
On the combinatorics of space-efficient data structures

Sebastian Wild
joint work with Ian Munro, Pat Nicholson, and Louisa Seelbach Benkner

arXiv:2104.13457

Banff Workshop 22w5004 – Analytic and Probabilistic Combinatorics

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 0 / 22

https://www.wild-inter.net
https://arxiv.org/abs/2104.13457

DALL·E: https://labs.openai.com/

a water color painting of a tiny Bonsai

tree in front of a turquois late in the

Rocky Mountains of Banff Canada with snow

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 0 / 22

https://labs.openai.com/

Outline

1 Hypersuccinct Trees1 Hypersuccinct Trees

2 Two Favorite Trees2 Two Favorite Trees

3 Beyond Trees3 Beyond Trees

4 Bonus: Range-Minimum Queries4 Bonus: Range-Minimum Queries

5 Bonus: Succinct Bitvectors5 Bonus: Succinct Bitvectors

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 0 / 22

1 Hypersuccinct Trees1 Hypersuccinct Trees

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 0 / 22

Three roots

Data structures

succinct data structures

optimal space usage in the

worst case up to l. o.t.:

lg |Un|(1+ o(1)) bits

support many operations efficiently

(potentially: update object)
not today

Information theory

universal source code

encode random object x

generated by source
with few bits:

source entropy + l. o.t.

on average

or better:

lg(1/P[x])

instance-optimal

(1+ o(1))

Analysis of Algorithms

average-case analysis (+ more)

precise asymptotic approx.

for number of objects in a

class

asymptotics for distribution

of parameters

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 1 / 22

Three roots

Data structures

succinct data structures

optimal space usage in the

worst case up to l. o.t.:

lg |Un|(1+ o(1)) bits

support many operations efficiently

(potentially: update object)
not today

Information theory

universal source code

encode random object x

generated by source
with few bits:

source entropy + l. o.t.

on average

or better:

lg(1/P[x])

instance-optimal

(1+ o(1))

Analysis of Algorithms

average-case analysis (+ more)

precise asymptotic approx.

for number of objects in a

class

asymptotics for distribution

of parameters

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 1 / 22

Three roots

Data structures

succinct data structures

optimal space usage in the

worst case up to l. o.t.:

lg |Un|(1+ o(1)) bits

support many operations efficiently

(potentially: update object)
not today

Information theory

universal source code

encode random object x

generated by source
with few bits:

source entropy + l. o.t.

on average

or better:

lg(1/P[x])

instance-optimal

(1+ o(1))

Analysis of Algorithms

average-case analysis (+ more)

precise asymptotic approx.

for number of objects in a

class

asymptotics for distribution

of parameters

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 1 / 22

Three roots

Data structures

succinct data structures

optimal space usage in the

worst case up to l. o.t.:

lg |Un|(1+ o(1)) bits

support many operations efficiently

(potentially: update object)
not today

Information theory

universal source code

encode random object x

generated by source
with few bits:

source entropy + l. o.t.

on average

or better:

lg(1/P[x])

instance-optimal

(1+ o(1))

Analysis of Algorithms

average-case analysis (+ more)

precise asymptotic approx.

for number of objects in a

class

asymptotics for distribution

of parameters

Hypersuccinct trees
A single, simple code for binary trees (hypersuccinct code)

that can be augmented

to support all queries

of the best succinct

trees in O(1) time,

simultaneously achieves

optimal compression up to l. o.t.

for all tree sources for which any

universal source code is known,

building on precise

analysis of trees and

their properties.

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 1 / 22

Succinct Binary Trees

What is known?

data structure for ord

a.k.a. plane trees

inal or cardinal

e.g. binary

trees

2n+ o(n) bits of space

optimal in worst case ∼ log2(Catalann)

some isolated works on better space for

restricted scenarios

but tailored approaches for each tree distribution

supports huge list of operations in O(1) time

on a standard word-RAM

several competing approaches (BP, DFUDS, TC)

(largely incompatible with each other)

Operations in Tree Covering

parent(v) the parent of v, same as anc(v,1)

degree(v) the number of children of v

left_child(v) the left child of node v

right_child(v) the right child of node v

depth(v) the depth of v, i.e., the number of edges between the
root and v

anc(v, i) the ancestor of node v at depth depth(v) − i

subtree_size(v) the number of descendants of v

height(v) the height of the subtree rooted at node v

LCA(v,u) the lowest common ancestor of nodes u and v

leftmost_leaf(v) the leftmost leaf descendant of v

rightmost_leaf(v) the rightmost leaf descendant of v

level_leftmost(ℓ) the leftmost node on level ℓ

level_rightmost(ℓ) the rightmost node on level ℓ

level_predecessor(v) the node immediately to the left of v on the same level

level_successor(v) the node immediately to the right of v on the same level

node_rankX(v) the position of v in the X-order, X ∈ {PRE, POST, IN},
i.e., in a preorder, postorder, or inorder traversal

node_selectX(i) the ith node in the X-order, X ∈ {PRE, POST, IN}

leaf_rank(v) the number of leaves before and including v in pre-
order

leaf_select(i) the ith leaf in preorder

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 2 / 22

Succinct Binary Trees

What is known?

data structure for ord

a.k.a. plane trees

inal or cardinal

e.g. binary

trees

2n+ o(n) bits of space

optimal in worst case ∼ log2(Catalann)

some isolated works on better space for

restricted scenarios

but tailored approaches for each tree distribution

supports huge list of operations in O(1) time

on a standard word-RAM

several competing approaches (BP, DFUDS, TC)

(largely incompatible with each other)

Operations in Tree Covering

parent(v) the parent of v, same as anc(v,1)

degree(v) the number of children of v

left_child(v) the left child of node v

right_child(v) the right child of node v

depth(v) the depth of v, i.e., the number of edges between the
root and v

anc(v, i) the ancestor of node v at depth depth(v) − i

subtree_size(v) the number of descendants of v

height(v) the height of the subtree rooted at node v

LCA(v,u) the lowest common ancestor of nodes u and v

leftmost_leaf(v) the leftmost leaf descendant of v

rightmost_leaf(v) the rightmost leaf descendant of v

level_leftmost(ℓ) the leftmost node on level ℓ

level_rightmost(ℓ) the rightmost node on level ℓ

level_predecessor(v) the node immediately to the left of v on the same level

level_successor(v) the node immediately to the right of v on the same level

node_rankX(v) the position of v in the X-order, X ∈ {PRE, POST, IN},
i.e., in a preorder, postorder, or inorder traversal

node_selectX(i) the ith node in the X-order, X ∈ {PRE, POST, IN}

leaf_rank(v) the number of leaves before and including v in pre-
order

leaf_select(i) the ith leaf in preorder

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 2 / 22

Succinct Binary Trees

What is known?

data structure for ord

a.k.a. plane trees

inal or cardinal

e.g. binary

trees

2n+ o(n) bits of space

optimal in worst case ∼ log2(Catalann)

some isolated works on better space for

restricted scenarios

but tailored approaches for each tree distribution

supports huge list of operations in O(1) time

on a standard word-RAM

several competing approaches (BP, DFUDS, TC)

(largely incompatible with each other)

Operations in Tree Covering

parent(v) the parent of v, same as anc(v,1)

degree(v) the number of children of v

left_child(v) the left child of node v

right_child(v) the right child of node v

depth(v) the depth of v, i.e., the number of edges between the
root and v

anc(v, i) the ancestor of node v at depth depth(v) − i

subtree_size(v) the number of descendants of v

height(v) the height of the subtree rooted at node v

LCA(v,u) the lowest common ancestor of nodes u and v

leftmost_leaf(v) the leftmost leaf descendant of v

rightmost_leaf(v) the rightmost leaf descendant of v

level_leftmost(ℓ) the leftmost node on level ℓ

level_rightmost(ℓ) the rightmost node on level ℓ

level_predecessor(v) the node immediately to the left of v on the same level

level_successor(v) the node immediately to the right of v on the same level

node_rankX(v) the position of v in the X-order, X ∈ {PRE, POST, IN},
i.e., in a preorder, postorder, or inorder traversal

node_selectX(i) the ith node in the X-order, X ∈ {PRE, POST, IN}

leaf_rank(v) the number of leaves before and including v in pre-
order

leaf_select(i) the ith leaf in preorder

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 2 / 22

Succinct Binary Trees

What is known?

data structure for ord

a.k.a. plane trees

inal or cardinal

e.g. binary

trees

2n+ o(n) bits of space

optimal in worst case ∼ log2(Catalann)

some isolated works on better space for

restricted scenarios

but tailored approaches for each tree distribution

supports huge list of operations in O(1) time

on a standard word-RAM

several competing approaches (BP, DFUDS, TC)

(largely incompatible with each other)

Operations in Tree Covering

parent(v) the parent of v, same as anc(v,1)

degree(v) the number of children of v

left_child(v) the left child of node v

right_child(v) the right child of node v

depth(v) the depth of v, i.e., the number of edges between the
root and v

anc(v, i) the ancestor of node v at depth depth(v) − i

subtree_size(v) the number of descendants of v

height(v) the height of the subtree rooted at node v

LCA(v,u) the lowest common ancestor of nodes u and v

leftmost_leaf(v) the leftmost leaf descendant of v

rightmost_leaf(v) the rightmost leaf descendant of v

level_leftmost(ℓ) the leftmost node on level ℓ

level_rightmost(ℓ) the rightmost node on level ℓ

level_predecessor(v) the node immediately to the left of v on the same level

level_successor(v) the node immediately to the right of v on the same level

node_rankX(v) the position of v in the X-order, X ∈ {PRE, POST, IN},
i.e., in a preorder, postorder, or inorder traversal

node_selectX(i) the ith node in the X-order, X ∈ {PRE, POST, IN}

leaf_rank(v) the number of leaves before and including v in pre-
order

leaf_select(i) the ith leaf in preorder

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 2 / 22

Tree-Covering Data Structures

Key idea:

decompose tree into mini trees and mini trees into micro trees

within o(n) space:

can store Õ(logn) bits per mini tree enough to support many

most comprehensive
of all succinct trees

operations

and Õ(log logn) bits per micro tree

only O(
√
n) different micro tree shapes

can store micro-tree-local operations in global lookup table

(“exhaustive lookup table”, “bootstrapping”, “4 Russians trick”)

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 3 / 22

Tree-Covering Data Structures

Key idea:

decompose tree into mini trees and mini trees into micro trees

within o(n) space:

can store Õ(logn) bits per mini tree enough to support many

most comprehensive
of all succinct trees

operations

and Õ(log logn) bits per micro tree

only O(
√
n) different micro tree shapes

can store micro-tree-local operations in global lookup table

(“exhaustive lookup table”, “bootstrapping”, “4 Russians trick”)

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 3 / 22

Tree-Covering Data Structures

Key idea:

decompose tree into mini trees and mini trees into micro trees

within o(n) space:

can store Õ(logn) bits per mini tree enough to support many

most comprehensive
of all succinct trees

operations

and Õ(log logn) bits per micro tree

only O(
√
n) different micro tree shapes

can store micro-tree-local operations in global lookup table

(“exhaustive lookup table”, “bootstrapping”, “4 Russians trick”)

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 3 / 22

Tree-Covering Data Structures

Key idea:

decompose tree into mini trees and mini trees into micro trees

within o(n) space:

can store Õ(logn) bits per mini tree enough to support many

most comprehensive
of all succinct trees

operations

and Õ(log logn) bits per micro tree

only O(
√
n) different micro tree shapes

can store micro-tree-local operations in global lookup table

(“exhaustive lookup table”, “bootstrapping”, “4 Russians trick”)

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 3 / 22

Tree-Covering Data Structures

Key idea:

decompose tree into mini trees and mini trees into micro trees

within o(n) space:

can store Õ(logn) bits per mini tree enough to support many

most comprehensive
of all succinct trees

operations

and Õ(log logn) bits per micro tree

only O(
√
n) different micro tree shapes

can store micro-tree-local operations in global lookup table

(“exhaustive lookup table”, “bootstrapping”, “4 Russians trick”)

Dominant space: shapes of all micro trees

everything else only o(n) bits

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 3 / 22

Properties of Micro Trees

Binary tree t on n nodes is decomposed into µ1, . . . , µm with parameter B = 1
8

lgn.

a m = O(n/B) (few micro trees)

b |µi| 6 2B (all small)

c |µ1|+ · · ·+ |µm| = n (partition vertices)

d µi has 6 3 edges to outside (parent, left, right)

e root of µi is heavy

f µi fringe |µi| > B

12

13

16

19

23

25

28

32

36

42

51

56

59

64

6

10

11

14

15

17

18

1

20

21

22 24

26

27

29

2

30

31

33

34

35 37

38

39

3 40

41 43

44

45

46

47

48

494

50 52

53

54

55

57

58

5

60

61

62

63 65

66

67

68

69

70

7

8

9

6

14

15

10

3

18

17

16

21

22

20

7

24

25

23

19

27

26

30

29

28

33

5

32

31

2

35

34

36

1

39

42

41

9

40

43

38

46

45

44

49

48

51

50

8

52

47

55

54

56

53

37

58

59

57

4

63

62

65

64

61

67

66

60

70

69

12

68

11

13

36

32 56

4213 59

23

19 25

645112

6 16

28

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 4 / 22

Example Partitioning

12

13

16

19

23

25

28

32

36

42

51

56

59

64

6

10

11

14

15

17

18

1

20

21

22 24

26

27

29

2

30

31

33

34

35 37

38

39

3 40

41 43

44

45

46

47

48

494

50 52

53

54

55

57

58

5

60

61

62

63 65

66

67

68

69

70

7

8

9

6

14

15

10

3

18

17

16

21

22

20

7

24

25

23

19

27

26

30

29

28

33

5

32

31

2

35

34

36

1

39

42

41

9

40

43

38

46

45

44

49

48

51

50

8

52

47

55

54

56

53

37

58

59

57

4

63

62

65

64

61

67

66

60

70

69

12

68

11

13

n = 70 nodes, B = 6 m = 15 micro trees

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 5 / 22

Example Partitioning

12

13

16

19

23

25

28

32

36

42

51

56

59

64

6

10

11

14

15

17

18

1

20

21

22 24

26

27

29

2

30

31

33

34

35 37

38

39

3 40

41 43

44

45

46

47

48

494

50 52

53

54

55

57

58

5

60

61

62

63 65

66

67

68

69

70

7

8

9

6

14

15

10

3

18

17

16

21

22

20

7

24

25

23

19

27

26

30

29

28

33

5

32

31

2

35

34

36

1

39

42

41

9

40

43

38

46

45

44

49

48

51

50

8

52

47

55

54

56

53

37

58

59

57

4

63

62

65

64

61

67

66

60

70

69

12

68

11

13

n = 70 nodes, B = 6 m = 15 micro trees

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 5 / 22

Example Partitioning

12

13

16

19

23

25

28

32

36

42

51

56

59

64

6

10

11

14

15

17

18

1

20

21

22 24

26

27

29

2

30

31

33

34

35 37

38

39

3 40

41 43

44

45

46

47

48

494

50 52

53

54

55

57

58

5

60

61

62

63 65

66

67

68

69

70

7

8

9

6

14

15

10

3

18

17

16

21

22

20

7

24

25

23

19

27

26

30

29

28

33

5

32

31

2

35

34

36

1

39

42

41

9

40

43

38

46

45

44

49

48

51

50

8

52

47

55

54

56

53

37

58

59

57

4

63

62

65

64

61

67

66

60

70

69

12

68

11

13

36

32 56

4213 59

23

19 25

645112

6 16

28

n = 70 nodes, B = 6 m = 15 micro trees

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 5 / 22

Example Partitioning

12

13

16

19

23

25

28

32

36

42

51

56

59

64

6

10

11

14

15

17

18

1

20

21

22 24

26

27

29

2

30

31

33

34

35 37

38

39

3 40

41 43

44

45

46

47

48

494

50 52

53

54

55

57

58

5

60

61

62

63 65

66

67

68

69

70

7

8

9

6

14

15

10

3

18

17

16

21

22

20

7

24

25

23

19

27

26

30

29

28

33

5

32

31

2

35

34

36

1

39

42

41

9

40

43

38

46

45

44

49

48

51

50

8

52

47

55

54

56

53

37

58

59

57

4

63

62

65

64

61

67

66

60

70

69

12

68

11

13

36

32 56

4213 59

23

19 25

645112

6 16

28

Υ

n = 70 nodes, B = 6 m = 15 micro trees

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 5 / 22

Farzan-Munro Algorithm

How to (best) decompose a binary tree?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 6 / 22

Farzan-Munro Algorithm

How to (best) decompose a binary tree?

