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Abstract

We prove that, for every 0 ≤ t ≤ 1, the limiting distribution of (the
scale-normalized number of key comparisons used by the celebrated
algorithm QuickQuant to find the tth quantile) − 1 in a randomly
ordered list has a Lipschitz continuous density function ft that is
bounded above by 10.

Furthermore, this density ft(x) is positive for every x > min{t, 1− t}
and,

uniformly in t, enjoys superexponential decay in the right tail.

We also prove that the survival function 1− Ft(x) =
∫∞
x ft(y)dy and

the density function ft(x) both have the right tail asymptotics
exp[−x ln x − x ln ln x + O(x)].

We use the right-tail asymptotics to bound (for large but finite n)
large deviations for the number of key comparisons used by
QuickQuant (not previously studied, to the best of our knowledge).

Our results also enable perfect simulation from the limiting
distribution.
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Motivation for studying limiting QuickQuant density

A cousin of QuickSort, the algorithm QuickQuant has a wide gap
between the average case and the worst case for the cost (crudely
measured by the number of key comparisons) required to run the
algorithm. Asymptotically, it takes Θ(n) comparisons on average to find a
fixed sample quantile among n keys, while the number of comparisons can
be as large as Θ(n2). This provides motivation for studying the
distribution of the number of comparisons: We want to know how unlikely
it is to get an unusually large number of comparisons.

Our goal is to prove that the limiting distribution has a density and study
the smoothness and decay properties of the continuous limiting
QuickQuant density. We also utilize information about the limiting
QuickQuant random variable Z (t) (to be defined later) to study right-tail
large deviations for QuickQuant.
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QuickSelect and QuickQuant

The sample-quantile-finding algorithm QuickQuant is very closely
related to the algorithm QuickSelect (also known as Find).

QuickSelect(n,m) is an algorithm designed to find a number of
rank m in an unsorted list of size n.

It works by recursively applying the same partitioning step as
QuickSort to the sublist that contains the item of rank m until the
pivot we pick has the desired rank.

Here is an example of QuickSelect(9, 3). The number of
comparisons used is 8 + 4 + 2 + 1 = 15.
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9 keys: X1=88, X2=46, X3=90, X4=78, X5=98, X6=24, X7=60, X8=47, X9=95
sorted: X6=24, X2=46, X8=47, X7=60, X4=78, X1=88, X3=90, X9=95, X5=98 

X3 = 90

X5 = 98X6 = 24

X9 = 95

X1 = 88

X2 = 46

X4 = 78

X7 = 60

X8 = 47
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Expected number of comparisons

Let Cn,m denote the number of comparisons needed by
QuickSelect(n,m). Knuth (1972) finds the formula

ECn,m = 2 [(n + 1)Hn − (n + 3−m)Hn+1−m − (m + 2)Hm + (n + 3)]

for the expectation. For each n, this is symmetric and unimodal in m, with
minimum value

ECn,1 = ECn,n = 2(n − Hn) ∼ 2n (as n→∞)

when m = 1 or m = n and (when, for example, n is odd) maximum value

ECn,(n+1)/2 = 2
[
(n + 1)Hn − (n + 5)H n+1

2
+ (n + 3)

]
∼ 2(1 + ln 2)n.
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Coupling the number of comparisons

The algorithm QuickQuant(n, t) refers to QuickSelect(n,mn) such
that the ratio mn/n converges to a specified value t ∈ [0, 1] as
n→∞. Note that then

ECn,mn ∼ 2

[
1 + t ln

(
1

t

)
+ (1− t) ln

(
1

1− t

)]
n.

