
HyperBit

A Memory-Efficient Alternative to HyperLogLog

with thanks to Jérémie Lumbroso and Svante Janson

Robert Sedgewick

Princeton University

[work in progress]

Philippe Flajolet 1948‑2011

Philippe Flajolet, mathematician and computer scientist extraordinaire

A scientific basis for studying algorithms

• Implement and run on realistic inputs 
[Is the algorithm effective in the real world?].

• Develop a mathematical model

• Use model to formulate hypotheses on performance

• Test hypotheses with real-world experiments

• Iterate

Algorithm science (Knuth, 1960s—present; Sedgewick, 1980s—present)

￼3

DRAWBACKS: Model can be unavailable, unrealistic, or excessively detailed and complicated. 

BENEFIT: Enabled creation of our software infrastructure. Sedgewick

Knuth

aka "analysis of algorithms"

Mathematical analysis can be prohibitively challenging.

A mathematical basis for studying algorithms

• Analyze worst-case cost 
[takes model out of the picture].

• Use O-notation for upper bounds 
[takes detail out of analysis].

• Classify algorithms by these costs.

Theory of Algorithms (AHU, 1970s; CLRS, 1980s—present)

￼4

DRAWBACKS: Analysis is typically unsuitable for scientific studies. 
 Algorithms are often not useful in the real world.

 (Elementary facts that are often overlooked!)

BENEFIT: Enabled a new Age of (Theoretical) Algorithm Design.

Aho, Hopcroft
and Ullman

Cormen, Leiserson,

Rivest, and Stein

Analytic combinatorics context

￼5

Drawbacks of AHU/CLRS approach:

• Worst-case performance may not be relevant.

• Cannot use O- upper bounds to predict or compare.

Analytic combinatorics can provide a basis for scientific studies.

• A calculus for developing models.

• Universal laws that encompass the detail in the analysis.

• Applies to many sciences, not just algorithm science.

Drawbacks of Knuth/Sedgewick approach:

• Model may be unrealistic.

• Analysis may be detailed and difficult.

OF

Hyperbit: A Memory-Efficient Alternative to HyperLogLog

•The problem

•A solution

•Another approach

•Final frontier

109.108.229.102

pool-71-104-94-246.lsanca.dsl-w.verizon.net

117.222.48.163

pool-71-104-94-246.lsanca.dsl-w.verizon.net

1.23.193.58

188.134.45.71

1.23.193.58

gsearch.CS.Princeton.EDU

pool-71-104-94-246.lsanca.dsl-w.verizon.net

81.95.186.98.freenet.com.ua

81.95.186.98.freenet.com.ua

81.95.186.98.freenet.com.ua

CPE-121-218-151-176.lnse3.cht.bigpond.net.au

117.211.88.36

msnbot-131-253-46-251.search.msn.com

msnbot-131-253-46-251.search.msn.com

pool-71-104-94-246.lsanca.dsl-w.verizon.net

gsearch.CS.Princeton.EDU

CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com

CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com

118-171-27-8.dynamic.hinet.net

cpe-76-170-182-222.socal.res.rr.com

203-88-22-144.live.vodafone.in

￼7

Cardinality counting

Q. In a given stream of data values, how many different values are present?

Reference application. How many unique visitors in a web log ?

State of the art in the wild for decades. Sort, then count.

SELECT
DATE_TRUNC(‘day’,event_time),
COUNT(DISTINCT user_id),
COUNT(DISTINCT url) 
FROM weblog

SQL (1970s-present)

log.07.f3.txt

6 million strings

% sort -u log.07.f3.txt | wc -l

1112365

UNIX (1970s-present)

“unique”

"Optimal" solution. Use a hash table. order of magnitude faster than sort-based solution

Q. I can’t use a hash table. The stream is much too big to fit all values in memory. Now what?

typical applications
where exact count is
not really necessary

￼8

Cardinality estimation

Practical cardinality estimation problem

• Make one pass through the stream.

• Use as few operations per value as possible

• Use as little memory as possible.

• Produce as accurate an estimate as possible.

How many unique
visitors to my website?

How many different IP
addresses hit this node?

How many different values
for a database join?

To fix ideas on scope (202x): Think of billions of streams each having trillions of values.

How many different cars
passed here this year?

A. Look for a way to estimate the value of N, the number of distinct values in the stream.

This talk. Estimate N to within 10% accuracy 99% of the time using thousands of bits of memory.

￼9

Posted on Facebook, 2018

"Computing the count of distinct elements in massive data sets is often necessary but computationally intensive.

Say you need to determine the number of distinct people visiting Facebook in the past week using a single machine.