Farzan-Munro Algorithm

Recursively: components C1, C2 for left and right child u1, u2

u1 and u2 light? C = {v} ∪ C1 ∪ C2

u1 and u2 heavy? C = {v}, C1, C2, all marked permanent

u1 heavy and u2 light? (u2 heavy and u1 light similar)

C1 permanent? C = {v} ∪ C2

otherwise |C1| < B C = {v} ∪ C1 ∪ C2

If |C| > B, mark it as permanent.

Return C.

Definition: v is heavy ⇐⇒ subtree_size(v) > B

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 6 / 22

Farzan-Munro Algorithm

How to (best) decompose a binary tree?

Farzan-Munro Algorithm

Recursively: components C1, C2 for left and right child u1, u2

u1 and u2 light? C = {v} ∪ C1 ∪ C2

u1 and u2 heavy? C = {v}, C1, C2, all marked permanent

u1 heavy and u2 light? (u2 heavy and u1 light similar)

C1 permanent? C = {v} ∪ C2

otherwise |C1| < B C = {v} ∪ C1 ∪ C2

If |C| > B, mark it as permanent.

Return C.

Definition: v is heavy ⇐⇒ subtree_size(v) > B

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 6 / 22

Farzan-Munro Algorithm

How to (best) decompose a binary tree?

Farzan-Munro Algorithm

Recursively: components C1, C2 for left and right child u1, u2

u1 and u2 light? C = {v} ∪ C1 ∪ C2

u1 and u2 heavy? C = {v}, C1, C2, all marked permanent

u1 heavy and u2 light? (u2 heavy and u1 light similar)

C1 permanent? C = {v} ∪ C2

otherwise |C1| < B C = {v} ∪ C1 ∪ C2

If |C| > B, mark it as permanent.

Return C.

Definition: v is heavy ⇐⇒ subtree_size(v) > B

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 6 / 22

Hypersuccinct code

Essence of tree covering data structure yields simple code

i.e. compression algorithm

for binary trees!

Given a binary tree t with micro trees µ1, . . . , µm.

Hypersuccinct code H(t) stores

1 How micro trees connect (o(n) bits)

2 Huffman codes C(µi) of all micro trees

|H(t)| =

m∑

i=1

|C(µi)|+ o(n)

6 m ·
(

H(µ1 . . . µm) + 1
)

+ o(n)

where H is the (empirical) entropy of the micro trees

For what tree distributions is |H(t)| ∼ lg(1/P[t])?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 7 / 22

Hypersuccinct code

Essence of tree covering data structure yields simple code

i.e. compression algorithm

for binary trees!

Given a binary tree t with micro trees µ1, . . . , µm.

Hypersuccinct code H(t) stores

1 How micro trees connect (o(n) bits)

2 Huffman codes C(µi) of all micro trees

|H(t)| =

m∑

i=1

|C(µi)|+ o(n)

6 m ·
(

H(µ1 . . . µm) + 1
)

+ o(n)

where H is the (empirical) entropy of the micro trees

For what tree distributions is |H(t)| ∼ lg(1/P[t])?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 7 / 22

Hypersuccinct code

Essence of tree covering data structure yields simple code

i.e. compression algorithm

for binary trees!

Given a binary tree t with micro trees µ1, . . . , µm.

Hypersuccinct code H(t) stores

1 How micro trees connect (o(n) bits)

2 Huffman codes C(µi) of all micro trees

|H(t)| =

m∑

i=1

|C(µi)|+ o(n)

6 m ·
(

H(µ1 . . . µm) + 1
)

+ o(n)

where H is the (empirical) entropy of the micro trees

For what tree distributions is |H(t)| ∼ lg(1/P[t])?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 7 / 22

Hypersuccinct code

Essence of tree covering data structure yields simple code

i.e. compression algorithm

for binary trees!

Given a binary tree t with micro trees µ1, . . . , µm.

Hypersuccinct code H(t) stores

1 How micro trees connect (o(n) bits)
A n and m (Elias gamma code)

B balanced-parenthesis (BP) bitstring for Υ (2m bits).

C Huffman code for µ1, . . . , µm:

list of codewords and corresponding trees (size + BP)

D position of portals in micro trees (2 O(log logn)-bit integers per µi)

2 Huffman codes C(µi) of all micro trees

|H(t)| =

m∑

i=1

|C(µi)|+ o(n)

6 m ·
(

H(µ1 . . . µm) + 1
)

+ o(n)

where H is the (empirical) entropy of the micro trees

For what tree distributions is |H(t)| ∼ lg(1/P[t])?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 7 / 22

Hypersuccinct code

Essence of tree covering data structure yields simple code

i.e. compression algorithm

for binary trees!

Given a binary tree t with micro trees µ1, . . . , µm.

Hypersuccinct code H(t) stores

1 How micro trees connect (o(n) bits)
A n and m (Elias gamma code)

B balanced-parenthesis (BP) bitstring for Υ (2m bits).

C Huffman code for µ1, . . . , µm:

list of codewords and corresponding trees (size + BP)

D position of portals in micro trees (2 O(log logn)-bit integers per µi)

2 Huffman codes C(µi) of all micro trees

|H(t)| =

m∑

i=1

|C(µi)|+ o(n)

6 m ·
(

H(µ1 . . . µm) + 1
)

+ o(n)

where H is the (empirical) entropy of the micro trees

For what tree distributions is |H(t)| ∼ lg(1/P[t])?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 7 / 22

Hypersuccinct code

Essence of tree covering data structure yields simple code

i.e. compression algorithm

for binary trees!

Given a binary tree t with micro trees µ1, . . . , µm.

Hypersuccinct code H(t) stores

1 How micro trees connect (o(n) bits)
A n and m (Elias gamma code)

B balanced-parenthesis (BP) bitstring for Υ (2m bits).

C Huffman code for µ1, . . . , µm:

list of codewords and corresponding trees (size + BP)

D position of portals in micro trees (2 O(log logn)-bit integers per µi)

2 Huffman codes C(µi) of all micro trees

|H(t)| =

m∑

i=1

|C(µi)|+ o(n)

6 m ·
(

H(µ1 . . . µm) + 1
)

+ o(n)

where H is the (empirical) entropy of the micro trees

For what tree distributions is |H(t)| ∼ lg(1/P[t])?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 7 / 22

Hypersuccinct code

Essence of tree covering data structure yields simple code

i.e. compression algorithm

for binary trees!

Given a binary tree t with micro trees µ1, . . . , µm.

Hypersuccinct code H(t) stores

1 How micro trees connect (o(n) bits)
A n and m (Elias gamma code)

B balanced-parenthesis (BP) bitstring for Υ (2m bits).

C Huffman code for µ1, . . . , µm:

list of codewords and corresponding trees (size + BP)

D position of portals in micro trees (2 O(log logn)-bit integers per µi)

2 Huffman codes C(µi) of all micro trees

|H(t)| =

m∑

i=1

|C(µi)|+ o(n)

6 m ·
(

H(µ1 . . . µm) + 1
)

+ o(n)

where H is the (empirical) entropy of the micro trees

For what tree distributions is |H(t)| ∼ lg(1/P[t])?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 7 / 22

Outline

1 Hypersuccinct Trees1 Hypersuccinct Trees

2 Two Favorite Trees2 Two Favorite Trees

3 Beyond Trees3 Beyond Trees

4 Bonus: Range-Minimum Queries4 Bonus: Range-Minimum Queries

5 Bonus: Succinct Bitvectors5 Bonus: Succinct Bitvectors

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 7 / 22

2 Two Favorite Trees2 Two Favorite Trees

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 7 / 22

Two Examples

Here: two representative examples

1 Random BSTs

Start with a random permutation π of {1, . . . , n}

Successively insert π1, . . . , πn into initially empty (unbalanced) BST.

Challenge: highly non-uniform distribution

2 (uniform) Weight-Balanced BSTs (BB[α])

parameter α ∈ (0, 1
2
)

α-balanced = at every node v holds: subtree_size(v.left) + 1 > α(subtree_size(v) + 1)

subtree_size(v.right) + 1 > α(subtree_size(v) + 1)

Challenge: support is small subclass; non-fringe µi might not be α-balanced

 ideas can be generalized to families of sources

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 8 / 22

Two Examples

Here: two representative examples

1 Random BSTs

Start with a random permutation π of {1, . . . , n}

Successively insert π1, . . . , πn into initially empty (unbalanced) BST.

Challenge: highly non-uniform distribution

2 (uniform) Weight-Balanced BSTs (BB[α])

parameter α ∈ (0, 1
2
)

α-balanced = at every node v holds: subtree_size(v.left) + 1 > α(subtree_size(v) + 1)

subtree_size(v.right) + 1 > α(subtree_size(v) + 1)

Challenge: support is small subclass; non-fringe µi might not be α-balanced

 ideas can be generalized to families of sources

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 8 / 22

Two Examples

Here: two representative examples

1 Random BSTs

Start with a random permutation π of {1, . . . , n}

Successively insert π1, . . . , πn into initially empty (unbalanced) BST.

Challenge: highly non-uniform distribution

2 (uniform) Weight-Balanced BSTs (BB[α])

parameter α ∈ (0, 1
2
)

α-balanced = at every node v holds: subtree_size(v.left) + 1 > α(subtree_size(v) + 1)

subtree_size(v.right) + 1 > α(subtree_size(v) + 1)

Challenge: support is small subclass; non-fringe µi might not be α-balanced

 ideas can be generalized to families of sources

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 8 / 22

Two Examples

Here: two representative examples

1 Random BSTs

Start with a random permutation π of {1, . . . , n}

Successively insert π1, . . . , πn into initially empty (unbalanced) BST.

Challenge: highly non-uniform distribution

2 (uniform) Weight-Balanced BSTs (BB[α])

parameter α ∈ (0, 1
2
)

α-balanced = at every node v holds: subtree_size(v.left) + 1 > α(subtree_size(v) + 1)

subtree_size(v.right) + 1 > α(subtree_size(v) + 1)

Challenge: support is small subclass; non-fringe µi might not be α-balanced

 ideas can be generalized to families of sources

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 8 / 22

Two Examples

Here: two representative examples

1 Random BSTs

Start with a random permutation π of {1, . . . , n}

Successively insert π1, . . . , πn into initially empty (unbalanced) BST.

Challenge: highly non-uniform distribution

2 (uniform) Weight-Balanced BSTs (BB[α])

parameter α ∈ (0, 1
2
)

α-balanced = at every node v holds: subtree_size(v.left) + 1 > α(subtree_size(v) + 1)

subtree_size(v.right) + 1 > α(subtree_size(v) + 1)

Challenge: support is small subclass; non-fringe µi might not be α-balanced

 ideas can be generalized to families of sources

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 8 / 22

Random BSTs – Outline

Random BSTs:

rank of root uniform every possible split equally likely

 P[t] =
∏

v∈t

1

subtree_sizet(v)

 random BSTs = fixed-size source with p(ℓ, n− 1− ℓ) = 1
n

(n ∈ N>1 and ℓ ∈ {0, . . . ,n− 1})

Step 1
Construct a source-specific

micro-tree encoding

DS : {µ1, . . . , µm} → {0, 1}⋆

Goal: |DS(µi)| ≈ lg(1/P[µi])

Step 2
By optimality of

Huffman codes:
m∑

i=1

|C(µi)| 6

m∑

i=1

|DS(µi)|

Step 3
Use properties of S

to show that
m∏

i=1

P[µi] & P[t]

Step 4

Conclude
m∑

i=1

|C(µi)| ≈ lg(1/P[t])

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 9 / 22

Random BSTs – Outline

Random BSTs:

rank of root uniform every possible split equally likely

 P[t] =
∏

v∈t

1

subtree_sizet(v)

 random BSTs = fixed-size source with p(ℓ, n− 1− ℓ) = 1
n

(n ∈ N>1 and ℓ ∈ {0, . . . ,n− 1})

Step 1
Construct a source-specific

micro-tree encoding

DS : {µ1, . . . , µm} → {0, 1}⋆

Goal: |DS(µi)| ≈ lg(1/P[µi])

Step 2
By optimality of

Huffman codes:
m∑

i=1

|C(µi)| 6

m∑

i=1

|DS(µi)|

Step 3
Use properties of S

to show that
m∏

i=1

P[µi] & P[t]

Step 4

Conclude
m∑

i=1

|C(µi)| ≈ lg(1/P[t])

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 9 / 22

Random BSTs – Outline

Random BSTs:

rank of root uniform every possible split equally likely

 P[t] =
∏

v∈t

1

subtree_sizet(v)

 random BSTs = fixed-size source with p(ℓ, n− 1− ℓ) = 1
n

(n ∈ N>1 and ℓ ∈ {0, . . . ,n− 1})

Step 1
Construct a source-specific

micro-tree encoding

DS : {µ1, . . . , µm} → {0, 1}⋆

Goal: |DS(µi)| ≈ lg(1/P[µi])

Step 2
By optimality of

Huffman codes:
m∑

i=1

|C(µi)| 6

m∑

i=1

|DS(µi)|

Step 3
Use properties of S

to show that
m∏

i=1

P[µi] & P[t]

Step 4

Conclude
m∑

i=1

|C(µi)| ≈ lg(1/P[t])

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 9 / 22

Random BSTs – Outline

Random BSTs:

rank of root uniform every possible split equally likely

 P[t] =
∏

v∈t

1

subtree_sizet(v)

 random BSTs = fixed-size source with p(ℓ, n− 1− ℓ) = 1
n

(n ∈ N>1 and ℓ ∈ {0, . . . ,n− 1})

Step 1
Construct a source-specific

micro-tree encoding

DS : {µ1, . . . , µm} → {0, 1}⋆

Goal: |DS(µi)| ≈ lg(1/P[µi])

Step 2
By optimality of

Huffman codes:
m∑

i=1

|C(µi)| 6

m∑

i=1

|DS(µi)|

Step 3
Use properties of S

to show that
m∏

i=1

P[µi] & P[t]

Step 4

Conclude
m∑

i=1

|C(µi)| ≈ lg(1/P[t])

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 9 / 22

Random BSTs – Source-specific code

Step 1 Code DS for µ1, . . . , µm with |DS(µi)| ∼ lg(1/|PS[µi])

1 store |µi| Elias code

2 store left subtree sizes in depth-first traversal using arithmetic coding

2a Encode sequence of outcomes as subinterval I of [0, 1) = I0

Know subtree_size(v1) = |µi| = 5 (from 1)

 for v1, left subtree size ℓ1 ∈ {0, 1, 2, 3, 4}

identify with subintervals of I0 of lengths p(ℓ1, 4− ℓ1)|I0| =
1
5

 here ℓ1 = 3 I1 = [3
5
, 4
5
)

know subtree_size(v2) = ℓ1 = 3

 left subtree size ℓ2 ∈ {0, 1, 2}

use subintervals of I1 of lengths p(ℓ1, 2− ℓ1)|I1| =
1
3
· 1
5

 here ℓ2 = 1, I2 = [3
5
+ 1

15
, 3
5
+ 2

15
) = [2

3
, 11
15
)

subtree_size(v3) = ℓ2 = 1, so ℓ3 = 0. nothing to store!

v4 and v5 same

 I = [2
3
, 11
15
)

v1

v2

v3 v4

v5

2b Arithmetic coding:

Find interval [m
2l
, m+1

2l
) ⊆ I (l,m ∈ N)

Here: [22
32
, 23
32
)

encode I by

l-bit binary representation of m.

