H} in \mathbb{R}^{d} ?

- $O\left(m^{2 / 3} n^{2 / 3}+m+n\right) \quad$ for $d=2 \quad$ tight!
[Szemerédi-Trotter '83]
- $m n$ for $d \geq 3$

Improvements under further assumptions, e.g.:

- no lower-dim flat contains too many points or is contained in too many hyperplanes
[Edelsbrunner-Guibas-Sharir '90]
- incidence graph between P and \mathcal{H} doesn't contain $K_{r, r}$
- $P=$ vertices of the arrangement of \mathcal{H}

Side remark: related problem from computational geometry

Hopcroft's problem (80's):

given a set P of n points and H a set of m hyperplanes, both in \mathbb{R}^{d}, is there a point-hyperplane incidence?

- special case of many other geometric problems

(collision detection, ray shooting, range searching, ...)

- other variants: compute the number of incidences, report all of them
- prompted a strain of research in CG community, mainly in 2D
[Chazelle '86, '93], [Edelsbrunner '87], [Edelsbrunner, Guibas, Sharir '90], [Agarwal '90], [Chazelle, Sharir, Welzl '92], [Matoušek '93], [Erickson '96]
- recent progress after cca 30 years
[Chan, Zheng '21]

Setting:

- $P \ldots n$ points in \mathbb{R}^{d}
- k-rich hyperplane wrt $P \ldots$ contains $\geq k$ points from P

Problem (by Peyman Afshani):

$\gtrsim\left(\frac{n^{d}}{k^{d+1}}+\frac{n}{k}\right) k$-rich hyperplanes \Rightarrow is there a low-dim flat with "many" points of P ?

Setting:

- $P \ldots n$ points in \mathbb{R}^{d}
- k-rich hyperplane wrt $P \ldots$ contains $\geq k$ points from P

Problem (by Peyman Afshani):

$\gtrsim\left(\frac{n^{d}}{k^{d+1}}+\frac{n}{k}\right) k$-rich hyperplanes \Rightarrow is there a low-dim flat with "many" points of P ?

Answer: YES! [P., Sharir '22]

- $3 \leq d \leq k \quad d \leq \alpha<2 d-1$
- $\gtrsim\left(\frac{n^{d}}{k^{\alpha}}+\frac{n}{k}\right) k$-rich hyperplanes
\Rightarrow there is a $(d-2)$-flat containing $\gtrsim k^{(2 d-1-\alpha) /(d-1)}$ points of P
Note: Tight in some cases

High-level overview of the proof

Main result:

- P $\ldots n$ points in $\mathbb{R}^{d} \quad 3 \leq d \leq k \quad d \leq \alpha<2 d-1$
- $\gtrsim\left(\frac{n^{d}}{k^{\alpha}}+\frac{n}{k}\right) k$-rich hyperplanes

$$
\Rightarrow \text { there is a }(d-2) \text {-flat containing } \gtrsim k^{(2 d-1-\alpha) /(d-1)} \text { points of } P
$$

- \mathcal{H}...all k-rich hyperplanes determined by P
- \mathcal{H} is finite
- $k|\mathcal{H}| \leq I(P, \mathcal{H}) \quad$. . number of incidences between P and \mathcal{H}
- compute an upper bound on $I(P, \mathcal{H})$; compare
- we need point-hyperplane duality, simplicial partitions, Cauchy-Schwartz

Proof sketch - upper bound

- apply point-hyperplane duality
- preserves incidences
- each $(d-2)$-flat contains $\leq \ell$ points of P
\longleftrightarrow each line is contained in $\leq \ell$ hyperplanes of P^{*}

Proof sketch - upper bound

- apply point-hyperplane duality
- preserves incidences
- each $(d-2)$-flat contains $\leq \ell$ points of P \longleftrightarrow each line is contained in $\leq \ell$ hyperplanes of P^{*}
- apply simplicial partitions

Proof sketch - upper bound

- apply point-hyperplane duality
- preserves incidences
- each ($d-2$)-flat contains $\leq \ell$ points of P \longleftrightarrow each line is contained in $\leq \ell$ hyperplanes of P^{*}
- apply simplicial partitions

Simplicial partitions (Matoušek '92)

$Q \ldots m$ points in $\mathbb{R}^{d}, 1<r \leq m, Q$ can be partitioned into $q \leq 2 r$ sets $Q_{1}, \ldots Q_{q}$ s.t.

