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Set–Up

Consider a collection (possibly infinite) of distinct containers
in which balls are to be inserted. All containers have the same
finite capacity r .

Each arriving ball is to be placed in one of the containers,
randomly (according to a given distribution) and
independently of other balls. However, if the container
selected for a given ball is already full, the ball lands in the
overflow basket. We are interested in the number of balls in
that basket as the number balls grows.
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Relation to Existing Literature

The notion of the overflow appeared, for example, in the
context of collision resolution for hashing algorithms, see a
discussion in section: “External searching” in Knuth, vol. 3..

When r = 1 this is he number of balls falling in the occupied
urns and is sometimes called the number of collisions and,
when distribution of balls among urns is uniform, has been
used e.g. to test the random number generators (Knuth,
vol. 2).

Ramakrishna (1987) and Monahan (1987) compute the
probability that there is no overflow (under the uniformity
assumption), and the estimation of the probability of unusually
large overflow is in Dupuis, Nuzman, Whiting (2004).

As a byproduct of their methods Hwang, Janson (2008)
gave sufficient conditions for the Poissonian limit when r = 1.
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For n ≥ 1, let Xn,1, . . . ,Xn,n be iid random variables with
values in Mn ⊂ N := {1, 2, . . .} and let pn,m = P(Xn,1 = m),
m ∈ Mn, be the common distribution among the boxes for
each of the n balls in the nth experiment.

Let for any n ∈ N, k ∈ {1, . . . , n, n + 1} and m ∈ Mn

Nn,k(m) =
k−1∑
j=1

I{Xn,j=m},

be the number of balls among first k − 1 balls falling in the
mth box.

Let r ≥ 1 be the (same) capacity of every container. Then

Yn,k =
∑

m∈Mn

I{Xn,k=m} I{Nn,k (m)≥r} = I{kth ball is in overflow}.

Then, the size of the overflow, Vn,r , can be written as

Vn,r =
n∑

k=1

Yn,k .
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We will be interested in the asymptotic distribution of Vn,r , as
n→∞. We show that there are regimes related to pn,m
under which the limiting distribution of Vn,r (possibly
standardized) is either Poisson or normal. These regimes are
defined through the limiting behavior of the sequences

n p∗n and nr+1
∑

m∈Mn

pr+1
n,m ,

where p∗n = supm∈Mn
pn,m.

Notation:
E prn,Xn

:=
∑

m∈Mn

pr+1
n,m .

(We’ll also use E prXn
.)
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Poissonian asymptotics

Theorem

Let Pois(µ) denote the Poisson distribution with parameter
µ ∈ (0,∞). If

nr+1E prXn
→ (r + 1)!µ

and
n p∗n → 0,

then Vn,r
d→ Pois(µ).
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Examples:

The uniform case: pn,j = 1
mn

, for j ∈ Mn = {1, . . . ,mn},

mn =

⌊
an

r+1
r

⌋
, a > 0. Then

np∗n = n
mn
→ 0 and nr+1 E prXn

= nr+1

mr
n
→ 1

ar .

Thus, Vn,r
d→ Pois(µ), with µ = 1

ar (r+1)! .

The geometric case: pn,j = pn(1− pn)j , j ≥ 0.Take
pn = a

n(r+1)/r , a > 0. Then np∗n = npn → 0 and

nr+1E prXn
= (npn)r+1

1−(1−pn)r+1 → ar

r+1

Thus, Vn,r
d→ Pois(µ), with µ = ar

(r+1)!(r+1) .
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Main technical result:

Theorem (Beśka, K lopotowski,S lomiński (1982))

Let {Yn,k , k = 1, . . . , n; n ≥ 1} be an array of non-negative
random variables, adapted to a row-wise increasing array of
σ-fields {Fn,k , k = 1, . . . , n; n ≥ 1}, and let η > 0. If

max
1≤k≤n

E (Yn,k |Fn,k−1)
P→ 0,

n∑
k=1

E (Yn,k |Fn,k−1)
P→ η

and, for any ε > 0,

n∑
k=1

E (Yn,k I{|Yn,k−1|>ε}|Fn,k−1)
P→ 0,

then
∑n

k=1 Yn,k
d→ Pois(η).
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Normal convergence