Here: 10110

Always have l 6 lg(1/|I|) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 10 / 22

Random BSTs – Source-specific code

Step 1 Code DS for µ1, . . . , µm with |DS(µi)| ∼ lg(1/|PS[µi])

1 store |µi| Elias code

2 store left subtree sizes in depth-first traversal using arithmetic coding

2a Encode sequence of outcomes as subinterval I of [0, 1) = I0

Know subtree_size(v1) = |µi| = 5 (from 1)

 for v1, left subtree size ℓ1 ∈ {0, 1, 2, 3, 4}

identify with subintervals of I0 of lengths p(ℓ1, 4− ℓ1)|I0| =
1
5

 here ℓ1 = 3 I1 = [3
5
, 4
5
)

know subtree_size(v2) = ℓ1 = 3

 left subtree size ℓ2 ∈ {0, 1, 2}

use subintervals of I1 of lengths p(ℓ1, 2− ℓ1)|I1| =
1
3
· 1
5

 here ℓ2 = 1, I2 = [3
5
+ 1

15
, 3
5
+ 2

15
) = [2

3
, 11
15
)

subtree_size(v3) = ℓ2 = 1, so ℓ3 = 0. nothing to store!

v4 and v5 same

 I = [2
3
, 11
15
)

v1

v2

v3 v4

v5

2b Arithmetic coding:

Find interval [m
2l
, m+1

2l
) ⊆ I (l,m ∈ N)

Here: [22
32
, 23
32
)

encode I by

l-bit binary representation of m.

Here: 10110

Always have l 6 lg(1/|I|) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 10 / 22

Random BSTs – Source-specific code

Step 1 Code DS for µ1, . . . , µm with |DS(µi)| ∼ lg(1/|PS[µi])

1 store |µi| Elias code

2 store left subtree sizes in depth-first traversal using arithmetic coding

2a Encode sequence of outcomes as subinterval I of [0, 1) = I0

Know subtree_size(v1) = |µi| = 5 (from 1)

 for v1, left subtree size ℓ1 ∈ {0, 1, 2, 3, 4}

identify with subintervals of I0 of lengths p(ℓ1, 4− ℓ1)|I0| =
1
5

 here ℓ1 = 3 I1 = [3
5
, 4
5
)

know subtree_size(v2) = ℓ1 = 3

 left subtree size ℓ2 ∈ {0, 1, 2}

use subintervals of I1 of lengths p(ℓ1, 2− ℓ1)|I1| =
1
3
· 1
5

 here ℓ2 = 1, I2 = [3
5
+ 1

15
, 3
5
+ 2

15
) = [2

3
, 11
15
)

subtree_size(v3) = ℓ2 = 1, so ℓ3 = 0. nothing to store!

v4 and v5 same

 I = [2
3
, 11
15
)

v1

v2

v3 v4

v5

2b Arithmetic coding:

Find interval [m
2l
, m+1

2l
) ⊆ I (l,m ∈ N)

Here: [22
32
, 23
32
)

encode I by

l-bit binary representation of m.

Here: 10110

Always have l 6 lg(1/|I|) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 10 / 22

Random BSTs – Source-specific code

Step 1 Code DS for µ1, . . . , µm with |DS(µi)| ∼ lg(1/|PS[µi])

1 store |µi| Elias code

2 store left subtree sizes in depth-first traversal using arithmetic coding

2a Encode sequence of outcomes as subinterval I of [0, 1) = I0

Know subtree_size(v1) = |µi| = 5 (from 1)

 for v1, left subtree size ℓ1 ∈ {0, 1, 2, 3, 4}

identify with subintervals of I0 of lengths p(ℓ1, 4− ℓ1)|I0| =
1
5

 here ℓ1 = 3 I1 = [3
5
, 4
5
)

know subtree_size(v2) = ℓ1 = 3

 left subtree size ℓ2 ∈ {0, 1, 2}

use subintervals of I1 of lengths p(ℓ1, 2− ℓ1)|I1| =
1
3
· 1
5

 here ℓ2 = 1, I2 = [3
5
+ 1

15
, 3
5
+ 2

15
) = [2

3
, 11
15
)

subtree_size(v3) = ℓ2 = 1, so ℓ3 = 0. nothing to store!

v4 and v5 same

 I = [2
3
, 11
15
)

v1

v2

v3 v4

v5

2b Arithmetic coding:

Find interval [m
2l
, m+1

2l
) ⊆ I (l,m ∈ N)

Here: [22
32
, 23
32
)

encode I by

l-bit binary representation of m.

Here: 10110

Always have l 6 lg(1/|I|) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 10 / 22

Random BSTs – Source-specific code

Step 1 Code DS for µ1, . . . , µm with |DS(µi)| ∼ lg(1/|PS[µi])

1 store |µi| Elias code

2 store left subtree sizes in depth-first traversal using arithmetic coding

2a Encode sequence of outcomes as subinterval I of [0, 1) = I0

Know subtree_size(v1) = |µi| = 5 (from 1)

 for v1, left subtree size ℓ1 ∈ {0, 1, 2, 3, 4}

identify with subintervals of I0 of lengths p(ℓ1, 4− ℓ1)|I0| =
1
5

 here ℓ1 = 3 I1 = [3
5
, 4
5
)

know subtree_size(v2) = ℓ1 = 3

 left subtree size ℓ2 ∈ {0, 1, 2}

use subintervals of I1 of lengths p(ℓ1, 2− ℓ1)|I1| =
1
3
· 1
5

 here ℓ2 = 1, I2 = [3
5
+ 1

15
, 3
5
+ 2

15
) = [2

3
, 11
15
)

subtree_size(v3) = ℓ2 = 1, so ℓ3 = 0. nothing to store!

v4 and v5 same

 I = [2
3
, 11
15
)

v1

v2

v3 v4

v5

2b Arithmetic coding:

Find interval [m
2l
, m+1

2l
) ⊆ I (l,m ∈ N)

Here: [22
32
, 23
32
)

encode I by

l-bit binary representation of m.

Here: 10110

Always have l 6 lg(1/|I|) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 10 / 22

Random BSTs – Source-specific code

Step 1 Code DS for µ1, . . . , µm with |DS(µi)| ∼ lg(1/|PS[µi])

1 store |µi| Elias code

2 store left subtree sizes in depth-first traversal using arithmetic coding

2a Encode sequence of outcomes as subinterval I of [0, 1) = I0

Know subtree_size(v1) = |µi| = 5 (from 1)

 for v1, left subtree size ℓ1 ∈ {0, 1, 2, 3, 4}

identify with subintervals of I0 of lengths p(ℓ1, 4− ℓ1)|I0| =
1
5

 here ℓ1 = 3 I1 = [3
5
, 4
5
)

know subtree_size(v2) = ℓ1 = 3

 left subtree size ℓ2 ∈ {0, 1, 2}

use subintervals of I1 of lengths p(ℓ1, 2− ℓ1)|I1| =
1
3
· 1
5

 here ℓ2 = 1, I2 = [3
5
+ 1

15
, 3
5
+ 2

15
) = [2

3
, 11
15
)

subtree_size(v3) = ℓ2 = 1, so ℓ3 = 0. nothing to store!

v4 and v5 same

 I = [2
3
, 11
15
)

v1

v2

v3 v4

v5

2b Arithmetic coding:

Find interval [m
2l
, m+1

2l
) ⊆ I (l,m ∈ N)

Here: [22
32
, 23
32
)

encode I by

l-bit binary representation of m.

Here: 10110

Always have l 6 lg(1/|I|) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 10 / 22

Random BSTs – Source-specific code

Step 1 Code DS for µ1, . . . , µm with |DS(µi)| ∼ lg(1/|PS[µi])

1 store |µi| Elias code

2 store left subtree sizes in depth-first traversal using arithmetic coding

2a Encode sequence of outcomes as subinterval I of [0, 1) = I0

Know subtree_size(v1) = |µi| = 5 (from 1)

 for v1, left subtree size ℓ1 ∈ {0, 1, 2, 3, 4}

identify with subintervals of I0 of lengths p(ℓ1, 4− ℓ1)|I0| =
1
5

 here ℓ1 = 3 I1 = [3
5
, 4
5
)

know subtree_size(v2) = ℓ1 = 3

 left subtree size ℓ2 ∈ {0, 1, 2}

use subintervals of I1 of lengths p(ℓ1, 2− ℓ1)|I1| =
1
3
· 1
5

 here ℓ2 = 1, I2 = [3
5
+ 1

15
, 3
5
+ 2

15
) = [2

3
, 11
15
)

subtree_size(v3) = ℓ2 = 1, so ℓ3 = 0. nothing to store!

v4 and v5 same

 I = [2
3
, 11
15
)

v1

v2

v3 v4

v5

2b Arithmetic coding:

Find interval [m
2l
, m+1

2l
) ⊆ I (l,m ∈ N)

Here: [22
32
, 23
32
)

encode I by

l-bit binary representation of m.

Here: 10110

Always have l 6 lg(1/|I|) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 10 / 22

Random BSTs – Source-specific code

Step 1 Code DS for µ1, . . . , µm with |DS(µi)| ∼ lg(1/|PS[µi])

1 store |µi| Elias code

2 store left subtree sizes in depth-first traversal using arithmetic coding

2a Encode sequence of outcomes as subinterval I of [0, 1) = I0

Know subtree_size(v1) = |µi| = 5 (from 1)

 for v1, left subtree size ℓ1 ∈ {0, 1, 2, 3, 4}

identify with subintervals of I0 of lengths p(ℓ1, 4− ℓ1)|I0| =
1
5

 here ℓ1 = 3 I1 = [3
5
, 4
5
)

know subtree_size(v2) = ℓ1 = 3

 left subtree size ℓ2 ∈ {0, 1, 2}

use subintervals of I1 of lengths p(ℓ1, 2− ℓ1)|I1| =
1
3
· 1
5

 here ℓ2 = 1, I2 = [3
5
+ 1

15
, 3
5
+ 2

15
) = [2

3
, 11
15
)

subtree_size(v3) = ℓ2 = 1, so ℓ3 = 0. nothing to store!

v4 and v5 same

 I = [2
3
, 11
15
)

v1

v2

v3 v4

v5

2b Arithmetic coding:

Find interval [m
2l
, m+1

2l
) ⊆ I (l,m ∈ N)

Here: [22
32
, 23
32
)

encode I by

l-bit binary representation of m.

Here: 10110

Always have l 6 lg(1/|I|) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 10 / 22

Random BSTs – Source-specific code

Step 1 Code DS for µ1, . . . , µm with |DS(µi)| ∼ lg(1/|PS[µi])

1 store |µi| Elias code

2 store left subtree sizes in depth-first traversal using arithmetic coding

2a Encode sequence of outcomes as subinterval I of [0, 1) = I0

Know subtree_size(v1) = |µi| = 5 (from 1)

 for v1, left subtree size ℓ1 ∈ {0, 1, 2, 3, 4}

identify with subintervals of I0 of lengths p(ℓ1, 4− ℓ1)|I0| =
1
5

 here ℓ1 = 3 I1 = [3
5
, 4
5
)

know subtree_size(v2) = ℓ1 = 3

 left subtree size ℓ2 ∈ {0, 1, 2}

use subintervals of I1 of lengths p(ℓ1, 2− ℓ1)|I1| =
1
3
· 1
5

 here ℓ2 = 1, I2 = [3
5
+ 1

15
, 3
5
+ 2

15
) = [2

3
, 11
15
)

subtree_size(v3) = ℓ2 = 1, so ℓ3 = 0. nothing to store!

v4 and v5 same

 I = [2
3
, 11
15
)

v1

v2

v3 v4

v5

2b Arithmetic coding:

Find interval [m
2l
, m+1

2l
) ⊆ I (l,m ∈ N)

Here: [22
32
, 23
32
)

encode I by

l-bit binary representation of m.

Here: 10110

Always have l 6 lg(1/|I|) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 10 / 22

Random BSTs – Source-specific code

Step 1 Code DS for µ1, . . . , µm with |DS(µi)| ∼ lg(1/|PS[µi])

1 store |µi| Elias code

2 store left subtree sizes in depth-first traversal using arithmetic coding

2a Encode sequence of outcomes as subinterval I of [0, 1) = I0

Know subtree_size(v1) = |µi| = 5 (from 1)

 for v1, left subtree size ℓ1 ∈ {0, 1, 2, 3, 4}

identify with subintervals of I0 of lengths p(ℓ1, 4− ℓ1)|I0| =
1
5

 here ℓ1 = 3 I1 = [3
5
, 4
5
)

know subtree_size(v2) = ℓ1 = 3

 left subtree size ℓ2 ∈ {0, 1, 2}

use subintervals of I1 of lengths p(ℓ1, 2− ℓ1)|I1| =
1
3
· 1
5

 here ℓ2 = 1, I2 = [3
5
+ 1

15
, 3
5
+ 2

15
) = [2

3
, 11
15
)

subtree_size(v3) = ℓ2 = 1, so ℓ3 = 0. nothing to store!

v4 and v5 same

 I = [2
3
, 11
15
)

v1

v2

v3 v4

v5

2b Arithmetic coding:

Find interval [m
2l
, m+1

2l
) ⊆ I (l,m ∈ N)

Here: [22
32
, 23
32
)

encode I by

l-bit binary representation of m.