- $m /(2 r) \leq\left|Q_{i}\right| \leq m / r$
- Q_{i} contained in the relative interior of a simplex Δ_{i}
- every hyperplane crosses $O\left(r^{1-1 / d}\right)$ of these simplices
H crosses S if $H \cap S \neq \emptyset$ but $S \nsubseteq H$

Simplicial partitions

$Q \ldots m$ points in $\mathbb{R}^{d}, 1<r \leq m, Q$ can be partitioned into $q \leq 2 r$ sets $Q_{1}, \ldots Q_{q}$ s.t.

- $m /(2 r) \leq\left|Q_{i}\right| \leq m / r$
- Q_{i} contained in the relative interior of a simplex Δ_{i}
- every hyperplane crosses $O\left(r^{1-1 / d}\right)$ of these simplices

$$
\begin{array}{lll}
\because . . & \bullet . & m=30 \\
r=4
\end{array}
$$

Simplicial partitions

$Q \ldots m$ points in $\mathbb{R}^{d}, 1<r \leq m, Q$ can be partitioned into $q \leq 2 r$ sets $Q_{1}, \ldots Q_{q}$ s.t.

- $m /(2 r) \leq\left|Q_{i}\right| \leq m / r$
- Q_{i} contained in the relative interior of a simplex Δ_{i}
- every hyperplane crosses $O\left(r^{1-1 / d}\right)$ of these simplices

$$
\begin{array}{llll}
\because \cdot \cdot & \ddots \cdot & m=30 & q=6 \\
r=4 & 4 \leq\left|Q_{i}\right| \leq 7
\end{array}
$$

Simplicial partitions

$Q \ldots m$ points in $\mathbb{R}^{d}, 1<r \leq m, Q$ can be partitioned into $q \leq 2 r$ sets $Q_{1}, \ldots Q_{q}$ s.t.

- $m /(2 r) \leq\left|Q_{i}\right| \leq m / r$
- Q_{i} contained in the relative interior of a simplex Δ_{i}
- every hyperplane crosses $O\left(r^{1-1 / d}\right)$ of these simplices

$$
\begin{array}{ll}
m=30 & \mathrm{q}=6 \\
r=4 & 4 \leq\left|Q_{i}\right| \leq 7 \\
\text { each hyperplane crosses } \leq 3 \text { simplices }
\end{array}
$$

Simplicial partitions

$Q \ldots m$ points in $\mathbb{R}^{d}, 1<r \leq m, Q$ can be partitioned into $q \leq 2 r$ sets $Q_{1}, \ldots Q_{q}$ s.t.

- $m /(2 r) \leq\left|Q_{i}\right| \leq m / r$
- Q_{i} contained in the relative interior of a simplex Δ_{i}
- every hyperplane crosses $O\left(r^{1-1 / d}\right)$ of these simplices

$$
\begin{array}{ll}
m=30 & \mathrm{q}=6 \\
r=4 & 4 \leq\left|Q_{i}\right| \leq 7 \\
\text { each hyperplane crosses } \leq 3 \text { simplices }
\end{array}
$$

Note: $\operatorname{dim} \Delta_{i}$ can be $<d \quad \ldots$ necessary in degenerate cases

Simplicial partitions

$Q \ldots m$ points in $\mathbb{R}^{d}, 1<r \leq m, Q$ can be partitioned into $q \leq 2 r$ sets $Q_{1}, \ldots Q_{q}$ s.t.