Fill and Nakama (2013, Adv. in Appl. Prob.) give a natural (and
obvious!) way to couple the number of key comparisons Cn,m for all n
and m using a single infinite stream U1,U2, . . . of i.i.d. Uniform(0, 1)
random variables and taking the pivot at each stage to be the first Ui

of relevance. (Only U1, . . . ,Un are used for a given value of n.) To
maximize efficiency, I won’t present details for this. However, I will
discuss a similar construction in the limiting regime.
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Limiting process: Grübel and Rösler (1996)

Grübel and Rösler (1996, Adv. in Appl. Probab.) treated all
quantiles t simultaneously by letting mn ≡ mn(t). Specifically, they
considered the normalized process Xn defined by

Xn(t) := n−1Cn,bntc+1 for 0 ≤ t < 1, Xn(t) := n−1Cn,n for t = 1.
(1)

They proved that this process, viewed as an element in D[0, 1] (the
space of càdlàg functions on the unit interval endowed with the
Skorohod topology) has a weak-convergence limit as n→∞.

We can characterize the value of the limiting process at argument t as
follows. Let L0(t) := 0 and R0(t) := 1. For k ≥ 1, inductively define

τk(t) := inf{i : Lk−1(t) < Ui < Rk−1(t)},
Lk(t) :=1(Uτk (t) < t)Uτk (t) + 1(Uτk (t) > t) Lk−1(t),

Rk(t) :=1(Uτk (t) < t)Rk−1(t) + 1(Uτk (t) > t)Uτk (t).
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U1=.88, U2=.46, U3=.90, U4=.78, U5=.98, U6=.24, U7=.60, U8=.47, U9=.95

L0 = 0 R0 =1

L1 = 0 R1 =.88

L2 = .46 R2 =.88

L3 = .46 R3 =.78

L4 = .46 R4 = .60

Cost to find population median value .50: 
Z(1/2) = (1-0) + (.88-0) + (.88-.46) + (.78-.46) + (.60-.46) + …

U3 = .90

U5 = .98U6 = .24

U9 = .95

U1 = .88

U2 = .46

U4 = .78

U7 = .60

U8 = .47
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Grübel and Rösler (1996)

The limiting process can then be expressed as

Z (t) :=
∞∑
k=0

[Rk(t)− Lk(t)] = 1 +
∞∑
k=1

[Rk(t)− Lk(t)]. (2)

We can replace the subscript bntc+ 1 in (1) by any mn(t) with
1 ≤ mn(t) ≤ n such that mn(t)/n→ t as n→∞, and then the
normalized random variables n−1Cn,mn(t) converge (univariately, in
distribution) to the random variable Z (t) for each t ∈ [0, 1].

stochastic dominance: Consider a sequence of independent random
variables V1,V2, . . . , each uniformly distributed on (1/2, 1), and let

V := 1 +
∞∑
n=1

n∏
k=1

Vk . (3)

Then the random variables Z (t), 0 ≤ t ≤ 1, are all stochastically
dominated by V . Furthermore, V enjoys superexponential decay in
the right tail. Also, every Z(t) stochastically dominates Z(0).
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Some literature on the limiting distribution of variants of
QuickSelect

QuickRand

Mahmoud, Modarres and Smythe (1995)

QuickQuant

Kodaj and Móri (1997)
Grübel (1998)

QuickMin

Hwang and Tsai (2002)
perfect simulation: F and Huber (2010)
perfect simulation: Devroye and Fawzi (2010)

QuickQuant symbol comparisons

F and Nakama (2013)

Worst-case Find

F and Matterer (2014)
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Fundamental Qs about the (univariate) distn. of Z (t)

We address the following fundamental questions concerning the
(univariate) distribution of J(t) := Z (t)− 1:

What is the support of the distribution?

Does J(t) have a density? If so, what are its properties regarding
boundedness, smoothness, and tail decay?

Can one simulate perfectly from the distribution of J(t)?

To our knowledge, these questions have previously been addressed only in
two cases:

QuickMin: J(0)
L
= J(1) has a Dickman distribution, with support

[0,∞); and

QuickRand: The law of J(T ), where T is independent of J and
distributed Uniform(0, 1), is the convolution square of the same
Dickman distribution.
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Existence of limiting QuickQuant density function

Main idea: The convolution of two distributions has a density (with
respect to Lebesgue measure) when at least one of them does.