Here: 10110

Always have l 6 lg(1/|I|) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 10 / 22

Random BSTs – Source-specific code

Step 1 Code DS for µ1, . . . , µm with |DS(µi)| ∼ lg(1/|PS[µi])

1 store |µi| Elias code

2 store left subtree sizes in depth-first traversal using arithmetic coding

2a Encode sequence of outcomes as subinterval I of [0, 1) = I0

Know subtree_size(v1) = |µi| = 5 (from 1)

 for v1, left subtree size ℓ1 ∈ {0, 1, 2, 3, 4}

identify with subintervals of I0 of lengths p(ℓ1, 4− ℓ1)|I0| =
1
5

 here ℓ1 = 3 I1 = [3
5
, 4
5
)

know subtree_size(v2) = ℓ1 = 3

 left subtree size ℓ2 ∈ {0, 1, 2}

use subintervals of I1 of lengths p(ℓ1, 2− ℓ1)|I1| =
1
3
· 1
5

 here ℓ2 = 1, I2 = [3
5
+ 1

15
, 3
5
+ 2

15
) = [2

3
, 11
15
)

subtree_size(v3) = ℓ2 = 1, so ℓ3 = 0. nothing to store!

v4 and v5 same

 I = [2
3
, 11
15
)

v1

v2

v3 v4

v5

2b Arithmetic coding:

Find interval [m
2l
, m+1

2l
) ⊆ I (l,m ∈ N)

Here: [22
32
, 23
32
)

encode I by

l-bit binary representation of m.

Here: 10110

Always have l 6 lg(1/|I|) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 10 / 22

Random BSTs – Source-specific code

Step 1 Code DS for µ1, . . . , µm with |DS(µi)| ∼ lg(1/|PS[µi])

1 store |µi| Elias code

2 store left subtree sizes in depth-first traversal using arithmetic coding

2a Encode sequence of outcomes as subinterval I of [0, 1) = I0

Know subtree_size(v1) = |µi| = 5 (from 1)

 for v1, left subtree size ℓ1 ∈ {0, 1, 2, 3, 4}

identify with subintervals of I0 of lengths p(ℓ1, 4− ℓ1)|I0| =
1
5

 here ℓ1 = 3 I1 = [3
5
, 4
5
)

know subtree_size(v2) = ℓ1 = 3

 left subtree size ℓ2 ∈ {0, 1, 2}

use subintervals of I1 of lengths p(ℓ1, 2− ℓ1)|I1| =
1
3
· 1
5

 here ℓ2 = 1, I2 = [3
5
+ 1

15
, 3
5
+ 2

15
) = [2

3
, 11
15
)

subtree_size(v3) = ℓ2 = 1, so ℓ3 = 0. nothing to store!

v4 and v5 same

 I = [2
3
, 11
15
)

v1

v2

v3 v4

v5

2b Arithmetic coding:

Find interval [m
2l
, m+1

2l
) ⊆ I (l,m ∈ N)

Here: [22
32
, 23
32
)

encode I by

l-bit binary representation of m.

Here: 10110

Always have l 6 lg(1/|I|) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 10 / 22

Random BSTs – Source-specific code

Step 1 Code DS for µ1, . . . , µm with |DS(µi)| ∼ lg(1/|PS[µi])

1 store |µi| Elias code

2 store left subtree sizes in depth-first traversal using arithmetic coding

2a Encode sequence of outcomes as subinterval I of [0, 1) = I0

Know subtree_size(v1) = |µi| = 5 (from 1)

 for v1, left subtree size ℓ1 ∈ {0, 1, 2, 3, 4}

identify with subintervals of I0 of lengths p(ℓ1, 4− ℓ1)|I0| =
1
5

 here ℓ1 = 3 I1 = [3
5
, 4
5
)

know subtree_size(v2) = ℓ1 = 3

 left subtree size ℓ2 ∈ {0, 1, 2}

use subintervals of I1 of lengths p(ℓ1, 2− ℓ1)|I1| =
1
3
· 1
5

 here ℓ2 = 1, I2 = [3
5
+ 1

15
, 3
5
+ 2

15
) = [2

3
, 11
15
)

subtree_size(v3) = ℓ2 = 1, so ℓ3 = 0. nothing to store!

v4 and v5 same

 I = [2
3
, 11
15
)

v1

v2

v3 v4

v5

2b Arithmetic coding:

Find interval [m
2l
, m+1

2l
) ⊆ I (l,m ∈ N)

Here: [22
32
, 23
32
)

encode I by

l-bit binary representation of m.

Here: 10110

Always have l 6 lg(1/|I|) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 10 / 22

Random BSTs – Source-specific code

Step 1 Code DS for µ1, . . . , µm with |DS(µi)| ∼ lg(1/|PS[µi])

1 store |µi| Elias code

2 store left subtree sizes in depth-first traversal using arithmetic coding

2a Encode sequence of outcomes as subinterval I of [0, 1) = I0

Know subtree_size(v1) = |µi| = 5 (from 1)

 for v1, left subtree size ℓ1 ∈ {0, 1, 2, 3, 4}

identify with subintervals of I0 of lengths p(ℓ1, 4− ℓ1)|I0| =
1
5

 here ℓ1 = 3 I1 = [3
5
, 4
5
)

know subtree_size(v2) = ℓ1 = 3

 left subtree size ℓ2 ∈ {0, 1, 2}

use subintervals of I1 of lengths p(ℓ1, 2− ℓ1)|I1| =
1
3
· 1
5

 here ℓ2 = 1, I2 = [3
5
+ 1

15
, 3
5
+ 2

15
) = [2

3
, 11
15
)

subtree_size(v3) = ℓ2 = 1, so ℓ3 = 0. nothing to store!

v4 and v5 same

 I = [2
3
, 11
15
)

v1

v2

v3 v4

v5

2b Arithmetic coding:

Find interval [m
2l
, m+1

2l
) ⊆ I (l,m ∈ N)

Here: [22
32
, 23
32
)

encode I by

l-bit binary representation of m.

Here: 10110

Always have l 6 lg(1/|I|) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 10 / 22

Random BSTs – Source-specific code

Step 1 Code DS for µ1, . . . , µm with |DS(µi)| ∼ lg(1/|PS[µi])

1 store |µi| Elias code

2 store left subtree sizes in depth-first traversal using arithmetic coding

2a Encode sequence of outcomes as subinterval I of [0, 1) = I0

Know subtree_size(v1) = |µi| = 5 (from 1)

 for v1, left subtree size ℓ1 ∈ {0, 1, 2, 3, 4}

identify with subintervals of I0 of lengths p(ℓ1, 4− ℓ1)|I0| =
1
5

 here ℓ1 = 3 I1 = [3
5
, 4
5
)

know subtree_size(v2) = ℓ1 = 3

 left subtree size ℓ2 ∈ {0, 1, 2}

use subintervals of I1 of lengths p(ℓ1, 2− ℓ1)|I1| =
1
3
· 1
5

 here ℓ2 = 1, I2 = [3
5
+ 1

15
, 3
5
+ 2

15
) = [2

3
, 11
15
)

subtree_size(v3) = ℓ2 = 1, so ℓ3 = 0. nothing to store!

v4 and v5 same

 I = [2
3
, 11
15
)

v1

v2

v3 v4

v5

2b Arithmetic coding:

Find interval [m
2l
, m+1

2l
) ⊆ I (l,m ∈ N)

Here: [22
32
, 23
32
)

encode I by

l-bit binary representation of m.

Here: 10110

Always have l 6 lg(1/|I|) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 10 / 22

Random BSTs – Source-specific code length

“Depth-First Arithmetic Code” DS

For node v with subtree_size(v) = nv,

subtree_size(v.left) = ℓv
subtree_size(v.right) = rv

shrink interval by factor p(ℓv, rv)

 |I| = PS[µi]

 |DS(µi)| 6 lg(1/PS[µi]) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 11 / 22

Random BSTs – Source-specific code length

“Depth-First Arithmetic Code” DS

For node v with subtree_size(v) = nv,

subtree_size(v.left) = ℓv
subtree_size(v.right) = rv

shrink interval by factor p(ℓv, rv)

 |I| = PS[µi]

 |DS(µi)| 6 lg(1/PS[µi]) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 11 / 22

Random BSTs – Source-specific code length

“Depth-First Arithmetic Code” DS

For node v with subtree_size(v) = nv,

subtree_size(v.left) = ℓv
subtree_size(v.right) = rv

shrink interval by factor p(ℓv, rv)

 |I| = PS[µi]

 |DS(µi)| 6 lg(1/PS[µi]) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 11 / 22

Random BSTs – Source-specific code length

“Depth-First Arithmetic Code” DS

For node v with subtree_size(v) = nv,

subtree_size(v.left) = ℓv
subtree_size(v.right) = rv

shrink interval by factor p(ℓv, rv)

 |I| = PS[µi]

 |DS(µi)| 6 lg(1/PS[µi]) + 2

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 11 / 22

Random BSTs – Source-specific code length

“Depth-First Arithmetic Code” DS

For node v with subtree_size(v) = nv,

subtree_size(v.left) = ℓv
subtree_size(v.right) = rv

shrink interval by factor p(ℓv, rv)

 |I| = PS[µi]

 |DS(µi)| 6 lg(1/PS[µi]) + 2

Step 2 Huffman optimality

Hypersuccinct code uses Huffman code C for micro trees of t, not DS

but Huffman codes are optimal!

m∑

i=1

|C(µi)| 6

m∑

i=1

|DS(µi)| 6

m∑

i=1

(

lg(1/P[µi]) + 2
)

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 11 / 22

Random BSTs – Source-specific code length

“Depth-First Arithmetic Code” DS

For node v with subtree_size(v) = nv,

subtree_size(v.left) = ℓv
subtree_size(v.right) = rv

shrink interval by factor p(ℓv, rv)

 |I| = PS[µi]

 |DS(µi)| 6 lg(1/PS[µi]) + 2

Step 2 Huffman optimality

Hypersuccinct code uses Huffman code C for micro trees of t, not DS

but Huffman codes are optimal!

m∑

i=1

|C(µi)| 6

m∑

i=1

|DS(µi)| 6

m∑

i=1

(

lg(1/P[µi]) + 2
)

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 11 / 22

Random BSTs – Source-specific code length

“Depth-First Arithmetic Code” DS

For node v with subtree_size(v) = nv,

subtree_size(v.left) = ℓv
subtree_size(v.right) = rv

shrink interval by factor p(ℓv, rv)

 |I| = PS[µi]

 |DS(µi)| 6 lg(1/PS[µi]) + 2

Step 2 Huffman optimality

Hypersuccinct code uses Huffman code C for micro trees of t, not DS

but Huffman codes are optimal!

m∑

i=1

|C(µi)| 6

m∑

i=1

|DS(µi)| 6

m∑

i=1

(

lg(1/P[µi]) + 2
)

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 11 / 22

Random BSTs – Source-specific code length

“Depth-First Arithmetic Code” DS

For node v with subtree_size(v) = nv,

subtree_size(v.left) = ℓv
subtree_size(v.right) = rv

shrink interval by factor p(ℓv, rv)

 |I| = PS[µi]

 |DS(µi)| 6 lg(1/PS[µi]) + 2

Step 2 Huffman optimality

Hypersuccinct code uses Huffman code C for micro trees of t, not DS

but Huffman codes are optimal!

m∑

i=1

|C(µi)| 6

m∑

i=1

|DS(µi)| 6

m∑

i=1

(

lg(1/P[µi]) + 2
)

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 11 / 22

Random BSTs – Monotonicity

64

60

61

62

63 65

66

63

62

65

64 67

66

61

59

57

58

67

68

69

70

58

59

57

60

70

69

6851

56

45

46

47

48

49

50 52

53

54

55

44

49

48

51

50

52

47

55

54

56

53

37

Step 3 From µi to t

So far: optimal code for micro trees . . . but want code for t!

Problem: non-fringe micro trees

Store yellow subtree as if red subtree was not there

 uses wrong subtree sizes!

But: ℓv, rv in µi only smaller, and

p(ℓ+ 1, r) 6 p(ℓ, r) and p(ℓ, r+ 1) 6 p(ℓ, r)

(monotonic source)

m∏

i=1

P[µi] =

m∏

i=1

∏

v∈µi

p
(

subtree_sizeµi
(v.left), subtree_sizeµi

(v.right)
)

>

m∏

i=1

∏

v∈µi

p
(

subtree_size t (v.left), subtree_size t (v.right)
)

=
∏

v∈t

p
(

subtree_size t (v.left), subtree_size t (v.right)
)

= P[t]

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 12 / 22

Random BSTs – Monotonicity

64

60

61

62

63 65

66

63

62

65

64 67

66

61

59

57

58

67

68

69

70

58

59

57

60

70

69

6851

56

45

46

47

48

49

50 52

53

54

55

44

49

48

51

50

52

47

55

54

56

53

37

Step 3 From µi to t

So far: optimal code for micro trees . . . but want code for t!

Problem: non-fringe micro trees

Store yellow subtree as if red subtree was not there

 uses wrong subtree sizes!

But: ℓv, rv in µi only smaller, and

p(ℓ+ 1, r) 6 p(ℓ, r) and p(ℓ, r+ 1) 6 p(ℓ, r)

(monotonic source)

m∏

i=1

P[µi] =

m∏

i=1

∏

v∈µi

p
(

subtree_sizeµi
(v.left), subtree_sizeµi

(v.right)
)

>

m∏

i=1

∏

v∈µi

p
(

subtree_size t (v.left), subtree_size t (v.right)
)

=
∏

v∈t

p
(

subtree_size t (v.left), subtree_size t (v.right)
)

= P[t]

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 12 / 22

Random BSTs – Monotonicity

64

60

61

62

63 65

66

63

62

65

64 67

66

61

59

57

58

67

68

69

70

58

59

57

60

70

69

6851

56

45

46

47

48

49

50 52

53

54

55

44

49

48

51

50

52

47

55

54

56

53

37

Step 3 From µi to t

So far: optimal code for micro trees . . . but want code for t!

Problem: non-fringe micro trees

Store yellow subtree as if red subtree was not there

 uses wrong subtree sizes!

But: ℓv, rv in µi only smaller, and

p(ℓ+ 1, r) 6 p(ℓ, r) and p(ℓ, r+ 1) 6 p(ℓ, r)

(monotonic source)

m∏

i=1

P[µi] =

m∏

i=1

∏

v∈µi

p
(

subtree_sizeµi
(v.left), subtree_sizeµi

(v.right)
)

>

m∏

i=1

∏

v∈µi

p
(

subtree_size t (v.left), subtree_size t (v.right)
)

=
∏

v∈t

p
(

subtree_size t (v.left), subtree_size t (v.right)
)

= P[t]

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 12 / 22

Random BSTs – Monotonicity

64

60

61

62

63 65

66

63

62

65

64 67

66

61

59

57

58

67

68

69

70

58

59

57

60

70

69

6851

56

45

46

47

48

49

50 52

53

54

55

44

49

48

51

50

52

47

55

54

56

53

37

Step 3 From µi to t

So far: optimal code for micro trees . . . but want code for t!

Problem: non-fringe micro trees

Store yellow subtree as if red subtree was not there

 uses wrong subtree sizes!