- $m /(2 r) \leq\left|Q_{i}\right| \leq m / r$
- Q_{i} contained in the relative interior of a simplex Δ_{i}
- every hyperplane crosses $O\left(r^{1-1 / d}\right)$ of these simplices

$$
\begin{array}{ll}
m=30 & \mathrm{q}=6 \\
r=4 & 4 \leq\left|Q_{i}\right| \leq 7 \\
\text { each hyperplane crosses } \leq 3 \text { simplices }
\end{array}
$$

Note: $\operatorname{dim} \Delta_{i}$ can be $<d \quad \ldots$ necessary in degenerate cases

$$
q=O(r) \quad H \text { cross all the simplices }
$$

Proof sketch II - upper bound

- inside simplices use a simple bound $I\left(P_{i}, \mathcal{H}_{i}\right) \lesssim\left|\mathcal{H}_{i}\right|\left|P_{i}\right|^{1 / 2} \ell^{1 / 2}+\left|P_{i}\right|$, where ℓ is the max number of points of P lying on a $(d-2)$-flat

Proof sketch II - upper bound

\qquad
\qquad
\qquad
\qquad

- inside simplices use a simple bound $I\left(P_{i}, \mathcal{H}_{i}\right) \lesssim\left|\mathcal{H}_{i}\right|\left|P_{i}\right|^{1 / 2} \ell^{1 / 2}+\left|P_{i}\right|$, where ℓ is the max number of points of P lying on a $(d-2)$-flat
- sum up over all simplices (Cauchy-Schwartz) $\lesssim|\mathcal{H}| \ell^{1 / 2}|P|^{1 / 2} r^{-1 /(2 d)}+r^{1-1 / d}|P|$
- deal with low-dim simplices separately
- specify the parameter r
- obtain upper bound on $I(P, \mathcal{H})$

Why it works?

Question: How come that using a simple bound gives something significantly better?

Why it works?

Question: How come that using a simple bound gives something significantly better? Answer: power of divide \& conquer

Why it works?

Question: How come that using a simple bound gives something significantly better? Answer: power of divide \& conquer

- $I(P, \mathcal{H}) \lesssim|P|^{1 / 2} \ell^{1 / 2}|\mathcal{H}|+|P| \quad$ in general weak, but if $\ell^{1 / 2}|\mathcal{H}| \lesssim|P|^{1 / 2}$ $\Rightarrow I(P, \mathcal{H}) \lesssim|P|$, which is optimal

Why it works?

Question: How come that using a simple bound gives something significantly better? Answer: power of divide \& conquer

- $I(P, \mathcal{H}) \lesssim|P|^{1 / 2} \ell^{1 / 2}|\mathcal{H}|+|P| \quad$ in general weak, but if $\ell^{1 / 2}|\mathcal{H}| \lesssim|P|^{1 / 2}$ $\Rightarrow \quad I(P, \mathcal{H}) \lesssim|P|$, which is optimal
- simplicial partition guarantees we have much less hyperplanes than points (we did the partition in the dual)

Why it works?

Question: How come that using a simple bound gives something significantly better? Answer: power of divide \& conquer

- $I(P, \mathcal{H}) \lesssim|P|^{1 / 2} \ell^{1 / 2}|\mathcal{H}|+|P| \quad$ in general weak, but if $\ell^{1 / 2}|\mathcal{H}| \lesssim|P|^{1 / 2}$ $\Rightarrow I(P, \mathcal{H}) \lesssim|P|$, which is optimal
- simplicial partition guarantees we have much less hyperplanes than points (we did the partition in the dual)

Moral: having a tight bound for unbalanced case can be helpful make the setting unbalanced (divide the space) \longrightarrow use the tight bound \longrightarrow sum it up \longrightarrow optimize the dividing parameter \& deal with "non-crossing" intersections

Tightness of our result: construction I

Setting: $\alpha=d+1 \quad$ for simplicity $d=3, k$ is a square
Thm: number of k-rich planes $\gtrsim n^{3} / k^{4}+n / k \quad \Rightarrow \quad \exists$ a line with $\geq \sqrt{k}$ points of P

Tightness of our result: construction I

Setting: $\alpha=d+1 \quad$ for simplicity $d=3, k$ is a square
Thm: number of k-rich planes $\gtrsim n^{3} / k^{4}+n / k \quad \Rightarrow \quad \exists$ a line with $\geq \sqrt{k}$ points of P

Construction: $P \ldots$ set of vertices of $\sqrt{k} \times \sqrt{k} \times \sqrt{k}$ integer grid in \mathbb{R}^{3}