Let ∆k(t) := Rk(t)− Lk(t), so that J(t) =
∑∞

k=1 ∆k(t). We can
show that the conditional distribution of ∆1(t) + ∆2(t) given
(L3(t),R3(t)) = (l3, r3) has a density fl3,r3 , for each (l3, r3).

But the sequence (Lk(t),Rk(t))k≥0 is clearly a (time-homogeneous)
Markov chain, so the random vector (L1(t),R1(t), L2(t),R2(t)) and
the random sequence (L4(t),R4(t), L5(t),R5(t), . . . ) are conditionally
independent given (L3(t),R3(t)).
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Existence of limiting QuickQuant density function

Remark!:

Question. Why don’t we proceed more simply and condition on
(L1,R1) rather than on (L2,R2)?

Answer. When 0 < l2 < r2 < 1, the conditional distribution of ∆1

given (L2,R2) = (l2, r2) does not have a density with respect to
Lebesgue measure. Indeed, when (L2,R2) = (l2, r2) with
0 < l2 < r2 < 1, the value of (L1,R1) must be either (l2, 1) or (0, r2),
and so the conditional distribution of ∆1 = R1 − L1 given
(L2,R2) = (l2, r2) concentrates on the two points 1− l2 and r2.
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Existence of QuickQuant density function

Theorem 2.2

For each t ∈ [0, 1], the limiting QuickQuant random variable
J(t) := Z (t)− 1 defined at (2) has a density ft satisfying

ft(x) =

∫
P((L3(t),R3(t)) ∈ d(l3, r3)) · hl3,r3(x),

where hl3,r3 is a conditional density for J(t) given (L3(t),R3(t)) = (l3, r3):

hl3,r3(x) := P(J(t) ∈ dx | (L3(t),R3(t)) = (l3, r3))/ dx

=

∫
fl3,r3(x − y)P(Y ∈ dy | (L3(t),R3(t)) = (l3, r3))

with Y = Y (t) :=
∑∞

k=3 ∆k(t).
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The conditional density fl3,r3

The following lemmas present explicit one-dimensional (when L3 = 0 or
R3 = 1) and two-dimensional (when 0 < L3 < R3 < 1) densities for the
distribution of (L3,R3) ≡ (L3(t),R3(t)) and for the conditional density
fl3,r3 of ∆1 + ∆2 ≡ ∆1(t) + ∆2(t) given (L3,R3) = (l3, r3).

Lemma 2.4 (Case 1: l3 = 0 and r3 < 1)

If l3 = 0 and r3 < 1, then

P(L3 = 0,R3 ∈ dr3) = 1
2 (ln r3)2 1(t<r3<1) dr3

and

fl3,r3(x) =
2(

ln 1
r3

)2 1

x

[
ln

(
x − r3
r3

)
1(2r3≤x<1+r3)

+ ln

(
1

x − 1

)
1(1+r3≤x<2)

]
.
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The conditional density fl3,r3 (cont.)

Lemma 2.4 (Case 2: r3 = 1 and l3 > 0)

If r3 = 1 and l3 > 0, then

P(L3 ∈ dl3,R3 = 1) = 1
2 (ln(1− l3))2 1(0<l3<t) dl3

and

fl3,r3(x) =
2(

ln 1
1−l3

)2 1

x

[
ln

(
l3 + x − 1

1− l3

)
1(2−2l3≤x<2−l3)

+ ln

(
1

x − 1

)
1(2−l3≤x<2)

]
.
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The conditional density fl3,r3 (cont.)

Lemma 2.4 (Case 3: 0 < l3 < t < r3 < 1)

If 0 < l3 < t < r3 < 1, then

g(l3, r3) :=
P(L3 ∈ dl3,R3 ∈ dr3)

dl3 dr3

=

[
1

l3(1− l3)
+

1

r3(1− r3)

]
ln

(
1

r3 − l3

)
−
(

1

l3
+

1

1− r3

)[
ln

(
1

r3

)
+ ln

(
1

1− l3

)]
and
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The conditional density fl3,r3 (cont.)