But: ℓv, rv in µi only smaller, and

p(ℓ+ 1, r) 6 p(ℓ, r) and p(ℓ, r+ 1) 6 p(ℓ, r)

(monotonic source)

m∏

i=1

P[µi] =

m∏

i=1

∏

v∈µi

p
(

subtree_sizeµi
(v.left), subtree_sizeµi

(v.right)
)

>

m∏

i=1

∏

v∈µi

p
(

subtree_size t (v.left), subtree_size t (v.right)
)

=
∏

v∈t

p
(

subtree_size t (v.left), subtree_size t (v.right)
)

= P[t]

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 12 / 22

Random BSTs – Monotonicity

64

60

61

62

63 65

66

63

62

65

64 67

66

61

59

57

58

67

68

69

70

58

59

57

60

70

69

6851

56

45

46

47

48

49

50 52

53

54

55

44

49

48

51

50

52

47

55

54

56

53

37

Step 3 From µi to t

So far: optimal code for micro trees . . . but want code for t!

Problem: non-fringe micro trees

Store yellow subtree as if red subtree was not there

 uses wrong subtree sizes!

But: ℓv, rv in µi only smaller, and

p(ℓ+ 1, r) 6 p(ℓ, r) and p(ℓ, r+ 1) 6 p(ℓ, r)

(monotonic source)

m∏

i=1

P[µi] =

m∏

i=1

∏

v∈µi

p
(

subtree_sizeµi
(v.left), subtree_sizeµi

(v.right)
)

>

m∏

i=1

∏

v∈µi

p
(

subtree_size t (v.left), subtree_size t (v.right)
)

=
∏

v∈t

p
(

subtree_size t (v.left), subtree_size t (v.right)
)

= P[t]

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 12 / 22

Random BSTs – Monotonicity

64

60

61

62

63 65

66

63

62

65

64 67

66

61

59

57

58

67

68

69

70

58

59

57

60

70

69

6851

56

45

46

47

48

49

50 52

53

54

55

44

49

48

51

50

52

47

55

54

56

53

37

Step 3 From µi to t

So far: optimal code for micro trees . . . but want code for t!

Problem: non-fringe micro trees

Store yellow subtree as if red subtree was not there

 uses wrong subtree sizes!

But: ℓv, rv in µi only smaller, and

p(ℓ+ 1, r) 6 p(ℓ, r) and p(ℓ, r+ 1) 6 p(ℓ, r)

(monotonic source)

m∏

i=1

P[µi] =

m∏

i=1

∏

v∈µi

p
(

subtree_sizeµi
(v.left), subtree_sizeµi

(v.right)
)

>

m∏

i=1

∏

v∈µi

p
(

subtree_size t (v.left), subtree_size t (v.right)
)

=
∏

v∈t

p
(

subtree_size t (v.left), subtree_size t (v.right)
)

= P[t]

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 12 / 22

Random BSTs – Conclusion

Step 4 Only have to put things together now:

Step 2:

m∑

i=1

|C(µi)| 6

m∑

i=1

(

lg(1/P[µi]) + 2
)

Step 3:

m∏

i=1

P[µi] > P[t]

 |H(t)| =

m∑

i=1

|C(µi)| + o(n)

6

m∑

i=1

lg(1/P[µi]) + o(n)

6 lg(1/P[t]) + o(n)

Random BSTs

lg(1/P[t]) =
∑

v∈t

lg(subtree_size(v))

This is also the splay tree potential!

E[lg(1/P[t])] ∼ 1.736

∞∑

k=1

2 lg(k)

(k+ 1)(k+ 2)

n

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 13 / 22

Random BSTs – Conclusion

Step 4 Only have to put things together now:

Step 2:

m∑

i=1

|C(µi)| 6

m∑

i=1

(

lg(1/P[µi]) + 2
)

Step 3:

m∏

i=1

P[µi] > P[t]

 |H(t)| =

m∑

i=1

|C(µi)| + o(n)

6

m∑

i=1

lg(1/P[µi]) + o(n)

6 lg(1/P[t]) + o(n)

Random BSTs

lg(1/P[t]) =
∑

v∈t

lg(subtree_size(v))

This is also the splay tree potential!

E[lg(1/P[t])] ∼ 1.736

∞∑

k=1

2 lg(k)

(k+ 1)(k+ 2)

n

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 13 / 22

Random BSTs – Conclusion

Step 4 Only have to put things together now:

Step 2:

m∑

i=1

|C(µi)| 6

m∑

i=1

(

lg(1/P[µi]) + 2
)

Step 3:

m∏

i=1

P[µi] > P[t]

 |H(t)| =

m∑

i=1

|C(µi)| + o(n)

6

m∑

i=1

lg(1/P[µi]) + o(n)

6 lg(1/P[t]) + o(n)

Random BSTs

lg(1/P[t]) =
∑

v∈t

lg(subtree_size(v))

This is also the splay tree potential!

E[lg(1/P[t])] ∼ 1.736

∞∑

k=1

2 lg(k)

(k+ 1)(k+ 2)

n

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 13 / 22

Random BSTs – Conclusion

Step 4 Only have to put things together now:

Step 2:

m∑

i=1

|C(µi)| 6

m∑

i=1

(

lg(1/P[µi]) + 2
)

Step 3:

m∏

i=1

P[µi] > P[t]

 |H(t)| =

m∑

i=1

|C(µi)| + o(n)

6

m∑

i=1

lg(1/P[µi]) + o(n)

6 lg(1/P[t]) + o(n)

Random BSTs

lg(1/P[t]) =
∑

v∈t

lg(subtree_size(v))

This is also the splay tree potential!

E[lg(1/P[t])] ∼ 1.736

∞∑

k=1

2 lg(k)

(k+ 1)(k+ 2)

n

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 13 / 22

Random BSTs – Conclusion

Step 4 Only have to put things together now:

Step 2:

m∑

i=1

|C(µi)| 6

m∑

i=1

(

lg(1/P[µi]) + 2
)

Step 3:

m∏

i=1

P[µi] > P[t]

 |H(t)| =

m∑

i=1

|C(µi)| + o(n)

6

m∑

i=1

lg(1/P[µi]) + o(n)

6 lg(1/P[t]) + o(n)

Random BSTs

lg(1/P[t]) =
∑

v∈t

lg(subtree_size(v))

This is also the splay tree potential!

E[lg(1/P[t])] ∼ 1.736

∞∑

k=1

2 lg(k)

(k+ 1)(k+ 2)

n

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 13 / 22

Weight-Balanced BSTs

Uniform Weight-Balanced BSTs:

Wn = set of all α-weight-balanced binary trees.

Not so well-understood

No counting results (!) (to my knowledge)

Some properties:

logarithmic height (obvious)

every fringe subtree is again weight balanced (obvious)

only O(n/B) nodes have subtree size > B (not obvious, but not hard to prove)

Can be generated with a fixed-size source using

p(ℓ, n− 1− ℓ) =






|Wℓ| · |Wn−1−ℓ|

|Wn|

general recipe for
uniform distributions

if min{ℓ+ 1, n− ℓ} > α(n+ 1)

0 otherwise
but not monotonic

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 14 / 22

Weight-Balanced BSTs

Uniform Weight-Balanced BSTs:

Wn = set of all α-weight-balanced binary trees.

Not so well-understood

No counting results (!) (to my knowledge)

Some properties:

logarithmic height (obvious)

every fringe subtree is again weight balanced (obvious)

only O(n/B) nodes have subtree size > B (not obvious, but not hard to prove)

Can be generated with a fixed-size source using

p(ℓ, n− 1− ℓ) =






|Wℓ| · |Wn−1−ℓ|

|Wn|

general recipe for
uniform distributions

if min{ℓ+ 1, n− ℓ} > α(n+ 1)

0 otherwise
but not monotonic

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 14 / 22

Weight-Balanced BSTs

Uniform Weight-Balanced BSTs:

Wn = set of all α-weight-balanced binary trees.

Not so well-understood

No counting results (!) (to my knowledge)

Some properties:

logarithmic height (obvious)

every fringe subtree is again weight balanced (obvious)

only O(n/B) nodes have subtree size > B (not obvious, but not hard to prove)

Can be generated with a fixed-size source using

p(ℓ, n− 1− ℓ) =






|Wℓ| · |Wn−1−ℓ|

|Wn|

general recipe for
uniform distributions

if min{ℓ+ 1, n− ℓ} > α(n+ 1)

0 otherwise
but not monotonic

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 14 / 22

Weight-Balanced BSTs

Uniform Weight-Balanced BSTs:

Wn = set of all α-weight-balanced binary trees.

Not so well-understood

No counting results (!) (to my knowledge)

Some properties:

logarithmic height (obvious)

every fringe subtree is again weight balanced (obvious)

only O(n/B) nodes have subtree size > B (not obvious, but not hard to prove)

Can be generated with a fixed-size source using

p(ℓ, n− 1− ℓ) =






|Wℓ| · |Wn−1−ℓ|

|Wn|

general recipe for
uniform distributions

if min{ℓ+ 1, n− ℓ} > α(n+ 1)

0 otherwise
but not monotonic

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 14 / 22

Weight-Balanced BSTs

Uniform Weight-Balanced BSTs:

Wn = set of all α-weight-balanced binary trees.

Not so well-understood

No counting results (!) (to my knowledge)

Some properties:

logarithmic height (obvious)

every fringe subtree is again weight balanced (obvious)

only O(n/B) nodes have subtree size > B (not obvious, but not hard to prove)

Can be generated with a fixed-size source using

p(ℓ, n− 1− ℓ) =






|Wℓ| · |Wn−1−ℓ|

|Wn|

general recipe for
uniform distributions

if min{ℓ+ 1, n− ℓ} > α(n+ 1)

0 otherwise
but not monotonic

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 14 / 22

Weight-Balanced BSTs

Uniform Weight-Balanced BSTs:

Wn = set of all α-weight-balanced binary trees.

Not so well-understood

No counting results (!) (to my knowledge)

Some properties:

logarithmic height (obvious)

every fringe subtree is again weight balanced (obvious)

only O(n/B) nodes have subtree size > B (not obvious, but not hard to prove)

Can be generated with a fixed-size source using

p(ℓ, n− 1− ℓ) =






|Wℓ| · |Wn−1−ℓ|

|Wn|

general recipe for
uniform distributions

if min{ℓ+ 1, n− ℓ} > α(n+ 1)

0 otherwise
but not monotonic

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 14 / 22

Weight-Balanced BSTs

Uniform Weight-Balanced BSTs:

Wn = set of all α-weight-balanced binary trees.

Not so well-understood

No counting results (!) (to my knowledge)

Some properties:

logarithmic height (obvious)

every fringe subtree is again weight balanced (obvious)

only O(n/B) nodes have subtree size > B (not obvious, but not hard to prove)

Can be generated with a fixed-size source using

p(ℓ, n− 1− ℓ) =






|Wℓ| · |Wn−1−ℓ|

|Wn|

general recipe for
uniform distributions

if min{ℓ+ 1, n− ℓ} > α(n+ 1)

0 otherwise
but not monotonic

Keep this in mind!

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 14 / 22

Weight-Balanced BSTs – Problems

� Complication 1: non-fringe subtree in general not α-balanced!

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 15 / 22

Weight-Balanced BSTs – Problems

� Complication 1: non-fringe subtree in general not α-balanced!

 Cannot possibly hope to show

m∏

i=1

P[µi]

potentially 0

> P[t]

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 15 / 22

Weight-Balanced BSTs – Problems

� Complication 1: non-fringe subtree in general not α-balanced!

 Cannot possibly hope to show

m∏

i=1

P[µi]

potentially 0

> P[t]

trees are “nicely balanced” . . . maybe we can ignore

i.e., encode trivially with 2 bits per node

non-fringe subtrees?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 15 / 22

Weight-Balanced BSTs – Problems

� Complication 1: non-fringe subtree in general not α-balanced!

 Cannot possibly hope to show

m∏

i=1

P[µi]

potentially 0

> P[t]

trees are “nicely balanced” . . . maybe we can ignore

i.e., encode trivially with 2 bits per node

non-fringe subtrees?

Complication 2: Can still have Θ(n) nodes in non-fringe µi.

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 15 / 22

Weight-Balanced BSTs – Great-Branching Code

Weight-balanced trees are “fringe dominated”: O(n/B) nodes have subtree size > B

Inside DS, break up micro trees into

1 “boughs” of heavy nodes

2 fringe-subtrees fi,j (“twigs”) hanging off boughs

 DS stores

fringe µi using depth-first arithmetic code

non-fringe µi using

1 2 bits/node for boughs and
2 depth-first arithmetic code for twigs

 Only boughs stored suboptimally and these are a vanishing fraction of t.

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 16 / 22

Weight-Balanced BSTs – Great-Branching Code

Weight-balanced trees are “fringe dominated”: O(n/B) nodes have subtree size > B

Inside DS, break up micro trees into

1 “boughs” of heavy nodes

2 fringe-subtrees fi,j (“twigs”) hanging off boughs

 DS stores

fringe µi using depth-first arithmetic code

non-fringe µi using

1 2 bits/node for boughs and
2 depth-first arithmetic code for twigs

64

60

61

62

63 65

66

63

62

65

64 67

66

61

59

57

58

67

68

69

70

58

59

57

60

70

69

68

56

53

54

55

54

56

53

37

bough

f1 f2

f3

 Only boughs stored suboptimally and these are a vanishing fraction of t.

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 16 / 22

Weight-Balanced BSTs – Great-Branching Code

Weight-balanced trees are “fringe dominated”: O(n/B) nodes have subtree size > B

Inside DS, break up micro trees into

1 “boughs” of heavy nodes

2 fringe-subtrees fi,j (“twigs”) hanging off boughs

 DS stores

fringe µi using depth-first arithmetic code

non-fringe µi using

1 2 bits/node for boughs and
2 depth-first arithmetic code for twigs

64

60

61

62

63 65

66

63

62

65

64 67

66

61

59

57

58

67

68

69

70

58

59

57

60

70

69

68

56

53

54

55

54

56

53

37

bough

f1 f2

f3

 Only boughs stored suboptimally and these are a vanishing fraction of t.

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 16 / 22

Weight-Balanced BSTs – Great-Branching Code

Weight-balanced trees are “fringe dominated”: O(n/B) nodes have subtree size > B

Inside DS, break up micro trees into

1 “boughs” of heavy nodes

2 fringe-subtrees fi,j (“twigs”) hanging off boughs

 DS stores

fringe µi using depth-first arithmetic code

non-fringe µi using

1 2 bits/node for boughs and
2 depth-first arithmetic code for twigs

64

60

61

62

63 65

66

63

62

65

64 67

66

61

59

57

58

67

68

69

70

58

59

57

60

70

69

68

56

53

54

55

54

56

53

37

bough

f1 f2

f3

 Only boughs stored suboptimally and these are a vanishing fraction of t.

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 16 / 22

Weight-Balanced BSTs – Great-Branching Code

Weight-balanced trees are “fringe dominated”: O(n/B) nodes have subtree size > B

Inside DS, break up micro trees into

1 “boughs” of heavy nodes

2 fringe-subtrees fi,j (“twigs”) hanging off boughs

 DS stores

fringe µi using depth-first arithmetic code

non-fringe µi using

1 2 bits/node for boughs and
2 depth-first arithmetic code for twigs

64

60

61

62

63 65

66

63

62

65

64 67

66

61

59

57

58

67

68

69

70

58

59

57

60

70

69

68

56

53

54

55

54

56

53

37

bough

f1 f2

f3

 Only boughs stored suboptimally and these are a vanishing fraction of t.