With a traditional SQL query on the Facebook data sets this would take days and terabytes of memory. "

OF

Hyperbit: A Memory-Efficient Alternative to HyperLogLog

•The problem

•A solution

•Another approach

•Final frontier

￼11

Probabilistic counting with stochastic averaging (PCSA)

Contributions

• Introduced problem

• Idea of streaming algorithm

• Idea of “small” sketch of “big” data

• Detailed analysis that yields tight bounds on accuracy

• Full validation of mathematical results with experimentation

• Practical algorithm that has remained effective for decades

Bottom line.  
Quintessential example of the effectiveness of algorithm science and analytic combinatorics.

Flajolet and Martin, Probabilistic Counting Algorithms for Data Base Applications FOCS 1983, JCSS 1985.

Philippe Flajolet 1948‑2011

￼12

Starting point: three integer functions

Def. r (x) is the number of trailing 1s in the binary representation of x.

Def. R(x) = 2r

(x)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r(x) R (x) R (x)2
1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 2 1 0

1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 1

0 1 1 0 1 0 0 1 0 1 0 1 1 1 1 1 5 32 1 0 0 0 0 0

Bit-whacking magic:

R(x) is easy to compute.

3 instructions

on a typical

computer

position of rightmost 0

0 1 1 0 1 0 0 1 0 1 0 1 1 1 1 1 x
1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 ~x
0 1 1 0 1 0 0 1 0 1 1 0 0 0 0 0 x + 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ~x & (x + 1)

Def. p (x) is the number of 1s in the binary representation of x.
for bit-whacking magic

for this and r(x)

see Knuth volume 4A

00011000011010111100111111110010

00110100010001111100010100111010

01101001001000011100110100110011

01101001001000011100110100110011

01101001001000011100110100110011

01001110111100011000011101001101

01101001001000011100110100110011

01110101010110110000000011011010

01101001001000011100110100110011

01101001001000011100110100110011

01100001000111001001110010100000

00110100010001111100010100111010

01000011110111111101010110110001

01111000100111110111000111001000

01111000100111110111000111001000

01110101010110110000000011011010

00110100010001111100010100111010

00010000111001101000111010010011

00001001011011100000010010010111

00001001011011100000010010010111

00111000101001001011010101001100

00111000101001001011010101001100

01101001001000011100110100110011

00001000011101100110110010100101

00001001011011100000010010010111

00001001001011010110111101111110

￼13

First step: Hash the values

Transform value to a “random” computer word.

• Compute a hash function that transforms  
data value into a 32- or 64-bit value.

• Cardinality count is unaffected (with high probability).

• Built-in capability in modern systems.

• Allows use of fast machine-code operations.

21st century: use 64 bits (quintillions of values)
20th century: use 32 bits (millions of values)

Bottom line: Do cardinality estimation on streams of (binary) integers, not arbitrary value types.

“Random” except for the fact
that some values are equal.

State-of-the-art-"Mersenne twister" uses only a few machine-code instruictions.

￼14

Initial hypothesis

No problem!

• We always validate hypotheses in algorithm science.

• End goal is development of algorithms that are useful in practice.

• It is the responsibility of the designer to validate utility before claiming it.

• After decades of experience, discovering a performance problem due to 
a bad hash function would be a significant research result.

Fact. Hash values are not random.

Implication. Need to run experiments to validate any hypotheses about performance.

Unspoken bedrock principle of algorithm science. 
 Experimenting to validate hypotheses is WHAT WE DO!

Hypothesis. Hash values are "sufficiently" random.

￼15

Probabilistic counting (Flajolet and Martin, 1983)

Maintain a single-word sketch that summarizes a data stream x0, x1, …, xi, …

• For each xi in the stream, update sketch by bitwise or with R(xi) [2r

(xi)] .

• Use r(sketch) [number of trailing 1s in the sketch] to estimate lg Ni

• Equivalently, use R(sketch)[2r

(sketch)] to estimate Ni

• Refine with a correction factor, informed by analysis

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sketch 0 0 0 0 0 0 0 1 0 1 1 0 1

xi 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1

R(xi) 0 1 0 0 0 0

sketch | R(xi) 0 0 0 0 0 0 0 1 0 1 1 0 1

typical sketch

Ni ~ 106

leading bits almost surely 0 trailing bits almost surely 1

estimate of lg Ni

r(xi) = 4

estimate of N 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ￼= 220 ≈ 106

R(xi) = 16

no change 
(usually)

￼16

Example Probablilistic Counting actions (32-bit values)

x R(x) sketch

00110010100000000110011110111111 1000000 0000000000000000110011111111111
1000000

no change with high probability 0000000000000000110011111111111

00110010100000000011111111111111 100000000000000 0000000000000000110011111111111
100000000000000

no change with low probability 0000000000000000110011111111111

00110010100000000111111111111111 1000000000000000 0000000000000000110011111111111
1000000000000000

sketch changes but not r(sketch) 0000000000000001110011111111111

00110010100000000100011111111111 100000000000 0000000000000000110011111111111
100000000000

sketch changes and r(sketch) increases by 1 0000000000000000110111111111111

00110010100000000100111111111111 1000000000000 0000000000000000110111111111111
1000000000000

sketch changes and r(sketch) increases by more than 1 0000000000000000111111111111111

estimate of N 1000000000000000

￼17

Probabilistic counting (Flajolet and Martin, 1983)

public long R(long x)