Lemma 2.4 (Case 3: 0 < l3 < t < r3 < 1 (cont.))

fl3,r3(x) = 1/g(l3, r3)

×
[
1(2−2l3≤x<2−l3)

1

1− l3

1

x − 1 + l3
+ 1(2r3≤x<r3+1)

1

r3

1

x − r3

+1(1+r3−2l3≤x<1+r3)
1

x + 1− r3

2

x + r3 − 1

+1(2r3−l3≤x<2−l3)
2

x + l3

1

x − l3

+1(2r3−l3≤x<2r3)
1

r3

1

x − r3
+ 1(1+r3−2l3≤x<2−2l3)

1

1− l3

1

x + l3 − 1

]
.
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Properties of ft

In our paper, we have established these properties of ft for 0 < t < 1:

The densities ft are uniformly bounded by 10.

Each ft is Lipschitz continuous.

support: ft(x) is positive precisely for x > min{t, 1− t}.
ft(x) are jointly continuous for (t, x) ∈ (0, 1)× R.

In “the left tail”, each ft is infinitely differentiable, strictly increasing,
strictly concave, and strictly log-concave.

In the right tail, ft(x) = exp[−x ln x − x ln ln x + O(x)].

Further, explicit bounds on three ingredients, namely,

(i) the densities ft ,

(ii) the Lipschitz constants for the densities, and

(iii) the Kolmogorov–Smirnov distance (used also for the right-tail
asymptotics of ft) between the scaled number of comparisons used by
QuickQuant and Z (t)

enable perfect simulation from the distribution of Z (t).
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Boundedness of ft for 0 ≤ t ≤ 1

Theorem 3.1 (Boundedness of the QuickQuant densities)

The densities ft are uniformly bounded by 10 for 0 < t < 1.

Fixing t ∈ (0, 1), the conditional density satisfies the bound
fl3,r3(x) ≤ bt(l3, r3) with E[bt(L3,R3)] <∞.

Dominated convergence theorem guarantees that ft is bounded above
by some finite number (depending on t).

Using knowledge of the stochastically dominating random variable V
defined in (3), we are able to construct a bound that is uniform in t.

The bound 10 is not sharp. We conjecture that ft is bounded by e−γ

for 0 < t < 1, where γ is the Euler–Mascheroni constant (and is the
largest value of the continuous Dickman density f0).
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Uniform continuity of ft for 0 < t < 1

Theorem 4.4 (Uniform continuity)

For 0 < t < 1, the density function ft : R→ [0,∞) is uniformly
continuous.

Recall that ft(x) = E[hL3,R3(x)] with

hl3,r3(x) =

∫
fl3,r3(x − y)P(Y ∈ dy | (L3(t),R3(t)) = (l3, r3)).

The conditional densities fl3,r3(x) are right continuous functions of x .

The conditional law of Y =
∑∞

k=3 ∆k given (L3,R3) has a density
(with respect to Lebesgue measure) by the fact that J has a density.

The collection of discontinuity points x of fl3,r3(x) has zero measure.

The conditional densities fl3,r3(x) vanish for x < 0 and for sufficiently
large x .

It follows by dominated convergence theorem that ft is uniformly
continuous.
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Positivity of ft for 0 < t < 1

Theorem 7.1 (Positivity)

For each 0 < t < 1, the continuous density ft satisfies

ft(x) > 0 if and only if x > min{t, 1− t}.

Since ft is (uniformly) continuous, we immediately know ft(x) = 0 if
x ≤ min{t, 1− t}.
The distribution function Ft has support [min{t, 1− t},∞).