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 16 / 22

Weight-Balanced BSTs – Great-Branching Code

Weight-balanced trees are “fringe dominated”: O(n/B) nodes have subtree size > B

Inside DS, break up micro trees into

1 “boughs” of heavy nodes

2 fringe-subtrees fi,j (“twigs”) hanging off boughs

 DS stores

fringe µi using depth-first arithmetic code

non-fringe µi using

1 2 bits/node for boughs and
2 depth-first arithmetic code for twigs

64

60

61

62

63 65

66

63

62

65

64 67

66

61

59

57

58

67

68

69

70

58

59

57

60

70

69

68

56

53

54

55

54

56

53

37

bough

f1 f2

f3

 Only boughs stored suboptimally and these are a vanishing fraction of t.

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 16 / 22

Weight-Balanced BSTs – Great-Branching Code

Weight-balanced trees are “fringe dominated”: O(n/B) nodes have subtree size > B

Inside DS, break up micro trees into

1 “boughs” of heavy nodes

2 fringe-subtrees fi,j (“twigs”) hanging off boughs

 DS stores

fringe µi using depth-first arithmetic code

non-fringe µi using

1 2 bits/node for boughs and
2 depth-first arithmetic code for twigs

64

60

61

62

63 65

66

63

62

65

64 67

66

61

59

57

58

67

68

69

70

58

59

57

60

70

69

68

56

53

54

55

54

56

53

37

bough

f1 f2

f3

 Only boughs stored suboptimally and these are a vanishing fraction of t.

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 16 / 22

Weight-Balanced BSTs – Great-Branching Code

Weight-balanced trees are “fringe dominated”: O(n/B) nodes have subtree size > B

Inside DS, break up micro trees into

1 “boughs” of heavy nodes

2 fringe-subtrees fi,j (“twigs”) hanging off boughs

 DS stores

fringe µi using depth-first arithmetic code

non-fringe µi using

1 2 bits/node for boughs and
2 depth-first arithmetic code for twigs

64

60

61

62

63 65

66

63

62

65

64 67

66

61

59

57

58

67

68

69

70

58

59

57

60

70

69

68

56

53

54

55

54

56

53

37

bough

f1 f2

f3

 Only boughs stored suboptimally and these are a vanishing fraction of t.

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 16 / 22

Outline

1 Hypersuccinct Trees1 Hypersuccinct Trees

2 Two Favorite Trees2 Two Favorite Trees

3 Beyond Trees3 Beyond Trees

4 Bonus: Range-Minimum Queries4 Bonus: Range-Minimum Queries

5 Bonus: Succinct Bitvectors5 Bonus: Succinct Bitvectors

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 16 / 22

3 Beyond Trees3 Beyond Trees

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 16 / 22

How about graphs?

1 Does efficient computation and/or distributed storage have an intrinsic space cost?

largely missing:

an information theory of (graph-)structured data

How much space is needed to store a graph? � Besta, Hoefler: Survey and Taxonomy of Lossless Graph Compression

and Space-Efficient Graph Representations, arXiv 2018

When and how can we achieve such space with

efficient queries? � Spinrad: Efficient graph representations, Fields monographs 2003

distributed storage?

Graphs here are

undirected

unlabeled

static

2 Work towards a hypersuccinct graph representation

succinct representations of distributions of graphs

universal codes?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 17 / 22

https://arxiv.org/abs/1806.01799

How about graphs?

1 Does efficient computation and/or distributed storage have an intrinsic space cost?

largely missing:

an information theory of (graph-)structured data

How much space is needed to store a graph? � Besta, Hoefler: Survey and Taxonomy of Lossless Graph Compression

and Space-Efficient Graph Representations, arXiv 2018

When and how can we achieve such space with

efficient queries? � Spinrad: Efficient graph representations, Fields monographs 2003

distributed storage?

Graphs here are

undirected

unlabeled

static

2 Work towards a hypersuccinct graph representation

succinct representations of distributions of graphs

universal codes?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 17 / 22

https://arxiv.org/abs/1806.01799

How about graphs?

1 Does efficient computation and/or distributed storage have an intrinsic space cost?

largely missing:

an information theory of (graph-)structured data

How much space is needed to store a graph? � Besta, Hoefler: Survey and Taxonomy of Lossless Graph Compression

and Space-Efficient Graph Representations, arXiv 2018

When and how can we achieve such space with

efficient queries? � Spinrad: Efficient graph representations, Fields monographs 2003

distributed storage?

Graphs here are

undirected

unlabeled

static

2 Work towards a hypersuccinct graph representation

succinct representations of distributions of graphs

universal codes?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 17 / 22

https://arxiv.org/abs/1806.01799

How about graphs?

1 Does efficient computation and/or distributed storage have an intrinsic space cost?

largely missing:

an information theory of (graph-)structured data

How much space is needed to store a graph? � Besta, Hoefler: Survey and Taxonomy of Lossless Graph Compression

and Space-Efficient Graph Representations, arXiv 2018

When and how can we achieve such space with

efficient queries? � Spinrad: Efficient graph representations, Fields monographs 2003

distributed storage?

Graphs here are

undirected

unlabeled

static

2 Work towards a hypersuccinct graph representation

succinct representations of distributions of graphs

universal codes?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 17 / 22

https://arxiv.org/abs/1806.01799

How about graphs?

1 Does efficient computation and/or distributed storage have an intrinsic space cost?

largely missing:

an information theory of (graph-)structured data

How much space is needed to store a graph? � Besta, Hoefler: Survey and Taxonomy of Lossless Graph Compression

and Space-Efficient Graph Representations, arXiv 2018

When and how can we achieve such space with

efficient queries? � Spinrad: Efficient graph representations, Fields monographs 2003

distributed storage?

Graphs here are

undirected

unlabeled

static

uniformly taken

from a ground set

2 Work towards a hypersuccinct graph representation

succinct representations of distributions of graphs

universal codes?

















Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 17 / 22

https://arxiv.org/abs/1806.01799

How to count graphs?

How many graphs of size n are there in a family F?

Fn: set of labeled graphs of size n

Fn: set equivalence classes (under graph isomorphisms) of Fn;

set of unlabeled graphs of size n

F = all complete graphs

|Fn| = |Fn| = 1 (the single complete graph over [n])

F = at most one edge in total

|Fn| = 1+
(

n
2

)

(1 empty graph plus
(

n
2

)

ways to pick a pair for the single edge)

|Fn| = 2

Expert note: Concatenating all labels of a labeling scheme allows to reconstruct

the equivalence class (under graph isomorphisms), but not the labeled graph –

unless the original labels are made part of ℓ(v).

 need to pay attention

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 18 / 22

Space-efficient graph representations

Given a (hereditary) graph family F, we define
F is a hereditary graph family if

F closed under isomorphism

F closed under taking induced subgraphs

 Fn: graphs G ∈ F with vertex set V(G) = [n]

1 A succinct encoding of F:

encode : F → {0, 1}∗, decode : {0, 1}∗ → F

lossless: decode(encode(G)) = G for G ∈ F.

succinct: G ∈ Fn

|encode(G)| = log2(|F
n|) · (1+o(1))

efficient: encode, decode efficiently

computable (say polytime)

2 A succinct data structure for F (for adjacency):

succinct encoding plus adjacency-list queries

adjacent(v, u): 1 if vu ∈ E(G) else 0

nextNeigbor(v, u): successor of u in v’s adj list

computable efficiently on word-RAM

say o(log(|Fn|)) time; often O(1)

(potentially more queries)

3 A succinct labeling scheme for F (for adjacency):

ℓ : V(G) → {0, 1}∗,
labelAdj : {0, 1}∗ × {0, 1}∗ → {0, 1}

labelAdj(ℓ(v), ℓ(u)) = adjacent(v, u) for

v, u ∈ V(G).

succinct: G ∈ Fn

|ℓ(v)| 6 1
n

log2(|F
n|)(1+ o(1))

weaker version: compact:

|ℓ(v)| = O(1
n

log2(|F
n|))

(labels and decoder can differ for each G ∈ F,

but heredity puts limits on that)

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 19 / 22

Space-efficient graph representations

Given a (hereditary) graph family F, we define
F is a hereditary graph family if

F closed under isomorphism

F closed under taking induced subgraphs

 Fn: graphs G ∈ F with vertex set V(G) = [n]

1 A succinct encoding of F:

encode : F → {0, 1}∗, decode : {0, 1}∗ → F

lossless: decode(encode(G)) = G for G ∈ F.

succinct: G ∈ Fn

|encode(G)| = log2(|F
n|) · (1+o(1))

efficient: encode, decode efficiently

computable (say polytime)

2 A succinct data structure for F (for adjacency):

succinct encoding plus adjacency-list queries

adjacent(v, u): 1 if vu ∈ E(G) else 0

nextNeigbor(v, u): successor of u in v’s adj list

computable efficiently on word-RAM

say o(log(|Fn|)) time; often O(1)

(potentially more queries)

3 A succinct labeling scheme for F (for adjacency):

ℓ : V(G) → {0, 1}∗,
labelAdj : {0, 1}∗ × {0, 1}∗ → {0, 1}

labelAdj(ℓ(v), ℓ(u)) = adjacent(v, u) for

v, u ∈ V(G).

succinct: G ∈ Fn

|ℓ(v)| 6 1
n

log2(|F
n|)(1+ o(1))

weaker version: compact:

|ℓ(v)| = O(1
n

log2(|F
n|))

(labels and decoder can differ for each G ∈ F,

but heredity puts limits on that)

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 19 / 22

Space-efficient graph representations

Given a (hereditary) graph family F, we define
F is a hereditary graph family if

F closed under isomorphism

F closed under taking induced subgraphs

 Fn: graphs G ∈ F with vertex set V(G) = [n]

1 A succinct encoding of F:

encode : F → {0, 1}∗, decode : {0, 1}∗ → F

lossless: decode(encode(G)) = G for G ∈ F.

succinct: G ∈ Fn

|encode(G)| = log2(|F
n|) · (1+o(1))

efficient: encode, decode efficiently

computable (say polytime)

2 A succinct data structure for F (for adjacency):

succinct encoding plus adjacency-list queries

adjacent(v, u): 1 if vu ∈ E(G) else 0

nextNeigbor(v, u): successor of u in v’s adj list

computable efficiently on word-RAM

say o(log(|Fn|)) time; often O(1)

(potentially more queries)

3 A succinct labeling scheme for F (for adjacency):

ℓ : V(G) → {0, 1}∗,
labelAdj : {0, 1}∗ × {0, 1}∗ → {0, 1}

labelAdj(ℓ(v), ℓ(u)) = adjacent(v, u) for

v, u ∈ V(G).

succinct: G ∈ Fn

|ℓ(v)| 6 1
n

log2(|F
n|)(1+ o(1))

weaker version: compact:

|ℓ(v)| = O(1
n

log2(|F
n|))

(labels and decoder can differ for each G ∈ F,

but heredity puts limits on that)

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 19 / 22

Space-efficient graph representations

Given a (hereditary) graph family F, we define
F is a hereditary graph family if

F closed under isomorphism

F closed under taking induced subgraphs

 Fn: graphs G ∈ F with vertex set V(G) = [n]

1 A succinct encoding of F:

encode : F → {0, 1}∗, decode : {0, 1}∗ → F

lossless: decode(encode(G)) = G for G ∈ F.

succinct: G ∈ Fn

|encode(G)| = log2(|F
n|) · (1+o(1))

efficient: encode, decode efficiently

computable (say polytime)

2 A succinct data structure for F (for adjacency):

succinct encoding plus adjacency-list queries

adjacent(v, u): 1 if vu ∈ E(G) else 0

nextNeigbor(v, u): successor of u in v’s adj list

computable efficiently on word-RAM

say o(log(|Fn|)) time; often O(1)

(potentially more queries)

3 A succinct labeling scheme for F (for adjacency):

ℓ : V(G) → {0, 1}∗,
labelAdj : {0, 1}∗ × {0, 1}∗ → {0, 1}

labelAdj(ℓ(v), ℓ(u)) = adjacent(v, u) for

v, u ∈ V(G).

succinct: G ∈ Fn

|ℓ(v)| 6 1
n

log2(|F
n|)(1+ o(1))

weaker version: compact:

|ℓ(v)| = O(1
n

log2(|F
n|))

(labels and decoder can differ for each G ∈ F,

but heredity puts limits on that)

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 19 / 22

Questions

1 Do all graph families have a succinct encoding?

2 Do all graph families have a succinct data structure (with adjacency queries)?

3 Do all graph families have a compact (adjacency) labeling scheme?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 20 / 22

https://doi.org/10.1016/j.tcs.2013.09.031
https://arxiv.org/abs/2111.13198

Questions

1 Do all graph families have a succinct encoding?

No, if we have to recognize graphs in the family. � Spinrad: Efficient graph representations, Fields monographs 2003

If encode is not required to work correctly on G /∈ F??

2 Do all graph families have a succinct data structure (with adjacency queries)?

3 Do all graph families have a compact (adjacency) labeling scheme?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 20 / 22

https://doi.org/10.1016/j.tcs.2013.09.031
https://arxiv.org/abs/2111.13198

Questions

1 Do all graph families have a succinct encoding?

No, if we have to recognize graphs in the family. � Spinrad: Efficient graph representations, Fields monographs 2003

If encode is not required to work correctly on G /∈ F??

2 Do all graph families have a succinct data structure (with adjacency queries)?

No, for graphs with m edges and nδ < m < n2−δ, (δ > 0 constant)

when we want adjacent and nextNeighbor in O(1) time

But this is not a hereditary property. � Farzan, Munro: Succinct encoding of arbitrary graphs, TCS 2013

For hereditary classes?? Only faster-than-decompress queries??

3 Do all graph families have a compact (adjacency) labeling scheme?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 20 / 22

https://doi.org/10.1016/j.tcs.2013.09.031
https://arxiv.org/abs/2111.13198

Questions

1 Do all graph families have a succinct encoding?

No, if we have to recognize graphs in the family. � Spinrad: Efficient graph representations, Fields monographs 2003

If encode is not required to work correctly on G /∈ F??

2 Do all graph families have a succinct data structure (with adjacency queries)?

No, for graphs with m edges and nδ < m < n2−δ, (δ > 0 constant)

when we want adjacent and nextNeighbor in O(1) time

But this is not a hereditary property. � Farzan, Munro: Succinct encoding of arbitrary graphs, TCS 2013

For hereditary classes?? Only faster-than-decompress queries??

3 Do all graph families have a compact (adjacency) labeling scheme?

Recent news: Resounding No! � Hatami, Hatami: The Implicit Graph Conjecture is False, FOCS 2022

Which families do??