Theorem (proof based on martingale CLT)

Assume that λ := lim sup np∗n <∞ and nr+1E prXn
→∞. Then

Vn,r−EVn,r√
VarVn,r

d→ N(0, 1),

Γλ(r+1)
r ! ≤ lim inf

EVn,r

nr+1E prXn
≤ lim sup

EVn,r

nr+1E prXn
≤ 1

(r+1)! ,

e−2λ

(r+1)! ≤ lim inf
VarVn,r

nr+1 E prXn
≤ lim sup

VarVn,r

nr+1 E prXn
≤ 1

r ! .

where, for p > 0 and x ≥ 0, we have set

Γx(p) :=

∫ 1

0
tp−1 e−xt dt.

Note: λ = 0 implies lim
EVn,r

nr+1E prXn
= 1

(r+1)! since Γ0(r + 1) = 1
r+1 .
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Phase transition

Corollary

Assume that np∗n → 0 and that there exists an r ∈ {1, 2, . . .} such
that

nr+1E prXn
→ (r + 1)!µ.

Then

1
Vn,s−EVn,s√

VarVn,s

d→ N(0, 1), for s ∈ {1, . . . , r − 1};

2 Vn,r
d→ Pois(µ);

3 Vn,s
P→ 0, for s ∈ {r + 1, r + 2, . . .}.

Follows from: if u < t then nt+1EptXn
≤ (np∗n)t−unu+1EpuXn

.
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More on the asymptotics of the expected value

Assume that np∗n is bounded and that λ = lim sup np∗n > 0. Let Xn

denote the set of distinct values among
pn,k
p∗n

, k ∈ Mn. Define
random variables Tn, n ≥ 1, as follows:

P (Tn = x) = 1
E prXn

∑
k∈K(x)

pr+1
n,k , x ∈ Xn,

where, for x ∈ Xn we let K (x) = {k ∈ Mn : x =
pn,k
p∗n
}.

Definition

We say that the sequence (Xn)n≥1 is in the class T (r) if the
sequence (Tn)n≥1 converges in distribution.

For (Xn)n≥1 ∈ T (r), if limn→∞ np∗n exists and is positive then

H(r , λ) := lim
n→∞

EVn,r

nr+1E prXn

also exists.
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Specifically,

Theorem

Let (Xn)n≥1 be in T (r) and np∗n → λ > 0. Then

H(r , λ) = 1
(r+1)!

∫
1F1(r ; r + 2; −λu) νr (du),

where pFq is the generalized hypergeometric function defined by

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑
k=0

(a1)k ···(ap)k
(b1)k ···(bq)k

zk

k! ,

where (a)0 = 1 and (a)k = a(a + 1) · · · (a + k − 1) for k ≥ 1 and
νr is the limiting distribution of (Tn).
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Examples

uniform distribution: pn,j = 1
mn

, j ∈ Mn = {1, . . . ,mn},
n ≥ 1. Assume that n

mn
→ λ > 0. Then, Tn = 1 P-a.s., and

thus νr = δ1. Hence,

H(r , λ) = 1F1(r ;r+2;−λ)
(r+1)! .

geometric distribution: pn,j = pn(1− pn)j ,
j ∈ Mn = {0, 1, . . .}, n ≥ 1,(here p∗n = pn). Assume
npn → λ > 0. Then νr (du) = (r + 1)ur I[0,1](u) du and

H(r , λ) = 2F2(r ,r+1;r+2,r+2;−λ)
(r+1)! .
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Riemann ζ distribution: Let pn,j = j−αn

ζ(αn) , j ∈ Mn = {1, 2, . . .},
and αn > 1, n ≥ 1. Assume that n(αn − 1)→ λ > 0. Then

νr =
∑
k≥1

k−(r+1)

ζ(r+1) δ1/k .

and

H(r , λ) = 1
(r+1)!

∫
R

1F2(r ; r + 1, r + 2;−λx)µr (dx),

where µr is the probability measure defined on (0,∞) by

µr (dx) = 1
r !ζ(r+1)

x r

ex−1 dx .

Thank you!
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