Let 0 < l < r < 1.The contributions to the densities from the cases
{L1 = L2 = 0,R2 = r} and {L1 = L2 = l ,R2 = r} provide lower
bounds to ft . For example,

ft(x) ≥ P(L2(t) = 0, J(t) ∈ dx)/dx .
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Superexponential decay of ft in the right tail, for 0 < t < 1

Theorem 6.1 (Superexponential decay bound)

For all 0 < t < 1 and any θ > 0 we have

ft(x) < 4θ−1e2θm(θ)e−θx

for x ≥ 3, where m is the (everywhere finite) moment generating function
of the random variable V defined at (3).

Since we know the densities ft are bounded by 10 by Theorem 5.1, for any
θ > 0, by choosing the coefficient Cθ := max{10e3θ, 4θ−1e2θm(θ)}, we
can extend the bound to x ∈ R as

ft(x) ≤ Cθe
−θx for x ∈ R and 0 < t < 1.
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Superexponential decay of ft in the right tail, for 0 < t < 1
(cont.)

Recall that ft(x) = E[hL3,R3(x)] with

hl3,r3(x) =

∫
fl3,r3(x − y)P(Y ∈ dy | (L3(t),R3(t)) = (l3, r3)).

The conditional distribution of Y (t)/(r3 − l3) given (L3,R3) = (l3, r3)
is the unconditional distribution of Z ( t−l3

r3−l3 ). Thus we have

hl ,r (x) =

∫
z
fl ,r (x − (r − l)z)P

(
Z

(
t − l

r − l

)
∈ dz

)
.

Using exponential tilting, we define the probability measure
µt,θ(dz) := mt(θ)−1eθz P(Z (t) ∈ dz).

For every 0 < t < 1, the moment generating function mt(θ) of Z (t)
is bounded above by m(θ) when θ ≥ 0.
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“Left-tail” behavior of ft

Theorem 8.2 (“Left-tail” behavior of ft)

(a) Fix t ∈ (0, 1/2). Then ft(t + tz) has the uniformly absolutely
convergent power series expansion

ft(t + tz) =
∞∑
k=1

(−1)k−1ckz
k

for z ∈ [0,min{t−1 − 2, 1}), where for k ≥ 1 the coefficients

ck :=

∫ 1

0
(1− w)k−1 E[2− w + J(w)]−(k+1) dw ,

not depending on t, are strictly positive, have the property that 2kck is
strictly decreasing in k, and satisfy

0 < (0.0007)2−(k+1)(k + 1)−2 < ck < 2−(k+1)k−1(1 + 2−k) < 0.375 <∞.
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“Left-tail” behavior of ft (cont.)

Theorem 8.2 (“Left-tail” behavior of ft (cont.))

(b) Fix t = 1/2. Then ft(t + tz) has the uniformly absolutely convergent
power series expansion

ft(t + tz) = 2
∞∑
k=1

(−1)k−1ckz
k

for z ∈ [0, 1).
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Lipschitz continuity of ft for 0 < t < 1

Theorem 7.4 (Lipschitz continuity)

For each 0 < t < 1, the density function ft is Lipschitz continuous.

Fix t ∈ (0, 1) and z , x ∈ R with z > x . The difference ft(z)− ft(x)
depends on the values of fl3,r3(z − y)− fl3,r3(x − y) for the various
possible values of y ∈ R.

For any 0 ≤ l < r ≤ 1 with (l , r) 6= (0, 1), the function fl ,r (x) is
Lipschitz in x on the intervals corresponding to each of its indicators.

Using the fact that fl3,r3 is bounded above by bt(l3, r3) together with
the superexponential bound on ft , we can conclude the Lipschitz
continuity of ft .

The Lipschitz constant Λt is bounded by
Λt = Λ[t−1 ln t][(1− t)−1 ln(1− t)] for some constant Λ <∞, which
is finite for t ∈ (0, 1).
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Right-tail asymptotics

Theorems 9.2 and 10.1 (Right-tail asymptotics of distribution
function)

Uniformly in 0 < t < 1, for x > 1 the distribution function Ft for J(t)
satisfies

1− Ft(x) = exp[−x ln x − x ln ln x + O(x)].