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 20 / 22

https://doi.org/10.1016/j.tcs.2013.09.031
https://arxiv.org/abs/2111.13198

Summary

Hypersuccinct trees

simple universal tree source code

as versatile as any known universal code for trees

but also supports efficient queries

What’s next?

tree with labels

isolated other combinatorial structures

Entropy of micro-tree distribution is an interesting parameter

direct implication for succinct data structures

yields some twists in the analysis

Is the hypersuccinct code asymptotically optimal for more tree distributions?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 21 / 22

Summary

Hypersuccinct trees

simple universal tree source code

as versatile as any known universal code for trees

but also supports efficient queries

What’s next?

tree with labels

isolated other combinatorial structures

Entropy of micro-tree distribution is an interesting parameter

direct implication for succinct data structures

yields some twists in the analysis

Is the hypersuccinct code asymptotically optimal for more tree distributions?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 21 / 22

Summary

Hypersuccinct trees

simple universal tree source code

as versatile as any known universal code for trees

but also supports efficient queries

What’s next?

tree with labels

isolated other combinatorial structures

Entropy of micro-tree distribution is an interesting parameter

direct implication for succinct data structures

yields some twists in the analysis

Is the hypersuccinct code asymptotically optimal for more tree distributions?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 21 / 22

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 22 / 22

Outline

1 Hypersuccinct Trees1 Hypersuccinct Trees

2 Two Favorite Trees2 Two Favorite Trees

3 Beyond Trees3 Beyond Trees

4 Bonus: Range-Minimum Queries4 Bonus: Range-Minimum Queries

5 Bonus: Succinct Bitvectors5 Bonus: Succinct Bitvectors

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 22 / 22

4 Bonus: Range-Minimum Queries4 Bonus: Range-Minimum Queries

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 22 / 22

Range-maximum queries (RMQ)

Given: Static

array/numbers don’t change

array A[0..n) of numbers

Goal: Find maximum in a range;

A known in advance and can be

preprocessed

4

0

6

1

4

2

7

3

10

4

5

5

6

6

3

7

11

8

14

9

2

10

3

11

6

12

10

13

9

14

13

15

4

16

6

17

16

18

10

19

RMQ(6, 14) = 9

Nitpicks:

Report index of maximum, not its value

Report leftmost position in case of ties

RMQ is equivalent to LCA

lowest common ancestor

in binary trees:

4

0

6

1

4

2

7

3

10

4

5

5

6

6

3

7

11

8

14

9

2

10

3

11

6

12

10

13

9

14

13

15

4

16

6

17

16

18

10

19

rmq(6, 14) = 9

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

6

14

9

lca(6, 14) = 9

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 23 / 22

Range-maximum queries (RMQ)

Given: Static

array/numbers don’t change

array A[0..n) of numbers

Goal: Find maximum in a range;

A known in advance and can be

preprocessed

4

0

6

1

4

2

7

3

10

4

5

5

6

6

3

7

11

8

14

9

2

10

3

11

6

12

10

13

9

14

13

15

4

16

6

17

16

18

10

19

RMQ(6, 14) = 9

Nitpicks:

Report index of maximum, not its value

Report leftmost position in case of ties

RMQ is equivalent to LCA

lowest common ancestor

in binary trees:

4

0

6

1

4

2

7

3

10

4

5

5

6

6

3

7

11

8

14

9

2

10

3

11

6

12

10

13

9

14

13

15

4

16

6

17

16

18

10

19

rmq(6, 14) = 9

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

6

14

9

lca(6, 14) = 9

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 23 / 22

Range-maximum queries (RMQ)

Given: Static

array/numbers don’t change

array A[0..n) of numbers

Goal: Find maximum in a range;

A known in advance and can be

preprocessed

4

0

6

1

4

2

7

3

10

4

5

5

6

6

3

7

11

8

14

9

2

10

3

11

6

12

10

13

9

14

13

15

4

16

6

17

16

18

10

19

RMQ(6, 14) = 9

Nitpicks:

Report index of maximum, not its value

Report leftmost position in case of ties

RMQ is equivalent to LCA

lowest common ancestor

in binary trees:

4

0

6

1

4

2

7

3

10

4

5

5

6

6

3

7

11

8

14

9

2

10

3

11

6

12

10

13

9

14

13

15

4

16

6

17

16

18

10

19

rmq(6, 14) = 9

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

6

14

9

lca(6, 14) = 9

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 23 / 22

Hypersuccinct RMQ

Hypersuccinct trees yield hypersuccinct RMQ data structure.

In particular:

1 optimal average space for RMQ on random permutations

2 optimal space for RMQ on sequence with r sorted runs (r = Θ(n))

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 24 / 22

Outline

1 Hypersuccinct Trees1 Hypersuccinct Trees

2 Two Favorite Trees2 Two Favorite Trees

3 Beyond Trees3 Beyond Trees

4 Bonus: Range-Minimum Queries4 Bonus: Range-Minimum Queries

5 Bonus: Succinct Bitvectors5 Bonus: Succinct Bitvectors

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 24 / 22

5 Bonus: Succinct bitvectors5 Bonus: Succinct bitvectors

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 24 / 22

Computing over compressed data

traditionally:

compression for archiving data, minimize size of representation

computation/analysis: minimize time; use extra data structures

 always decompress data first!

reaches limits of fast memory for large datasets

Approach in space-efficient data structures:

Represent data in compressed form

Augment with small index data structures to enable fast queries directly on compressed representation

succinct = (1+ o(1)) · information-theoretic lower bound

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 25 / 22

Computing over compressed data

traditionally:

compression for archiving data, minimize size of representation

computation/analysis: minimize time; use extra data structures

 always decompress data first!

reaches limits of fast memory for large datasets

Approach in space-efficient data structures:

Represent data in compressed form

Augment with small index data structures to enable fast queries directly on compressed representation

succinct = (1+ o(1)) · information-theoretic lower bound

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 25 / 22

A motivating example

Suppose you store a text T [1..n] compressed with a Huffman code

each char encoded separately;
codewords of variable lengthC stores concatenation of all codewords

Would like to allow random access to T [i]

Huffman code for
Alice in Wonderland

A 1110
B 010110
C 01010
D 11111
E 100
F 110010
G 00001
H 0111
I 1011
J 000111011
K 000110
L 11110
M 110011
N 1010
O 1101
P 010111
Q 000111010
R 0100
S 0110
T 001
U 11000
V 0001111
W 00010
X 000111001
Y 00000
Z 000111000

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 26 / 22

A motivating example

Suppose you store a text T [1..n] compressed with a Huffman code

each char encoded separately;
codewords of variable lengthC stores concatenation of all codewords

Would like to allow random access to T [i]

How to know where ith character starts?

Huffman code for
Alice in Wonderland

A 1110
B 010110
C 01010
D 11111
E 100
F 110010
G 00001
H 0111
I 1011
J 000111011
K 000110
L 11110
M 110011
N 1010
O 1101
P 010111
Q 000111010
R 0100
S 0110
T 001
U 11000
V 0001111
W 00010
X 000111001
Y 00000
Z 000111000

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 26 / 22

A motivating example

Suppose you store a text T [1..n] compressed with a Huffman code

each char encoded separately;
codewords of variable lengthC stores concatenation of all codewords

Would like to allow random access to T [i]

How to know where ith character starts?

Huffman code for
Alice in Wonderland

A 1110
B 010110
C 01010
D 11111
E 100
F 110010
G 00001
H 0111
I 1011
J 000111011
K 000110
L 11110
M 110011
N 1010
O 1101
P 010111
Q 000111010
R 0100
S 0110
T 001
U 11000
V 0001111
W 00010
X 000111001
Y 00000
Z 000111000

We don’t

unless we decode from start

. But we can store it!

Naive way: Store starting index for ith char in T in S[1..n]

 n numbers in [n] n lgn bits.

That’s much more than the (compressed) text!

Can we do better?

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 26 / 22

A motivating example

Suppose you store a text T [1..n] compressed with a Huffman code

each char encoded separately;
codewords of variable lengthC stores concatenation of all codewords

Would like to allow random access to T [i]

How to know where ith character starts?

Huffman code for
Alice in Wonderland

A 1110
B 010110
C 01010
D 11111
E 100
F 110010
G 00001
H 0111
I 1011
J 000111011
K 000110
L 11110
M 110011
N 1010
O 1101
P 010111
Q 000111010
R 0100
S 0110
T 001
U 11000
V 0001111
W 00010
X 000111001
Y 00000
Z 000111000

We don’t

unless we decode from start

. But we can store it!

Naive way: Store starting index for ith char in T in S[1..n]

 n numbers in [n] n lgn bits.

That’s much more than the (compressed) text!

Can we do better?

Yes! With o(n) extra bits, we can support constant(!)-time random access!

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 26 / 22

Bitvectors

B[1..n] static array of n bits (Boolean array).

trivial to store using n bits of space

rankB(i) = # 1s in B[1..i] (first i positions) (=prefix sum)

selectB(i) = position of ith 1 in B

0
1

1

2

0

3

1

4

0

5

0

6

0

7

0

8

0

9

0
10

1
11

1
12

0
13

1
14

1
15

0
16

1
17

1
18

1
19

1

20

1
21

1

22

0

23

1

24

1

25

1

26

1

27

1

28

1

29

0

30

0
31

0

32

rankB(12) = rankB(13) = 4

selectB(3) = 11

selectB(4) = 12

Goal: Support rank and select on bitvector using n+ o(n) bits of space. [Jacobson 1988], [Clark 1996]

 Will show how to do rank; select is similar

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 27 / 22

Bitvectors

B[1..n] static array of n bits (Boolean array).

trivial to store using n bits of space

rankB(i) = # 1s in B[1..i] (first i positions) (=prefix sum)

selectB(i) = position of ith 1 in B

0
1

1

2

0

3

1

4

0

5

0

6

0

7

0

8

0

9

0
10

1
11

1
12

0
13

1
14

1
15

0
16

1
17

1
18

1
19

1

20

1
21

1

22

0

23

1

24

1

25

1

26

1

27

1

28

1

29

0

30

0
31

0

32

rankB(12) = rankB(13) = 4

selectB(3) = 11

selectB(4) = 12

Goal: Support rank and select on bitvector using n+ o(n) bits of space. [Jacobson 1988], [Clark 1996]

 Will show how to do rank; select is similar

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 27 / 22

Bitvectors

B[1..n] static array of n bits (Boolean array).

trivial to store using n bits of space

rankB(i) = # 1s in B[1..i] (first i positions) (=prefix sum)

selectB(i) = position of ith 1 in B

0
1

1

2

0

3

1

4

0

5

0

6

0

7

0

8

0

9

0
10

1
11

1
12

0
13

1
14

1
15

0
16

1
17

1
18

1
19

1

20

1
21

1

22

0

23

1

24

1

25

1

26

1

27

1

28

1

29

0

30

0
31

0

32

rankB(12) = rankB(13) = 4

selectB(3) = 11

selectB(4) = 12

Goal: Support rank and select on bitvector using n+ o(n) bits of space. [Jacobson 1988], [Clark 1996]

 Will show how to do rank; select is similar

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 27 / 22

Rank Index for Bitvector

Apart from B, we store:

Rank of first element of each mini array
n

lg(n)2
· lg(n) =

n

lgn
= o(n) bits

Rank of first element in micro array relative to its mini array

 ranks are numbers in [lg2(n)] 2 lg lgn bits suffice for each

n

1
2 lgn

· 2 lg lgn =
4n lg lgn

lgn
= o(n) bits

B 0
1

1

2

0

3

1

4

0

5

0

6

0

7

0

8

0

9

0
10

1
11

1
12

0
13

1
14

1
15

0
16

1
17

1
18

1
19

1

20

1
21

1

22

0

23

1

24

1

25

1

26

1

27

1

28

1

29

0

30

0
31

0

32

0

33

0

34

1

35

0

36

0

37

1

38

0

39

1

40

0
41

1

42

1

43

1

44

1

45

0

46

0

47

0

48

0

49

1

50

1
51

0

52

1

53

0

54

1

55

1

56

0

57

1

58

1

59

1

60

0
61

1

62

1

63

1

64

rankB 0 1 1 2 2 2 2 2 2 2 3 4 4 5 6 6 7 8 9 10 11 12 12 13 14 15 16 17 18 18 18 18 18 18 19 19 19 20 20 21 21 22 23 24 25 25 25 25 25 26 27 27 28 28 29 30 30 31 32 33 33 34 35 36

mini
arrays

0
1

1

2

0

3

1

4

0

5

0

6

0

7

0

8

0

9

0
10

1
11

1
12

0
13

1
14

1
15

0
16

1
17

1
18

1
19

1

20

1
21

1

22

0

23

1

24

1

25

1

26

1

27

1

28

1

29

0

30

0
31

0

32

0

33

0

34

1

35

0

36

0

37

1

38

0

39

1

40

0
41

1

42

1

43

1

44

1

45

0

46

0

47

0

48

0

49

1

50

1
51

0

52

1

53

0

54

1

55

1

56

0

57

1

58

1

59

1

60

0
61

1

62

1

63

1

64

lg
2
(n)

0 7 18 25

0 1 1 2 2 2 2 2 2 2 3 4 4 5 6 6 1 2 3 4 5 6 6 7 8 9 10 11 12 12 12 12 0 0 1 1 1 2 2 3 3 4 5 6 7 7 7 7 0 1 2 2 3 3 4 5 5 6 7 8 8 9 10 11

micro
arrays

0
1

1

2

0

3

1

4

0

5

0

6

0

7

0

8

0

9

0
10

1
11

1
12

0
13

1
14

1
15

0
16

1
17

1
18

1
19

1

20

1
21

1

22

0

23

1

24

1

25

1

26

1

27

1

28

1

29

0

30

0
31

0

32

0

33

0

34

1

35

0

36

0

37

1

38

0

39

1

40

0
41

1

42

1

43

1

44

1

45

0

46

0

47

0

48

0

49

1

50

1
51

0

52

1

53

0

54

1

55

1

56

0

57

1

58

1

59

1

60

0
61

1

62

1

63

1

64

1
2

lg(n)

0 2 2 4 1 5 8 12 0 1 3 7 0 3 5 8

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 28 / 22

How to find rank

B 0
1

1
2

0
3

1
4

0
5

0
6

0
7

0
8

0
9

0
10

1
11

1
12

0
13

1
14

1
15

0
16

1
17

1
18

1
19

1
20

1
21

1
22

0
23

1
24

1
25

1
26

1
27

1
28

1
29

0
30

0
31

0
32

0
33

0
34

1
35

0
36

0
37

1
38

0
39

1
40

0
41

1
42

1
43

1
44

1
45

0
46

0
47

0
48

0
49

1
50

1
51

0
52

1
53

0
54

1
55

1
56

0
57

1
58

1
59

1
60

0
61

1
62

1
63

1
64

rankB 0 1 1 2 2 2 2 2 2 2 3 4 4 5 6 6 7 8 9 10 11 12 12 13 14 15 16 17 18 18 18 18 18 18 19 19 19 20 20 21 21 22 23 24 25 25 25 25 25 26 27 27 28 28 29 30 30 31 32 33 33 34 35 36

mini
arrays

0
1

1
2

0
3

1
4

0
5

0
6

0
7

0
8

0
9

0
10

1
11

1
12

0
13

1
14

1
15

0
16

1
17

1
18

1
19

1
20

1
21

1
22

0
23

1
24

1
25

1
26

1
27

1
28

1
29

0
30

0
31

0
32

0
33

0
34

1
35

0
36

0
37

1
38

0
39

1
40

0
41

1
42

1
43

1
44

1
45

0
46

0
47

0
48

0
49

1
50

1
51

0
52

1
53

0
54

1
55

1
56

0
57

1
58

1
59

1
60

0
61

1
62

1
63

1
64

0 7 18 25

0 1 1 2 2 2 2 2 2 2 3 4 4 5 6 6 1 2 3 4 5 6 6 7 8 9 10 11 12 12 12 12 0 0 1 1 1 2 2 3 3 4 5 6 7 7 7 7 0 1 2 2 3 3 4 5 5 6 7 8 8 9 10 11

micro
arrays

0
1

1
2

0
3

1
4

0
5

0
6

0
7

0
8

0
9

0
10

1
11

1
12

0
13

1
14

1
15

0
16

1
17

1
18

1
19

1
20

1
21

1
22

0
23

1
24

1
25

1
26

1
27

1
28

1
29

0
30

0
31

0
32

0
33

0
34

1
35

0
36

0
37

1
38

0
39

1
40

0
41

1
42

1
43

1
44

1
45

0
46

0
47

0
48

0
49

1
50

1
51

0
52

1
53

0
54

1
55

1
56

0
57

1
58

1
59

1
60

0
61

1
62

1
63

1
64

0 2 2 4 1 5 8 12 0 1 3 7 0 3 5 8

rankB(43) = 18+ 3+ 2 = 23

How to compute rankB(i)?

