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INPUT: A set of n multidimensional data points + an
associative query

OUTPUT: Data points matching the query
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In this talk

Two variants of multidimensional trees:

and

Analysis of the expected and the
expected cost of

Trees are randomly built from n points where each
coordinate x; of a data point x is independently and
uniformly drawn from [0, 1]

4/36



Standard K-d trees (Bentley, 1975)
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Internal Path Length and Partial Match

K-d trees provide efficient (on expectation) support for dynamic
insertions, exact searches and several associative queries

We focus here on:
(IPL)
cost of building the tree
cost of a successful search =1 + %
(PM) queries
most basic associative query: find all points matching a
query with non-specified coordinates
a fundamental block for the analysis of other associative
queries (orthogonal range, nearest neighbour queries, .. .)
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Partial match queries

A (RPM) is a K-dimensional
tuple 9 = (qo, 91, ---,9k_1)) Where each g; € [0, 1] U {x}
The coordinates g; € [0, 1] are drawn from
the same distribution as the coordinates of the data
points
s = the in a query
q; we assume 0 < s < K
: to report all data points x = (xg, ..., Xk_1) in
the tree such that x; = g; whenever q; #



Example of a random partial match query
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Known results

IPL ~ ckninn

RPM = ©(n%),a = a(s, K)

Family IPL (ck) RPM («)
s=1, s=K/2,
K=2 K—s>| K=2 K — oo
Standard K-d trees 2 2 0.56155 0.56155
Relaxed K-d trees 2 2 0.618 0.618
Squarish K-d trees 2 2 0.5 0.5
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Median K-d trees and hybrid median K-d trees

In median and hybrid median K-d trees we choose the
discriminant of each node aiming at building more balanced
trees

Median K-d trees: choose as discriminant of each node
the coordinate that is closest, after renormalization, to the
center of the region associated to the node ( )

Hybrid median K-d trees: use the median rule but only with
coordinates that haven’t been used in the current path,
until a full permutation of discriminants has been used
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Median K-d trees

Introduced in Pons’s master thesis (2010)

When a new data point X = (xo, ..., Xk_1) is inserted in the
leaf associated to region R = [(g, Ug] X - - [{x_1, Uk_1]
( ) the discriminant j is chosen as follows

A=ty
u —¥¢; 2

that is, the coordinate such that x; is closest, after
renormalization, to the center

j=arg min0§i<K {
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Example of a median K-d tree
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Hybrid median K-d trees

Hybrid median K-d trees also introduced by Pons in 2010,
For an arbitrary dimension K > 2, the rule to assign the
discriminants is the following

Nodes at levels £ = 0 (mod K) discriminate w.r.t. the

median rule applied to all K coordinates

Nodes at levels £ = j (mod K), 0 < j < K, discriminate

w.r.t. the median rule applied to all the coordinates not used

as discriminant by any of its j — 1 immediate ascendants
Discriminants along any path from the root to a leaf form a
sequence of permutations of order K, except perhaps for
the last part of the path, which will contain only < K
distinct discriminants
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Example of a hybrid median K-d tree
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Median K-d trees: Expected IPL

~ Theorem (Pons, 2010)

The expected IPL of random median K-d tree of size n
is
In = cl™®nin n + o(nlog n)

where
—1
K -1 :
lmedl _ _KzK[AK+ Z( I. >(—1)’B,-+1] ,
0<i<K

with B; = —(A; +1/(j + 1)?) and

2 1+({+1)In2
- j — _
Aj_/0 Zlinzdz = (£ 1)
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Hybrid median K-d trees: Expected IPL

- Theorem N

The expected IPL of a random hybrid median K-d tree
of size n is
I, = c{?m]nln n+ o(nlog n)

where
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Expected IPL: the coefficients cx

~ Proposition

For all K > 2,
1] C[med] < c[hm] <2= C[r/x] C[sqr] C[std]
B [ > e and ™ > P,

. hm] . [med]
lim C[ = lim ¢ = —
K—oo K K—o0 K In2

17/36



Expected IPL: the coefficients cx
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Median K-d trees: Random partial matches