{ return ~x & (x+1); }

public long estimate(Iterable<String> stream)

{

 long sketch;

 for (s : stream)

 sketch = sketch | R(hash(s));

 return R(sketch);

}

Early example of “a simple algorithm whose analysis isn’t”

Maintain a sketch of the data

• A single word

• OR of all values of R(hash(s))

• Return smallest value not seen

Q. (Martin) Estimate seems a bit low. How much?

A. (unsatisfying) Obtain correction factor empirically.

A. (Flajolet) "Without the analysis, there is no algorithm!"

 /.77351;
with correction for bias

￼18

Mathematical analysis of probabilistic counting

Theorem. The expected number of trailing 1s in the PC sketch is

and P is an oscillating function of lg N of very small amplitude.

Proof (omitted).

1980s: Flajolet tour de force

1990s: trie parameter

21st century: standard analytic combiantorics

In other words. In PC code, R(sketch)/.77351 is an unbiased statistical estimator of N.

lg(�N) + P(lgN) + o(1) where 𝜙 ≐�.77351

Kirschenhofer, Prodinger, and Szpankowski

Analysis of a splitting process arising in probabilistic counting and other related algorithms, ICALP 1992.

highest null

left of

right spine

trailing 1s

in sketch

Jacquet and Szpankowski

Analytical depoissonization and its applications, TCS 1998.

￼19

Validation of probabilistic counting

Flajolet and Martin: Result is “typically one binary order of magnitude off.”

Of course! (Always returns a power of 2 divided by .77351.)

Quick experiment. 100,000 31-bit random values (20 trials)

 16384/.77351 = 21181

 32768/.77351 = 42362

 65536/.77351 = 84725

 …

Need to incorporate more experiments for more accuracy.

Hypothesis. Expected value returned is N for random values from a large range.

￼20

Stochastic splitting

Goal: Perform M independent PC experiments and average results.

Alternative 3: Stochastic splitting

• Use second hash to divide stream into 2m independent streams

• Use PC on each stream, yielding 2m sketches .

• Compute mean = average number of trailing bits in the sketches.

• Return 2mean/.77531.

key point: equal values

all go to the same stream

Alternative 1: M independent hash functions? No, too expensive.

Alternative 2: M-way alternation? No, bad results for certain inputs.

01 02 03 04 01 02 03 04

01 01

02 02

03 03

04 04

01 02 03 04

01

02

03

04

10 11 39 21

09 07 07

11

23 22 22

31

11 09 07 23 31 07 22 22
21

39

10 11
original paper calls it

stochastic "averaging"

later developments

make "splitting" more apt

￼21

Probabilistic counting with stochastic splitting in Java

public static long estimate(Iterable<Long> stream, int M)

{

 long[] sketch = new long[M];

 for (long x : stream)

 {

 int k = hash2(x, M);

 sketch[k] = sketch[k] | R(hash(x));

 }

 int sum = 0;

 for (int k = 0; k < M; k++)

 sum += r(sketch[k]);

 double mean = 1.0 * sum / M;

 return (int) (M * Math.pow(2, mean)/.77351);

}

Idea. Stochastic splitting

• Use second hash to split into
M = 2m independent streams

• Use PC on each stream,
yielding 2m sketches .

• Compute mean = average #
trailing 1 bits in the sketches.

• Return 2mean/.77351.

Q. Accuracy obviously improves as M

 increases, but by how much?

￼22

Theoretical analysis of PCSA

Definition. The relative accuracy is the standard deviation of the estimate divided by the actual value.

Proof (another quintessential Flajolet tour de force, omitted). 
 
 
 

Theorem (paraphrased to fit context of this talk).

Under appropriate assumptions about the hash function, PCSA

• Uses 64M bits.

• Produces estimate with a relative accuracy close to .0.78/

�
M

exact analysis via Mellin transform techniques

precise asymptotic estimates

uniform bounds computed with MACSYMA

109.108.229.102

pool-71-104-94-246.lsanca.dsl-w.verizon.net

117.222.48.163

pool-71-104-94-246.lsanca.dsl-w.verizon.net

1.23.193.58

188.134.45.71

1.23.193.58

gsearch.CS.Princeton.EDU

pool-71-104-94-246.lsanca.dsl-w.verizon.net

81.95.186.98.freenet.com.ua

81.95.186.98.freenet.com.ua

81.95.186.98.freenet.com.ua

CPE-121-218-151-176.lnse3.cht.bigpond.net.au

117.211.88.36

msnbot-131-253-46-251.search.msn.com

msnbot-131-253-46-251.search.msn.com

pool-71-104-94-246.lsanca.dsl-w.verizon.net

gsearch.CS.Princeton.EDU

CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com

CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com

118-171-27-8.dynamic.hinet.net

log.07.f3.txt

￼23

Preliminary validation of PCSA

Hypothesis. Accuracy is as specified for the hash functions we use and the data we have.