The moment generating function mt of Z (t) is dominated by the
moment generating function m of V .

We establish an integral equation for m and use similar ideas as for
QuickSort in F & Hung (2019, ANALCO, Prop. 1.1; see also 2019,
EJP) to bound m. The right-tail asymptotic upper bound for 1− Ft
follows as a Chernoff bound.

The matching right-tail asymptotic lower bound for 1− Ft follows
from the fact that Z (t) stochastically dominates the
Dickman-distributed random variable Z (0).
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Right-tail asymptotics (cont.)

Theorems 9.3 and 10.2 (Right-tail asymptotics of density function)

For each fixed 0 < t < 1 we have

ft(x) = exp[−x ln x − x ln ln x + O(x)] as x →∞.

The right-tail asymptotics of ft are derived by using an integral
equation for the densities and the right-tail asymptotics of the
distribution functions.

The upper bound holds uniformly in t ∈ (0, 1) for x > 4. We don’t
know whether the lower bound is uniform in t.
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Right-tail large deviations for QuickQuant

Consider any sequence 1 ≤ mn(t) ≤ n such that mn(t)/n→ t as n→∞.
Let δn,t := |n−1mn(t)− t|+ n−1, and denote the normalized number of
key comparisons of QuickSelect(n,mn(t)) by Cn(t) := n−1Cn,mn(t).

Lemma 11.1 (K–S distance)

Let dKS(·, ·) be Kolmogorov–Smirnov (KS) distance. Then

dKS(Cn(t),Z (t)) = exp

[
−1

2
ln

1

δn,t
+

1

2
ln ln

1

δn,t
+ O(1)

]
.

Kodaj and Móri (1997, Studia Sci. Math. Hungar., Cor. 3.1) bound
the convergence rate of Cn(t) to its limit Z (t) in the Wasserstein
d1-metric, and we extend their result to KS distance.
The lemma is then a consequence of Fill and Janson (2002,
J. Algorithms, Lemma 5.1), which bounds KS distance in terms of
Wasserstein (or, more generally, dp) distance when one of the two
distributions [here, Z (t)] has a bounded density function.
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Right-tail large deviations for QuickQuant (cont.)

Theorem 11.2 (Large deviations for QuickQuant)

Fix t ∈ [0, 1] and abbreviate δn,t as δn. Let (ωn) be any sequence diverging
to +∞ as n→∞ and let c > 1. For integer n ≥ 3, consider the interval

In :=

[
c ,

1

2

ln δ−1n

ln ln δ−1n

(
1− ωn

ln ln δ−1n

)]
.

(a) Uniformly for x ∈ In we have

P(Cn(t) > x) = (1 + o(1))P(Z (t) > x) as n→∞. (4)

(b) If xn ∈ In for all large n, then

P(Cn(t) > xn) = exp[−xn ln xn − xn ln ln xn + O(xn)]. (5)
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Right tail large deviations for QuickQuant (cont.)

Consider the particular choice mn(t) = bntc+ 1 of the sequences (mn(t))
for t ∈ [0, 1), with mn(1) = n. In this case, large-deviation upper bounds
based on tail estimates of the limiting Ft have broader applicability than as
described in Theorem 11.2 above and are easier to derive, too. The reason
is that, by Kodaj and Móri (1997, op. cit., Lemma 2.4), the random
variable Cn(t) is stochastically dominated by its continuous counterpart
Z (t). Then uniformly in t ∈ [0, 1], we have

P(Cn(t) > x) ≤ P(Z (t) > x) ≤ exp[−x ln x − x ln ln x + O(x)]

for x > 1; there is no restriction at all on how large x can be in terms of n
or t, and even in the most extreme tail the upper-bound logarithmic
asymptotics are of the correct order (but not with the correct coefficient).
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Perfect simulation from the distribution Ft (0 < t < 1)

Fix t ∈ (0, 1). Let Gn denote the distribution of n−1Cn,mn − 1, assuming
mn = bnt + 1