The expected cost of a RPM query with s specified co-
ordinates out of K, 0 < s < K, in a random median K-d

tree of size n is:
Pn = @(na),

where « € [0, 1] is the unique real solution of:
o—« K(1 _p) + Kp
K+ a 2(K+a+1)
+K2K{ p B(1/2; K+1, a4 1)+(1-p) B(1/2; K, a+1) } =1,

with p = s/K and B(z; a,b) = [4 t3~ (1 — t)>~" dt denot-
ing the incomplete Beta function
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Median K-d trees: Random partial matches

Although it is not possible to give a closed form for « in
terms of K and p it is possible to compute numerical
approximations with any desired degree of accuracy

It is possible also to find the value of « as K grows and
p = 8/K is fixed. From known asymptotic expansions of
the incomplete Beta function we get o — log,(2 — p) as
K — oo and p = s/K fixed.
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Median K-d trees: Random partial matches
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Hybrid median K-d trees: Random partial
matches

The expected cost of a RPM query with s specified
coordinates out of K, 0 < s < K, in a random hybrid
median K-d tree of size n is

P = o(n"),
where « € [0, 1] is the unique real solution of
det(/ — ®(x)) =0,

where ®(x) = [ Q(z)z* dz and Q(z) is the shape ma-
trix corresponding to a system of d divide-and-conquer
recurrences, d = (K —s+1)(s+1) -1
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Hybrid median K-d trees: Random partial

matches
S
K |1 2 3 4 5
2 | 0.546 - - -
(0.562)
3 | 0.697 0.368 -
(0.716) (0.395)
4 | 0.771 0.53 0.275
(0.79) (0.562) (0.306)
5 10.815 0.624 0.425 0.218
(0.833) (0.656) (0.463) (0.25)
6 | 0.845 0.685 0.522 0.354 0.181
(0.862) (0.716) (0.562) (0.395) (0.211)

In parentheses the values for standard K-d trees
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A comparison of various K-d trees

Family

IPL (ck)

K=2 K-

Partial match ()
s=1, s=K/2,
K=2 K — oo

Standard K-d trees
Relaxed K-d trees
Squarish K-d trees

2 2
2 2
2 2

0.56155 0.56155
0.618 0.618
0.5 0.5

Median K-d trees [this paper]
Hybrid median K-d trees [this paper]

1.66 — 1.443
1.814 — 1.443

0.602 — 0.585
0.546 — 0.5*

* conjectured
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Sketch of the proofs

In order to prove previous theorems we follow these steps:

Set up recurrences for the expected IPL and expected cost
of PM in median K-d trees

Solve the resulting divide-and-conquer recurrences by
means of Roura’s Continuous Master theorem (CMT)
For hybrid median K-d trees is more complicated since it
requires considering

—not covered by CMT
We have generalized the CMT to solve systems of D&C

recurrences such as those in the analysis of hybrid median
K-d trees
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The Continuous Master Theorem

CMT considers divide-and-conquer recurrences of the following
type:
Fn:tn‘f‘zwmj":j) n=ng

0<j<n

for some positive integer ng, a function t,, called the toll
function, and a sequence of weights wp,; > 0. The weights must
satisfy two conditions:

W, = Zog@ww > 1 (at least one recursive call).
Zy = Zo<j<n% : “’W”n’ < 1 (the size of the subinstances is a
fraction of the size of the original instance).

The next step is to find a shape function w(z), a continuous
function approximating the discrete weights wp, ;.
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The Continuous Master Theorem

Given the sequence of weights w,;, w(z) is a shape
function for that set of weights if

fo z)dz > 1
there exists a constant p > 0 such that

G+1)/n
= / w(2) dz| = O(n)
i

A simple trick that works very often:

CU(Z) = nimmn ann
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The Continuous Master Theorem

~ Theorem (Roura, 1997)
Let Fp satisfy the recurrence

Fpn=1t+ Z Wn,ijv
0<j<n

with t, = ©(n?(log n)®), for some constants a > 0 and b > —1, and let w(z)

be a shape function for the weights wp ;. LetH = 1 — f01 w(z)z2dz and H'
—(b+ 1)f01 w(z)z2Inz dz. Then