Q. Is PCSA effective? A. ABSOLUTELY!

Validation (Flajolet and Martin, 1985). Extensive reproducible scientific experiments (!)

Validation (RS, this morning).

% java PCSA 6000000 1024 < log.07.f3.txt

1106474

<1% larger than actual value

￼24

is a demonstrably effective approach to cardinality estimation

Summary: PCSA (Flajolet-Martin, 1983)

Q. About how many different values are present in a given stream?

PCSA

• Makes one pass through the stream.

• Uses a few machine instructions per value

• Uses M words to achieve relative accuracy

Open questions

• Better space-accuracy tradeoffs?

• Support other operations?

✓
Results validated through extensive experimentation.

0.78/
�
M

A poster child for AS/AC

“ IT IS QUITE CLEAR that other observable regularities on hashed
values of records could have been used… − Flajolet and Martin

For full details, see "The Story of HyperLogLog: How Flajolet Processed Streams with Coin Flips" J. Lumbroso, 2013.

OF

Hyperbit: A Memory-Efficient Alternative to HyperLogLog

•The problem

•A solution

•A better solution

•Another approach

•Final frontier

Theorem (paraphrased to fit context of this talk).

With strongly universal hashing, PC, for any c >2,

• Uses O(log N) bits.

• Is accurate to a factor of c, with probability at least 2/c.

￼26

We can do better (in theory)

Contributions

• Studied problem of estimating higher moments

• Formalized idea of randomized streaming algorithms

• Won Gödel Prize in 2005 for “foundational contribution”

Alon, Matias, and Szegedy

 The Space Complexity of Approximating the Frequency Moments

 STOC 1996; JCSS 1999.

BUT, no impact on cardinality estimation in practice

• “Algorithm” just changes hash function for PC

• Accuracy estimate is too weak to be useful

• No validation

Replaces “uniform hashing” assumption

with “random bit existence” assumption

???!

￼27

We can do better (in theory)

Theory

of

Algorithms

papers about cardinality estimation

and other streaming algorithms

papers about streaming algorithms

having validated implementations

￼28

We can do better (in theory)

Bar-Yossef, Jayram, Kumar, Sivakumar, and Trevisan

 Counting Distinct Elements in a Data Stream

 RANDOM 2002.

STILL no impact on cardinality estimation in practice

• Infeasible because of high stream-processing expense.

• Big constants hidden in O-notation

• No validation

???!

Contribution

 Improves space-accuracy tradeoff at extra stream-processing expense.

Theorem (paraphrased to fit context of this talk).

With strongly universal hashing, there exists an algorithm that

• Uses O(M log log N) bits.

• Achieves relative accuracy .O(1/

�
M)

PCSA uses M lg N bits

Theory

of

Algorithms

￼29

We can do better (in theory and in practice)

Contributions

• Presents HyperLogLog algorithm

• Easy variant of PCSA that uses a much smaller sketch

• Idea: Harmonic mean of r() values

• Reduces memory used without extra expense

• Full analysis, fully validated with experimentation

PCSA saves sketches (lg N bits each)
00000000000000000000000001101111

HyperLogLog saves r() values (lglg N bits each)

00100 (= 4)

Flajolet, Fusy, Gandouet, and Meunier

HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm

AofA 2007; DMTCS 2007.

￼30

We can do better (in theory and in practice): HyperLogLog algorithm (2007)

public static long estimate(Iterable<Long> stream, int M)

{

 int[] bytes = new int[M];

 for (long x : stream)

 {

 int k = hash2(s, M);

 int x = hash(s);

 if (bytes[k] < Bits.r(x)) bytes[k] = Bits.r(x);

 }

 double sum = 0.0;

 for (int k = 0; k < M; k++)

 sum += Math.pow(2, -1.0 - bytes[k]);

 return (int) (bias * M * M / sum);

}

Flajolet-Fusy-Gandouet-Meunier 2007

Flajolet, Fusy, Gandouet, and Meunier

HyperLogLog: the analysis of a near-

optimal cardinality estimation algorithm

AofA 2007; DMTCS 2007.

Theorem (paraphrased to fit context of this talk).

Under appropriate assumptions about the hash function, HyperLogLog

• Uses M lg lg N bits (6 in the real world).

• Achieves relative accuracy close to ￼ .1.079/ M

about .709 for M = 64

Idea. Harmonic mean of r() values

• Use stochastic splitting

• Keep track of min(r (x)) for
each stream

• Return harmonic mean.