- $n=|P|=k^{3 / 2}$

Tightness of our result: construction I

Setting: $\alpha=d+1 \quad$ for simplicity $d=3, k$ is a square
Thm: number of k-rich planes $\gtrsim n^{3} / k^{4}+n / k \quad \Rightarrow \quad \exists$ a line with $\geq \sqrt{k}$ points of P

Construction: $P \ldots$ set of vertices of $\sqrt{k} \times \sqrt{k} \times \sqrt{k}$ integer grid in \mathbb{R}^{3}

- $n=|P|=k^{3 / 2}$
- number of k-rich planes $\geq \sqrt{k}$

Tightness of our result: construction I

Setting: $\alpha=d+1 \quad$ for simplicity $d=3, k$ is a square
Thm: number of k-rich planes $\gtrsim n^{3} / k^{4}+n / k \quad \Rightarrow \quad \exists$ a line with $\geq \sqrt{k}$ points of P

Construction: $P \ldots$ set of vertices of $\sqrt{k} \times \sqrt{k} \times \sqrt{k}$ integer grid in \mathbb{R}^{3}

- $n=|P|=k^{3 / 2}$
- number of k-rich planes $\geq \sqrt{k}$
- no line contains more than \sqrt{k} points of P

Tightness of our result: construction I

Setting: $\alpha=d+1 \quad$ for simplicity $d=3, k$ is a square
Thm: number of k-rich planes $\gtrsim n^{3} / k^{4}+n / k \Rightarrow \exists$ a line with $\geq \sqrt{k}$ points of P

Construction: $P \ldots$ set of vertices of $\sqrt{k} \times \sqrt{k} \times \sqrt{k}$ integer grid in \mathbb{R}^{3}

- $n=|P|=k^{3 / 2}$
- number of k-rich planes $\geq \sqrt{k}$
- no line contains more than \sqrt{k} points of P

Conclusion: Our bound is worst-case asymptotically tight when $k=\Theta\left(n^{1-1 / d}\right)$
Open problem: What happens for other values of k ?

Tightness: construction II

Setting: $\alpha=d=3 \quad k, u \geq 2$ integers
Thm: number of k-rich planes $\gtrsim n^{3} / k^{3} \Rightarrow \exists$ a line with $\geq k$ points of P

Tightness: construction II

Setting: $\alpha=d=3 \quad k, u \geq 2$ integers
Thm: number of k-rich planes $\gtrsim n^{3} / k^{3} \Rightarrow \exists$ a line with $\geq k$ points of P

Construction: $L \ldots$ a set of u pairwise skew lines in \mathbb{R}^{3} $P \ldots k$ distinguished points on each line

- $n:=|P|=k u$

Tightness: construction II

Setting: $\alpha=d=3 \quad k, u \geq 2$ integers
Thm: number of k-rich planes $\gtrsim n^{3} / k^{3} \Rightarrow \exists$ a line with $\geq k$ points of P

Construction: $L \ldots$ a set of u pairwise skew lines in \mathbb{R}^{3} $P \ldots k$ distinguished points on each line

- $n:=|P|=k u$
- infinitely many k-rich planes wrt P
- no line contains $>k$ points of P

Setting: $\alpha=d=3 \quad k, u \geq 2$ integers
Thm: number of k-rich planes $\gtrsim n^{3} / k^{3} \Rightarrow \exists$ a line with $\geq k$ points of P

Construction: $L \ldots$ a set of u pairwise skew lines in \mathbb{R}^{3} $P \ldots k$ distinguished points on each line

- $n:=|P|=k u$
- infinitely many k-rich planes wrt P
- no line contains $>k$ points of P

Conclusion: Our thm is tight for $\alpha=d=3$
Open problem: What happens for other values of α ?