I+ o(tn) ifH >0,
Fn= 19 2% Inn+o(tplogn) if H =0 and ' #0,
o(n%) ifH < 0,

where x = « is the unique non-negative solution of the equation

,
1 7/ w(z)z¥dz = 0.
0
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Analyzing median K-d trees

Example:
I = expected internal path lenght of a random median K-d tree

h=n=1+>" mnj-(+h),lb=0

0<j<n
where 7, is the probability that the left subtree of a random
median K-d tree of size nis of size j,0 <j < n

[ F@+2)K - 2+ 1)¥] it j < |n/2],
Mk [@(n—) = 1)K = (2(n—j) - 2)K]  otherwise.
CMT solves “easily” the complicated recurrence above with the

shape function
(2) = K2KZK=1 if z<1/2,
T\ K2K( — 2K itz > 1)2.
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Analyzing hybrid median K-d trees

For hybrid median K-d trees you need to set up systems of
divide-and-conquer recurrences.

Example:

Pf,”ﬁ) = expected cost of a random PM in a random hybrid
median K-d tree of size n such that there are only / (1 </ < K)
possible choices for the discriminant at the root and ¢ of these i
coordinates are specified in the query (0 < ¢ < s)
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Analyzing hybrid median K-d trees

Ifi>1and 0 < ¢ < ithen

(7€) (S (7 (1) ST oi-1-1)
i, i i + i—1,0—
P, 1—1—7 E <7Tn’j+ﬂ' ) P:

nn—1—j J
= n+1
-6 @, W) (i-1.0)
- i i i—1,
+— > (it T )P,

=0

with w,(?")- as in median K-d trees (but only / available

coordinates, not K)

Other cases (i = 1, i = ¢, ¢ = 0) are handled similarly
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Analyzing hybrid median K-d trees

For example, with K =3 and s =2 we must setupa 5 x 5
system of linear recurrences and define an Q

1 2 3 4 5
1 0 w2 w3 o 0
2 0 0 0o wed o
Q=3 0 0 0 w4 wEd
4 (w0 0 0 0
5 \w@H 0o 0 0 0
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Analyzing hybrid median K-d trees

1

w51

)

4 5

©) + W;sn 1 ) — Algorithm #1 with cost P( 2 calls recursively

,

o (2 = shape function for the weight %(‘n

algorithm #2 with cost Pj(2,2)

w(1:3) = shape function for the weight %’—1( ®) 4 3

o) F T 1_/) — Algorithm #1 (P )caIIs recursively

algorithm #3 (P/(Z’U)
...
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Conclusions and final remarks

Both median and hybrid median K-d trees are simple and
easy to implement, and neither requires significant extra
space

Both are more balanced than most other well known
variants of K-d trees; their expected IPL is ~ cxnln n with
cxk <2forall K >2,and cxk — 1/In2 (optimal) as K — oo
Their expected cost for PM is ©(n“); forany sand K > 2
we have

1 / S
< [hm] [std] [med] [rix] — ° 9-82 _1
(0} < « <« <« = 5 8K

1

Xl o
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Conclusions and final remarks

Hybrid median K-d trees outperfom standard, median and
relaxed K-d trees and we conjecture that they approach
the optimal exponent « = 1 — s/K as K gets larger

The special structure of the linear systems of recurrences
for the IPL and RPM of hybrid median K-d trees can be
exploited to find the constants cx and the equations
satisfied by the exponents «(s, K); we have developed a
limited extension of the CMT to cope with these systems of
recurrences

This work is a new example of the power of the CMT as a
fundamental tool in the analysis of algorithms, for example
to analyze the expected cost of quicksort, quickselect,
binary search trees, . ..but it hasn’t found its way into our
algorithms textbooks yet

35/36



Please like # and subscribe to my channel

just kidding. .. THANK YOU FOR YOUR ATTENTION!
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