8-bit bytes (code to pack into

M lglgN bits omitted)

￼31

Memory use for cardinality estimation algorithms with M-way stochastic splitting

Probabilistic Counting

M 64-bit words

HyperLogLog

M 6-bit bytes

HyperBit

M bits

Pictured: M = 128

￼32

HyperLogLog accuracy hypothesis

Theorem (Flajolet, Fusy, Gandouet, and Meunier).  
Let ￼ be the harmonic mean of the sketch computed by HyperLogLog for a stream ￼
having ￼ distinct values when using ￼ substreams. Then the statistic

 ￼ where ￼

is approximately Gaussian with mean ￼ and variance ￼ where ￼ .

HLL(S, M) S
N M

c1MHLL(S, M) c1 =
1

ln 4
≐ 0.721

N σ2 ∼ c2/M c2 = 3 ln 2 − 1 ≐ 1.079

Hypothesis. The reported estimate will be within ￼ of the actual count 99% of the time. 3σ

Consequence. HLL can solve the practical cardinality count problem with 6144 bits.

σ = 3 ln 2 − 1/32 ≐ .032
M = 1024

￼33

HyperLogLog validation I

Experiment. 100 trials for x*10000 inputs for x from 1 to 100 (10000 trials)

one experiment

average of 100 trials

exact cardinality

￼34

HyperLogLog validation II

Histogram of number of estimates between x*2000 and (x+1)*2000

Experiment. 10000 trials for 1 million inputs

hypothesized

distribution

￼35

Posted on Facebook, 2018 (continued)

Computing the count of distinct elements in massive data sets is often necessary but computationally intensive.

Say you need to determine the number of distinct people visiting Facebook in the past week using a single machine.

With a traditional SQL query on the data sets we use at Facebook this would take days and terabytes of memory.

To speed up these queries, we implemented HyperLogLog (HLL) in Presto, a distributed SQL query engine.

HLL works by providing an approximate count of distinct elements.

With HLL, we can perform the same calculation in 12 hours with less than 1 MB of memory.

We have seen great improvements, with some queries being run within minutes.

￼36

Hyperloglog validation in the Real World

S. Heule, M. Nunkesser and A. Hall 

HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm. 

Extending Database Technology/International Conference on Database Theory 2013.

Philippe Flajolet, mathematician and algorithm scientist extraordinaire

OF

Hyperbit: A Memory-Efficient Alternative to HyperLogLog

•The problem

•A solution

•A better solution

•Another approach

•Final frontier

￼38

We can do a bit better (in theory) but not much better

Kane, Nelson, and Woodruff

 Optimal Algorithm for the Distinct Elements Problem, PODS 2010. Upper bound

Lower bound

Theorem (paraphrased to fit context of this talk).

With strongly universal hashing there exists an algorithm that

• Uses O(M + loglog N) bits.

• Achieves relative accuracy .

Not a practical algorithm (never implemented, no validation)

• Tough to beat HyperLogLog’s low stream-processing expense.

• Constants hidden in O-notation not likely to be small (need to be <6)

O(1/
�
M)

Indyk and Woodruff

 Tight Lower Bounds for the Distinct Elements Problem, FOCS 2003.

Theorem (paraphrased to fit context of this talk).

Any algorithm that achieves relative accuracy must use bitsO(1/

�
M) Ω(M)

Open: Does there exist an "optimal" algorithm for the practical cardinality estimation problem?

optimal

Theory

of

Algorithms

￼39

Can we beat HyperLogLog in practice?

Also, results need to be validated through experimentation.

Necessary characteristics of a better algorithm

• Makes one pass through the stream.

• Uses a few dozen machine instructions per value

• Uses a few hundred bits

• Achieves 10% relative accuracy or better

machine instructions

per stream element

memory

bound

memory bound

when N < 264

bits for

10% accuracy

when N < 264

HyperLogLog 20–30 M loglog N 6M 6144

BetterAlgorithm a few dozen cM 2M or 3M a few
thousand

I love HyperLogLog

“ I’ve long thought that there should be a simple algorithm that uses a small constant times M bits…”

− Jérémie Lumbroso

￼40

Krakow, 2016

27th AofA, July 3-8

￼41

Trip to Krakow

￼42

A proposal: HyperBitBit (Sedgewick, 2016)

public static long estimate(Iterable<String> stream, int M)

{

 int T =	0;

 long sketch = 0;

 long sketch2 = 0;

 for (String x : stream)

 {

 long x = hash(s);

 int k = hash2(x, 64);

 if (r(x) > T) sketch = sketch | (1L << k);

 if (r(x) > T + 1) sketch2 = sketch2 | (1L << k);

 if (p(sketch) >= 32)

 { sketch = sketch2; T++; sketch2 = 0; }

 }

 return (int) (Math.pow(2, T + bias + p(sketch)/32.0));

}

Idea.