find rank up to element’s mini array

add rank up to element’s micro array (mini-array local)

add micro-array-local rank of position

can either do this naively by scanning 1
2 lgn bits O(logn) time

or use bit marks and pop-count instructions on CPUs O(1) time

or use exhaustive lookup table! 1
2 lgn bits only 2

1

2
lgn =

√
n different micro arrays

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 29 / 22

Huffman application

Recall the motivating toy problem: random access to Huffman coded text

Idea: Use a bitvector to mark beginning of codewords

 Can use select to find ith codeword

Example: abananaandanapple

Huffman code: a = 0, b = 11100, d = 11101, e = 11110, l = 11111, n = 10, p = 110

C = 01110001001000101110101001101101111111110 concatenation of codewords

B = 11000011011011101000011011001001000010000 bitvector of codeword start

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 30 / 22

Huffman application

Recall the motivating toy problem: random access to Huffman coded text

Idea: Use a bitvector to mark beginning of codewords

 Can use select to find ith codeword

Example: abananaandanapple

Huffman code: a = 0, b = 11100, d = 11101, e = 11110, l = 11111, n = 10, p = 110

C = 01110001001000101110101001101101111111110 concatenation of codewords

B = 11000011011011101000011011001001000010000 bitvector of codeword start

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 30 / 22

Huffman application

Recall the motivating toy problem: random access to Huffman coded text

Idea: Use a bitvector to mark beginning of codewords

 Can use select to find ith codeword

Example: abananaandanapple

Huffman code: a = 0, b = 11100, d = 11101, e = 11110, l = 11111, n = 10, p = 110

C = 01110001001000101110101001101101111111110 concatenation of codewords

B = 11000011011011101000011011001001000010000 bitvector of codeword start

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 30 / 22

Huffman application

Recall the motivating toy problem: random access to Huffman coded text

Idea: Use a bitvector to mark beginning of codewords

 Can use select to find ith codeword

Example: abananaandanapple

Huffman code: a = 0, b = 11100, d = 11101, e = 11110, l = 11111, n = 10, p = 110

C = 01110001001000101110101001101101111111110 concatenation of codewords

B = 11000011011011101000011011001001000010000 bitvector of codeword start

Note: support for constant-time rank/select only needs o(n) bits on top of B.

But would ideally not want to store B! (only C)

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 30 / 22

Huffman application

Recall the motivating toy problem: random access to Huffman coded text

Idea: Use a bitvector to mark beginning of codewords

 Can use select to find ith codeword

Example: abananaandanapple

Huffman code: a = 0, b = 11100, d = 11101, e = 11110, l = 11111, n = 10, p = 110

C = 01110001001000101110101001101101111111110 concatenation of codewords

B = 11000011011011101000011011001001000010000 bitvector of codeword start

Note: support for constant-time rank/select only needs o(n) bits on top of B.

But would ideally not want to store B! (only C)

Can compute micro-array contents of B on-the-fly!

store number of leading 0s in micro array lg lgn bits per micro array o(n)

when we need a micro array, reconstruct, from C and Huffman code (skipping suffix of first codeword)

can be done in O(1) via a lookup table

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 30 / 22

Other Succinct Data Structures

flourishing field

succinct data structures exist for various other objects

sequences

permutations

some classes of trees

some classes of graphs

some geometric data structures

found wide adoption in practice

through programming libraries

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 31 / 22

Outline
1 Hypersuccinct Trees1 Hypersuccinct Trees

2 Two Favorite Trees2 Two Favorite Trees

3 Further interests3 Further interests

4 Bonus: Range-Minimum Queries4 Bonus: Range-Minimum Queries

5 Bonus: Succinct Bitvectors5 Bonus: Succinct Bitvectors

6 Full results6 Full results

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 31 / 22

6 Full results6 Full results

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 31 / 22

Universal Codes

Information theory

Study family of sources (e.g., memoryless sources for text, Markov sources)

within that family: try to find universal codes (e.g., Lempel-Ziv compression)

matches entropy of source up to l. o.t.

without knowing source

 widely applicable compression method

 (Often) (relatively) simple algorithms whose analysis isn’t.

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 32 / 22

Universal Codes

Information theory

Study family of sources (e.g., memoryless sources for text, Markov sources)

within that family: try to find universal codes (e.g., Lempel-Ziv compression)

matches entropy of source up to l. o.t.

without knowing source

 widely applicable compression method

 (Often) (relatively) simple algorithms whose analysis isn’t.

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 32 / 22

Universal Codes

Information theory

Study family of sources (e.g., memoryless sources for text, Markov sources)

within that family: try to find universal codes (e.g., Lempel-Ziv compression)

matches entropy of source up to l. o.t.

without knowing source

 widely applicable compression method

 (Often) (relatively) simple algorithms whose analysis isn’t.

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 32 / 22

Binary Tree Sources

(Binary) tree source S = prob. distribution over tree shapes with a filter, e.g., tree of size n

 PS[t] = probability that S emits t

Studied sources:

memoryless type process: P[t] =
∏

v∈t

p(type(v)) type(v) ∈
{

, , ,
}

kth-order type process: type prob. depends on types of k ancestors

fixed-size source: for target size n, draw subtree sizes of root from given distribution

 P[t] =
∏

v∈t

p(subtree_size(v.left), subtree_size(v.right))

fixed-height source: same with height of tree

uniform subclass source: uniform distribution over subclass of trees

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 33 / 22

Binary Tree Sources

(Binary) tree source S = prob. distribution over tree shapes with a filter, e.g., tree of size n

 PS[t] = probability that S emits t

Studied sources:

memoryless type process: P[t] =
∏

v∈t

p(type(v)) type(v) ∈
{

, , ,
}

kth-order type process: type prob. depends on types of k ancestors

fixed-size source: for target size n, draw subtree sizes of root from given distribution

 P[t] =
∏

v∈t

p(subtree_size(v.left), subtree_size(v.right))

fixed-height source: same with height of tree

uniform subclass source: uniform distribution over subclass of trees

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 33 / 22

Binary Tree Sources

(Binary) tree source S = prob. distribution over tree shapes with a filter, e.g., tree of size n

 PS[t] = probability that S emits t

Studied sources:

memoryless type process: P[t] =
∏

v∈t

p(type(v)) type(v) ∈
{

, , ,
}

kth-order type process: type prob. depends on types of k ancestors

fixed-size source: for target size n, draw subtree sizes of root from given distribution

 P[t] =
∏

v∈t

p(subtree_size(v.left), subtree_size(v.right))

fixed-height source: same with height of tree

uniform subclass source: uniform distribution over subclass of trees

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 33 / 22

Binary Tree Sources

(Binary) tree source S = prob. distribution over tree shapes with a filter, e.g., tree of size n

 PS[t] = probability that S emits t

Studied sources:

memoryless type process: P[t] =
∏

v∈t

p(type(v)) type(v) ∈
{

, , ,
}

kth-order type process: type prob. depends on types of k ancestors

fixed-size source: for target size n, draw subtree sizes of root from given distribution

 P[t] =
∏

v∈t

p(subtree_size(v.left), subtree_size(v.right))

fixed-height source: same with height of tree

uniform subclass source: uniform distribution over subclass of trees

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 33 / 22

Binary Tree Sources

(Binary) tree source S = prob. distribution over tree shapes with a filter, e.g., tree of size n

 PS[t] = probability that S emits t

Studied sources:

memoryless type process: P[t] =
∏

v∈t

p(type(v)) type(v) ∈
{

, , ,
}

kth-order type process: type prob. depends on types of k ancestors

fixed-size source: for target size n, draw subtree sizes of root from given distribution

 P[t] =
∏

v∈t

p(subtree_size(v.left), subtree_size(v.right))

fixed-height source: same with height of tree

uniform subclass source: uniform distribution over subclass of trees

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 33 / 22

Binary Tree Sources

(Binary) tree source S = prob. distribution over tree shapes with a filter, e.g., tree of size n

 PS[t] = probability that S emits t

Studied sources:

memoryless type process: P[t] =
∏

v∈t

p(type(v)) type(v) ∈
{

, , ,
}

kth-order type process: type prob. depends on types of k ancestors

fixed-size source: for target size n, draw subtree sizes of root from given distribution

 P[t] =
∏

v∈t

p(subtree_size(v.left), subtree_size(v.right))

fixed-height source: same with height of tree

uniform subclass source: uniform distribution over subclass of trees

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 33 / 22

Binary Tree Sources

(Binary) tree source S = prob. distribution over tree shapes with a filter, e.g., tree of size n

 PS[t] = probability that S emits t

Studied sources:

memoryless type process: P[t] =
∏

v∈t

p(type(v)) type(v) ∈
{

, , ,
}

kth-order type process: type prob. depends on types of k ancestors

fixed-size source: for target size n, draw subtree sizes of root from given distribution

 P[t] =
∏

v∈t

p(subtree_size(v.left), subtree_size(v.right))

fixed-height source: same with height of tree

uniform subclass source: uniform distribution over subclass of trees

Universal codes can’t exist in full generality! can be different for every n!

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 33 / 22

Tame Binary Tree Sources

Family of sources Restriction Redundancy

Memoryless node-type — O(n log logn/ logn)

kth-order node-type — O((nk+n log logn)/ logn)

Monotonic fixed-size
p(ℓ, r) > p(ℓ+ 1, r) and p(ℓ, r) > p(ℓ, r+ 1)

for all ℓ, r ∈ N0
O(n log logn/ logn)

Worst-case fringe-dominated fixed-size

n>B(t) = o(n/ log logn)

for all t with P[t] > 0;
n>B(t) = #nodes with subtree size in Ω(logn)

O
(

n>B(t) log logn

+n log logn/ logn
)

Weight-balanced fixed-size

∑

n
c
6ℓ6n−n

c

p(ℓ− 1,n− ℓ− 1) = 1

for constant c > 3
O(n log logn/ logn)

Average-case fringe-dominated fixed-size
E[n>B(T)] = o(n/ log logn)

for random T generated by source S
O
(

n>B(t) log logn

+n log logn/ logn
)

Monotonic fixed-height
p(ℓ, r) > p(ℓ+ 1, r) and p(ℓ, r) > p(ℓ, r+ 1)

for all ℓ, r ∈ N0
O(n log logn/ logn)

Worst-case fringe-dominated fixed-height
n>B(t) = o(n/ log logn)

for all t with P[t] > 0
O
(

n>B(t) log logn

+n log logn/ logn
)

Tame uniform-subclass

class of trees Tn(P) is hereditary
(i.e., closed under taking subtrees),

n>B(t) = o(n/ log logn) for t ∈ Tn(P),
lg |Tn(P)| = cn+ o(n) for constant c > 0,
heavy-twigged: if v has subtree size Ω(logn),

v’s subtrees have size ω(1)

o(n)

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 34 / 22

Optimally compressed binary tree distributions

Tree-Shape Distribution Entropy Corresponding Source

(Uniformly random) binary trees of size n 2n
Memoryless binary,
monotonic fixed-size binary

(Uniformly random) full binary trees of size n n Memoryless binary

(Uniformly random) unary paths of length n n Memoryless binary

(Uniformly random) Motzkin trees of size n 1.585n Memoryless binary

BSTs generated by insertions in random order 1.736n Monotonic fixed-size binary

Binomial random trees P(lgn)n a) Average-case fringe-dominated fixed-size binary

Almost paths — b) Monotonic fixed-size binary

Random fringe-balanced binary search trees — b) Average-case fringe-dominated fixed-size binary

(Uniformly random) AVL trees of height h — b) Worst-case fringe-dominated fixed-height binary

(Uniformly random) weight-balanced binary trees of size n — b) Worst-case fringe-dominated fixed-size binary

(Uniformly random) AVL trees of size n 0.938n Uniform-subclass

(Uniformly random) left-leaning red-black trees of size n 0.879n Uniform-subclass

a) Here P is a nonconstant, continuous, periodic function with period 1.

b) No (concise) asymptotic approximation known.

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 35 / 22

Icons made by Freepik, Gregor Cresnar, Those Icons, Smashicons, Good Ware, Pause08, and Madebyoliver from www.flaticon.com.

Vector graphics from Pressfoto, brgfx, macrovector and Jannoon028 on freepik.com
Other photos from www.pixabay.com.

Sebastian Wild On the combinatorics of space-efficient data structures 2022-11-15 36 / 22

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/authors/gregor-cresnar
https://www.flaticon.com/authors/those-icons
https://www.flaticon.com/authors/smashicons
https://www.flaticon.com/authors/good-ware
https://www.flaticon.com/authors/pause08
https://www.flaticon.com/authors/madebyoliver
www.flaticon.com
https://www.freepik.com
www.pixabay.com

	§1 - Hypersuccinct Trees
	1 - Three roots
	2 - Succinct Binary Trees
	3 - Tree-Covering Data Structures
	4 - Properties of Micro Trees
	5 - Example Partitioning
	6 - Farzan-Munro Algorithm
	7 - Hypersuccinct code

	§2 - Two Favorite Trees
	8 - Two Examples
	9 - Random BSTs – Outline
	10 - Random BSTs – Source-specific code
	11 - Random BSTs – Source-specific code length
	12 - Random BSTs – Monotonicity
	13 - Random BSTs – Conclusion
	14 - Weight-Balanced BSTs
	15 - Weight-Balanced BSTs – Problems
	16 - Weight-Balanced BSTs – Great-Branching Code

	§3 - Beyond Trees
	17 - How about graphs?
	18 - How to count graphs?
	19 - Space-efficient graph representations
	20 - Questions
	21 - Summary
	22 -

	§4 - Bonus: Range-Minimum Queries
	23 - Range-maximum queries (RMQ)
	24 - Hypersuccinct RMQ

	§5 - Bonus: Succinct Bitvectors
	25 - Computing over compressed data
	26 - A motivating example
	27 - Bitvectors
	28 - Rank Index for Bitvector
	29 - How to find rank
	30 - Huffman application
	31 - Other Succinct Data Structures

	§6 - Full results
	32 - Universal Codes
	33 - Binary Tree Sources
	34 - Tame Binary Tree Sources
	35 - Optimally compressed binary tree distributions