2c ≥ 1, and let J ≡ J(t) and f ≡ ft . We can show that there
are finite constants K1,K2,K3 and positive sequences (δn) and (εn), all
explicitly identifiable, satisfying

(P1) E J4 ≤ K1;

(P2) f is bounded by K2;

(P3) the Lipschitz constant Λ for f satisfies Λ ≤ K3; and

(P4) “semi-local limit theorem”: the sequences (δn) and (εn) vanish in
the limit as n→∞, and∣∣∣∣Gn(x + (δn/2))− Gn(x − (δn/2))

δn
− f (x)

∣∣∣∣ ≤ εn.
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Explicit identification

We can choose K1 = 196, K2 = 10, and

K3 = λ[t−1 ln t−1 + (1− t)−1 ln(1− t)−1] with λ = 64000,

and, with K4 = 29 [arising from quantitative sharpening of the Wasserstein
distance bound in Kodaj and Móri (1997, Cor. 3.1)],

δn := 2

(
8
K2K4

K 2
3

ln n

n

)1/4

, εn :=

(
8K2K

2
3K4

ln n

n

)1/4

.

Density functions for QuickQuant James Allen Fill (joint work with Wei-Chun Hung) 35



The perfect sampling algorithm

I have no time today to describe in detail the perfect sampling
algorithm or to prove its validity. However, . . .

The algorithm is based on classical von Neumann rejection sampling.

Many of the ideas are discussed in Devroye, Nonuniform random
variate generation, 1986, Chapter VII. In short, (P1)–(P3) are used to
produce a suitable proposal density g from which perfect sampling is
(both fairly elementary and) computationally simple, and (P4) is used
to get arbitrarily fine approximations to the values of f /g in order to
decide whether to accept or reject the proposed sample from g .

The same ideas [and precisely the same sort of ingredients as
(P1)–(P4)] were used by Devroye, F, & Neininger (2000, ECP) to
produce a perfect sampling algorithm for the QuickSort limit
distribution.
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Conclusion

We prove that the limiting QuickQuant(t) distributions have density
functions ft that are uniformly bounded for 0 < t < 1.

The density ft(x) is Lipschitz continuous and positive precisely for
x > min{t, 1− t}.
We derive left-tail and right-tail behavior of the density functions and
establish large deviation results for QuickQuant.

We show how to sample perfectly from the distribution with density
ft .

The differentiability of ft is still an open problem.

THAT’S ALL FOR TODAY!

Density functions for QuickQuant James Allen Fill (joint work with Wei-Chun Hung) 37



Integral equations for Ft and for ft , for 0 < t < 1

Proposition 5.5 (Integral equation of Ft)

The distribution functions (Ft) satisfy the following integral equation for
0 ≤ t ≤ 1 and x ∈ R:

Ft(x) =

∫
l∈(0,t)

F t−l
1−l

(
x

1− l
− 1

)
dl +

∫
r∈(t,1)

F t
r

(x
r
− 1
)
dr .

Proposition 5.7 (Integral equation of ft)

The continuous density functions (ft) satisfy the following integral
equation for 0 < t < 1 and x ∈ R:

ft(x) =

∫
l∈(0,t)

(1− l)−1f t−l
1−l

(
x

1− l
− 1

)
dl +

∫
r∈(t,1)

r−1f t
r

(x
r
− 1
)
dr .
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Joint continuity of ft(x) for (t, x) ∈ (0, 1)× R

Corollary 7.12 (Joint continuity)

The density ft(x) is jointly continuous in (t, x) ∈ (0, 1)× R.

The Lipschitz continuity of ft for t ∈ (0, 1) implies that, for any
0 < η < 1/2, the family {ft : t ∈ [η, 1− η]} is a uniformly
equicontinuous family.

By a converse to Scheffé’s theorem due to Boos (1985), for each
0 < t < 1 we have fu → ft uniformly as u → t.
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