• T is estimate of

• sketch is 64 indicators 
 whether to increment T

• sketch2 is is 64 indicators 
 whether to increment T 
 by 2

• Update when half the bits 
 in sketch are 1

• correct with p(sketch)

lgN

bias factor (to be determined empirically)
recall that p(x) is the number of 1 bits in x

and bias factor

M = 64 likely to be value of choice

￼43

Example HyperBitBit actions (M=8)

x k(x) r(x) T sketch sketch2
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

1 0 0 … 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 5 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

no change because r(x)<=T 5 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 1 … 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 5 9 5 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

no change because both sketch bits are set

0 0 1 … 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 6 5 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

set sketch bit because r(x)>T 5 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0

1 1 0 … 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 6 7 5 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0

set both sketch bits because r(x)>T+1 5 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0

0 0 0 … 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 0 6 5 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0

set sketch bit because r(x)>T 5 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0

increment T and reset sketches

because half the bits in sketch are set 6 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

estimate of lg Nsubstream

4

trailing 1s

2

￼44

A proposal: HyperBitBit (Sedgewick, 2016)

public static long estimate(Iterable<String> stream, int M)

{

 int T =	0;

 long sketch = 0;

 long sketch2 = 0;

 for (String x : stream)

 {

 long x = hash(s);

 int k = hash2(x, 64);

 if (r(x) > T) sketch = sketch | (1L << k);

 if (r(x) > T + 1) sketch2 = sketch2 | (1L << k);

 if (p(sketch) >= 32)

 { sketch = sketch2; T++; sketch2 = 0; }

 }

 return (int) (Math.pow(2, T + bias + p(sketch)/32.0));

}

Idea.

• T is estimate of

• sketch is 64 indicators 
 whether to increment T

• sketch2 is is 64 indicators 
 whether to increment T 
 by 2

• Update when half the bits 
 in sketch are 1

• correct with p(sketch)

lgN

and bias factor

Q. Does this even work?

Q. What is the bias factor?

￼45

Return trip from Krakow

￼46

HyperBitBit preliminary validation

% java Hash 1000000 < log.07.f3.txt

242601

% java Hash 2000000 < log.07.f3.txt

483477

% java Hash 4000000 < log.07.f3.txt

883071

% java Hash 6000000 < log.07.f3.txt

1097944

Exact values for web log example

% java HyperBitBit 1000000 < log.07.f3.txt

234219

% java HyperBitBit 2000000 < log.07.f3.txt

499889

% java HyperBitBit 4000000 < log.07.f3.txt

916801

% java HyperBitBit 6000000 < log.07.f3.txt

1044043

HyperBitBit estimates

1,000,000 2,000,000 4,000,000 6,000,000

Exact 242,601 483,477 883,071 1,097,944

HyperBitBit 234,219 499,889 916,801 1,044,043

ratio 1.05 1.03 0.96 1.03

. . . after some hacking to settle on bias = 5.4 . . .

It does seem to work!

￼47

Next challenge: analyze HyperBitBit

2016

2017

￼48

Sweden, 2018

Anders Björner
Mireille Bousquet-Mélou

Erik Demaine
Persi Diaconis

Michael Drmota
Ron Graham

Yannis Haralambous
Susan Holmes
Svante Janson

Dick Karp
John Knuth

Svante Linusson
Laci Lovász

Jan Overduin
Mike Paterson

Tim Roughgarden
Martin Ruckert
Bob Sedgewick

Jeffrey Shallit
Richard Stanley

Wojtek Szpankowski
Bob Tarjan

Greg Tucker
Andrew Yao

Colloquium for
Don Knuth’s

80th birthday

Algorithms
Combinatorics
Information

http://knuth80.elfbrink.se

Knuth 80, January 8—10 29th AofA, June 25—29

￼49

HyperBitBit analysis (Janson, 2018)

Key observation: the process obeys a Poisson distribution. 1010011110111011
0001111100000101
0110110110110011
0000000111011111
0101110001000100
0000101001010101
1010101111111100
0001011100110111
1110010000111111
1010110011111100
0110001001100011
0110011100100011
0001000100011100
0100010001110111
0110100000101100
0011011110110000
1111000100111110
0001111100010100
1010001000100011
0010101010111111
1110101110001000
0110000110111101
0101010110110110
1001010101111111

In a data stream with v distinct values

• Pr {a given item has more than T trailing 1s } ￼

• Pr {no item has more than T trailing 1s } ￼
= 1/2T+1

∼ e−v/2T+1

Each HyperBitBit phase begins when T is incremented

• sketch2 is set to 0

• sketch is set to sketch2, say it has qM 0s

• After Mv distinct values (approximately v per stream) are added

• number of 0s in each sketch is binomially distributed

• expected number of 0s in sketch2 is ￼

• expected number of 0s in sketch is ￼

∼ Me−v/2T+2

∼ Mqe−v/2T+1

(1 −
1

2T+1)
v

event: "next item in the data stream
has more than T trailing 1s"

corresponding bit in sketch is 0

￼50

HyperBitBit analysis (continued)

Expected proportion of 0s in sketch2

Expected proportion 0s in sketch

Phase T ends after MvT new values where

Solve for vT

Expected proportion of 0s in sketch2 at that point

THEREFORE

Def. Let qT be the expected proportion of 0s in sketch, at the beginning of phase T.

qT+1 =
1
2qT

e−vT /2T+2

qTe−vT /2T+1

qTe−vT /2T+1 = 1/2

vT = 2T+1 ln(2qT)

e−ln(2qT)/2

!!