The case of spheres

- $P \ldots n$ points in \mathbb{R}^{d}
- k-rich sphere wrt $P \ldots$ contains $\geq k$ points from P
- $d \geq 3 \quad k \geq d+1 \quad d+1 \leq \alpha<2 d+1$
- $\gtrsim\left(\frac{n^{d+1}}{k^{\alpha}}+\frac{n}{k}\right) k$-rich $(d-1)$-spheres
\Rightarrow there is a $(d-2)$-sphere containing $\gtrsim k^{(2 d+1-\alpha) / d}$ points of P

The case of spheres

- $P \ldots n$ points in \mathbb{R}^{d}
- k-rich sphere wrt $P \ldots$ contains $\geq k$ points from P
- $d \geq 3 \quad k \geq d+1 \quad d+1 \leq \alpha<2 d+1$
- $\gtrsim\left(\frac{n^{d+1}}{k^{\alpha}}+\frac{n}{k}\right) k$-rich $(d-1)$-spheres
\Rightarrow there is a $(d-2)$-sphere containing $\gtrsim k^{(2 d+1-\alpha) / d}$ points of P

Proof sketch:

- transform $(d-1)$-spheres in \mathbb{R}^{d} to hyperplanes in \mathbb{R}^{d+1}

$$
\left(x_{1}, \ldots, x_{d}\right) \mapsto\left(x_{1}, \ldots, x_{d}, x_{1}^{2}+\cdots+x_{d}^{2}\right)
$$

- observe it's the same problem as before, just in \mathbb{R}^{d+1}

Summary \& open problems

Main result (P., Sharir):

- $P \ldots n$ points in $\mathbb{R}^{d} \quad 3 \leq d \leq k \quad d \leq \alpha<2 d-1$
- $\gtrsim\left(\frac{n^{d}}{k^{\alpha}}+\frac{n}{k}\right) k$-rich hyperplanes

$$
\Rightarrow \text { there is a }(d-2) \text {-flat containing } \gtrsim k^{(2 d-1-\alpha) /(d-1)} \text { points of } P
$$

Open problems:

- tightness for various values of α
tightness for spheres

Summary \& open problems

Main result (P., Sharir):

- $P \ldots n$ points in $\mathbb{R}^{d} \quad 3 \leq d \leq k \quad d \leq \alpha<2 d-1$
- $\gtrsim\left(\frac{n^{d}}{k^{\alpha}}+\frac{n}{k}\right) k$-rich hyperplanes

$$
\Rightarrow \text { there is a }(d-2) \text {-flat containing } \gtrsim k^{(2 d-1-\alpha) /(d-1)} \text { points of } P
$$

Open problems:

- tightness for various values of α tightness for spheres
- What are further conditions, in $d \geq 4$, enforcing the existence of even lower-dim flat containing many points of P ?

Summary \& open problems

Main result (P., Sharir):

- $P \ldots n$ points in $\mathbb{R}^{d} \quad 3 \leq d \leq k \quad d \leq \alpha<2 d-1$
- $\gtrsim\left(\frac{n^{d}}{k^{\alpha}}+\frac{n}{k}\right) k$-rich hyperplanes

$$
\Rightarrow \text { there is a }(d-2) \text {-flat containing } \gtrsim k^{(2 d-1-\alpha) /(d-1)} \text { points of } P
$$

Open problems:

- tightness for various values of α
tightness for spheres
- What are further conditions, in $d \geq 4$, enforcing the existence of even lower-dim flat containing many points of P ?

- P in general position
- ∞ many k-rich hyperplanes
- $\forall(d-3)$-flat has $\leq(d-2)$ points of P

Summary \& open problems

Main result (P., Sharir):

- $P \ldots n$ points in $\mathbb{R}^{d} \quad 3 \leq d \leq k \quad d \leq \alpha<2 d-1$
- $\gtrsim\left(\frac{n^{d}}{k^{\alpha}}+\frac{n}{k}\right) k$-rich hyperplanes

$$
\Rightarrow \text { there is a }(d-2) \text {-flat containing } \gtrsim k^{(2 d-1-\alpha) /(d-1)} \text { points of } P
$$

Open problems:

- tightness for various values of α
tightness for spheres
- What are further conditions, in $d \geq 4$, enforcing the existence of even lower-dim flat containing many points of P ?

- P in general position
- ∞ many k-rich hyperplanes
- $\forall(d-3)$-flat has $\leq(d-2)$ points of P