Lemma 1. As T increases, proportion of 0s in sketch approaches 2−1/3 (solution of).q = 1/ 2q

q0 1.0000
q1 0.7071
q2 0.8408
q3 0.7711
q4 0.8052
q5 0.7879
q6 0.7966

q7 0.7923

q8 0.7944

q9 0.7933

Def. Let vT be the expected number of values added to each stream during phase T.

Lemma 2. Expected number of values in phase T is MvT ∼ 2Mln 2−1/32T+1 = M ⋅ (4/3)ln 2 ⋅ 2T

q = 2−1/3 ≐ 0.7937

Lemma 2. Expected number of values in phase T is

￼51

HyperBitBit analysis accounting summary

∼ M
4 ln 2

3
2T

Lemma 3. Expected number of values before phase T is

Theorem. When HyperBitBit terminates with 𝜷M 0s in sketch in

phase T, then N/M is ∼ (2 ln 2
3

− 2 ln β)2T

increases from .9242 to 1.8484

as 𝜷 decreases from .7933 to .5

Lemma 4. If there are 𝜷M 0s in the sketch on termination, then the

expected number of values in the last phase is M(ln 2−1/3 − ln β) 2T+1

M
4 ln 2

3 ∑
0≤i<T

2i∼ M
4 ln 2

3
2T

qe−v/2T+1 = β
Mv where v satisfies

q = 2−1/3and

￼52

HyperBitBit validation (?)

estimate is far

too high !!%@#!

OBVIOUSLY the estimate is too high because values with > T+1 zeros are recounted later on.

There are too many recounted values to ignore.

HyperBitBitBit ? No. Would be better, but still a problem.

￼53

Next challenge: estimate the number of recounts in HyperBitBit

2019

20202021

2022

OF

Hyperbit: A Memory-Efficient Alternative to HyperLogLog

•The problem

•A solution

•A better solution

•Another approach

•Final frontier

￼55

A simpler algorithm: HyperBit

public static long estimate(Iterable<String> stream, int M)

{

 int T =	0;

 long sketch = 0;

 for (String x : stream)

 {

 long x = hash(s);

 int k = hash2(x, 64);

 if (r(x) > T) sketch = sketch | (1L << k);

 if (p(sketch) >= 32)

 { T++; sketch = 0; }

 }

 return (int) (Math.pow(2, T)*M* ??);

}

Idea.

• T is estimate of

• sketch is M indicators 
 whether to increment T

• Set a sketch bit when r(x)>T

• Update when half the bits 
 in sketch are 1

• Correct at end with 
bias factor  
that is a function of p(sketch)

bias factor (to be analyzed)

M = 64

Preliminary experimental validation inconclusive—but maybe analyzing this will be informative.

lgN

Insight: We need to estimate all the forgotten values—why bother keeping track of them for T+1 ?

￼56

Example Hyperbit actions (M=8)

x k(x) r(x) T sketch
 7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 0

1 0 0 … 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 4 2 5 1 0 1 0 0 0 0 0

no change because r(x)<=T 5 1 0 1 0 0 0 0 0

1 0 1 … 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 5 9 5 1 0 1 0 0 0 0 0

no change because sketch bit for substream is already set 1 0 1 0 0 0 0 0

0 0 1 … 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 6 5 1 0 1 0 0 0 0 0

set sketch bit for substream because r(x)>T 5 1 0 1 0 0 0 1 0

0 0 0 … 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 0 8 5 1 0 1 0 0 0 1 0

set sketch bit for substream because r(x)>T 5 1 0 1 0 0 0 1 1

half the sketch bits are set so increment T and reset sketch 6 0 0 0 0 0 0 0 0

substream

4

trailing 1s estimate of lg N

￼57

HyperBit analysis

Starting point is the same as for HyperBitBit, but simpler 1010011110111011
0001111100000101
0110110110110011
0000000111011111
0101110001000100
0000101001010101
1010101111111100
0001011100110111
1110010000111111
1010110011111100
0110001001100011
0110011100100011
0001000100011100
0100010001110111
0110100000101100
0011011110110000
1111000100111110
0001111100010100
1010001000100011
0010101010111111
1110101110001000
0110000110111101
0101010110110110
1001010101111111

In a data stream with v distinct values

• Pr {a given item has more than T trailing 1s } ￼

• Pr {no item has more than T trailing 1s } ￼
= 1/2T+1

∼ e−v/2T+1

Each HyperBit phase begins when T is incremented

• sketch is set to 0

• After MvT distinct values (approximately vT per stream) are added

• number of 0s in sketch is binomially distributed

• expected number of 0s in sketch is ￼

• phase ends when ￼ , or

∼ Me−v/2T+1

e−vT /2T+1 = 1/2

(1 −
1

2T+1)
v

Lemma. Expected number of values in phase T is ∼ MvT = M ⋅ ln 4 ⋅ 2T

vT = 2T+1 ln 2

corresponding bit in sketch is 0

￼58

HyperBit analysis (estimating the values that will be recounted)

Idea. Estimate the number of values accounted for in phase T that will be recounted in phase T+1 .

Lemma 2. Expected number of values in phase T that will not be recounted is

= M ⋅ 2T ⋅ (2 ln 3 − ln 4)

Q. How many such values?

. . . 01111101111111111

. . . 01111111111111111

counted

will be counted again in the next phase

If MyT values will be recounted on average then yT satisfies ande−yT /2T+1 = 3/4 yT = 2T+1 ln 4/3

M ⋅ 2T ⋅ ln 4 − M ⋅ 2T+1 ⋅ (ln 4 − ln 3)

total count (last slide) will be recounted (above)

M ⋅ 2T ⋅ (2 ln 3 − ln 4)

Lemma 1. Expected number of values in phase T that will be recounted is M ⋅ 2T+1 ⋅ (ln 4 − ln 3)

A. Half of them.

￼59

HyperBit analysis (last phase)

Q. How many values need to be accounted for in the last (unfinished) phase ?

A. It depends on 𝜷 (proportion of 0s in the sketch on termination).

1. As usual, the algorithm accounts for Mx values, where so x = 2T+1 ln(1/β)

Three observations complete the analysis

3. Replace that estimate with My where so e−y/2T = 1 − (1 − β
2)

e−x/2T+1 = β

y = 2T ln
1 + β

2

Lemma 2. Expected # of values to count in the last phase is M ⋅ 2T(ln 4 − ln 3 − 2 ln β + ln
1 + β

2)

recount estimate for previous phase

values that generate half the 1s

2. Add back the recount estimate from phase T–1 (it is too high).M ⋅ 2T ⋅ (ln 4 − ln 3)

￼60

HyperBit analysis final accounting

Theorem. The expected number of values seen when

HyperBit terminates after completing T phases with 𝜷M 0s

in sketch is

Expected # of values accounted for in phase T is M ⋅ 2T ⋅ (2 ln 3 − ln 4)

Expected # of values accounted for before phase T is M ⋅ 2T ⋅ (2 ln 3 − ln 4)

Expected # of values accounted for when T is the last (unfinished) phase is

∼ M ⋅ 2T ⋅ (ln 3 − 2 ln β + ln((1 + β)/2))

M ⋅ 2T(ln 4 − ln 3 − 2 ln β + ln
1 + β

2)

M(2 ln 3 − ln 4) ∑
0≤i<T

2i

￼61

Memory use for cardinality estimation algorithms

Probabilistic Counting

M 64-bit words

HyperLogLog

M 6-bit bytes

HyperBit

M bits

Pictured: M = 128

for T

lglgN +

••••••

￼62

HyperBit accuracy hypothesis

Hypothesis. The reported estimate will be within ￼ of the actual count 99% of the time. 3σ

Conjecture. The statistic is approximately Gaussian with variance ￼ where ￼ .σ2 ∼ c/M c ≈ 1

Theorem. The expected number of values seen when HyperBit terminates after

completing T phases with 𝜷M 0s in sketch is ∼ M ⋅ 2T ⋅ (ln 3 − 2 ln β + ln((1 + β)/2))

Consequence. HyperBit solves the practical cardinality estimation problem with 1030 bits.

within 10% accuracy 99% of the time for M = 1024

suggested by experiments and history

￼63

HyperBit validation I

Experiment. 100 trials for x*10000 inputs for x from 1 to 100 (10000 trials)

one experiment

average of 100 trials

exact cardinality

￼64

HyperBit validation II

Histogram of number of estimates between x*2000 and (x+1)*2000

Experiment. 10000 trials for 1 million inputs

hypothesized

distribution

￼65

HyperBit vs. HyperLogLog

Bottom line. Comparable accuracy with one-sixth as much memory.

Optimal ?

HLL HB

Pictured: M = 64

••••••

￼66

What's next?

Fully analyze relative accuracy of HyperBit

Algorithm science for other streaming algorithms

Determine optimal values of parameters

HyperBit vs HyperBitBit ?

Continue to validate results

HyperBit

A Memory-Efficient Alternative to HyperLogLog

with thanks to Jérémie Lumbroso and Svante Janson

Robert Sedgewick

Princeton University

