HyperBit
A Memory-Efficient Alternative to HyperLoglog

[work in progress]

Robert Sedgewick
Princeton University

with thanks to Jérémie Lumbroso and Svante Janson



Philippe Flajolet, mathematician and computer scientist extraordinaire
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Algorithm science (Knuth, 1960s—present; Sedgewick, 1980s—present)

~

aka "analysis of algorithms"

THE CLASSIC WORK
NEWLY UPDATED AND REVISED —

A scientific basis for studying algorithms The Art of
Computer

e Programming

* Implement and run on realistic inputs

Third Edition

[Is the algorithm effective in the real world?].

" DONALD E. KNUTH

* Develop a mathematical model | |

« Use model to formulate hypotheses on performance

.
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« Test hypotheses with real-world experiments

. Iterate Algorithms
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BENEFIT: Enabled creation of our software infrastructure.

DRAWBACKS: Model can be unavailable, unrealistic, or excessively detailed and complicated.
Mathematical analysis can be prohibitively challenging.



Theory of Algorithms (AHU, 1970s; CLRS, 1980s—present)

The Design
and Analysis

AP DPCOFT ULLNAN

A mathematical basis for studying algorithms
Aho, Hopcroft

and Ullman

 Analyze worst-case cost
[takes model out of the picture].

« Use O-notation for upper bounds

[takes detail out of analysis]. ALGORITHMS

_ _ Cormen, Leiserson,
 Classify algorithms by these costs. Rivest, and Stein

1\ DR e
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BENEFIT: Enabled a new Age of (Theoretical) Algorithm Design.

DRAWBACKS: Analysis is typically unsuitable for scientific studies.
Algorithms are often not useful in the real world.

(Elementary facts that are often overlooked!)



Analytic combinatorics context

Drawbacks of AHU/CLRS approach:
« Worst-case performance may not be relevant.

« Cannot use O- upper bounds to predict or compare.

Drawbacks of Knuth/Sedgewick approach:
The Art of The Art of The Art of The Art of
« Model may be unrealistic. Progamming [} Progumming | Progumming | Progrmming | (NN
e SRR o i el | A loorithms

« Analysis may be detailed and difficult.

DONALD E. KNUTH DONALD E. KNUTH DONALD E. KNUTH DONALD E. KNUTH
lllllllllllllll | xevin warne

Analytic combinatorics can provide a basis for scientific studies.
: Analyti

« A calculus for developing models. e atorics

« Universal laws that encompass the detail in the analysis. e i

« Applies to many sciences, not just algorithm science.




Hyperbit: A Memory-Efficient Alternative’to HyperlLoglog

* The problem

¢ A solution
*~Another approach
* Final frontier



Cardinality counting

Q. In a given stream of data values, how many different values are present?

Reference application. How many unique visitors in a web log ?

log.07.f3.txt _

Ivvv- u - u — I W = I e’ %1 I Y e B Wi 1§ vw = W Y § I o W B § H § § W SN

117.222.48.163

pool-71-104-94-246.1sanca.dsl-w.verizon.net UNIX (1970s-present)
1.23.193.58 % sort@1og.07.f3.txt | wc -1
188.134.45.71 1112365 o }
1.23.193.58 unique
gsearch.CS.Princeton.EDU

pool-71-104-94-246.1sanca.dsl-w.verizon.net SQL (1970s-present)
81.95.186.98.freenet.com.ua

81.95.186.98.freenet.com.ua SELECT |
81.95.186.98.freenet.com.ua DATE_TRUNC(‘day’,event_time),
CPE-121-218-151-176.1nse3.cht.bigpond.net.au COUNT(DISTINCT user_id),
117.211.88.36 COUNT(DISTINCT url)

- | 6 million strings FROM weblog

State of the art in the wild for decades. Sort, then count.

"Optimal” solution. Use a hash table. <«— order of magnitude faster than sort-based solution

Q. | can’t use a hash table. The stream is much too big to fit all values in memory. Now what?



Cardinality estimation

A. Look for a way to estimate the value of N, the number of distinct values in the stream.

Practical cardinality estimation problem
e Make one pass through the stream.
e Use as few operations per value as possible
e Use as little memory as possible.

e Produce as accurate an estimate as possible.

typical applications How many unique How many different cars
where exact count is visitors to my website? passed here this year?
not really necessary
How many different IP How many different values
addresses hit this node? for a database join?

To fix ideas on scope (202x): Think of billions of streams each having trillions of values.

This talk. Estimate N to within 10% accuracy 99% of the time using thousands of bits of memory.



Posted on Facebook, 2018

facebook

"Computing the count of distinct elements in massive data sets is often necessary but computationally intensive.
Say you need to determine the number of distinct people visiting Facebook in the past week using a single machine.

With a traditional SQL query on the Facebook data sets this would take days and terabytes of memory. "
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Probabilistic counting with stochastic averaging (PCSA)

Flajolet and Martin, Probabilistic Counting Algorithms for Data Base Applications FOCS 1983, JCSS 1985.
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Philippe Flajolet 1948-2011
Contributions

e Introduced problem

e Idea of streaming algorithm

e Idea of “small” sketch of “big” data

e Detailed analysis that yields tight bounds on accuracy

e Full validation of mathematical results with experimentation
e Practical algorithm that has remained effective for decades

Bottom line.

0B,

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 31, 182-209 (1985)

Probabilistic Counting Algorithms
for Data Base Applications

PHILIPPE FLAJOLET

INRIA, Rocquencourt, 78153 Le Chesnay, France
AND

G. NIGEL MARTIN

IBM Development Laboratory, Hursley Park,
Winchester, Hampshire SO212JN, United Kingdom

Received June 13, 1984; revised April 3, 1985

This paper introduces a class of probabilistic counting algorithms with which one can
estimate the number of distinct elements in a large collection of data (typically a large file
stored on disk) in a single pass using only a small additional storage (typically less than a
hundred binary words) and only a few operations per element scanned. The algorithms are
based on statistical observations made on bits of hashed values of records. They are by con-
struction totally insensitive to the replicative structure of elements in the file; they can be used
in the context of distributed systems without any degradation of performances and prove
especially useful in the context of data bases query optimisation. 7 1985 Academic Press. Inc

[. INTRODUCTION

As data base systems allow the user to specify more and more complex queries,
the need arises for efficient processing methods. A complex query can however
generally be evaluated in a number of different manners, and the overall perfor-
mance of a data base system depends rather crucially on the selection of
appropriate decomposition strategies in each particular case.

Even a problem as trivial as computing the intersection of two collections of data
A and B lends itself to a number of different treatments (see, e.g., [7]):

Sort A4, search each element of B in 4 and retain it if it appears in A4;

2. sort A, sort B, then perform a merge-like operation to determine the inter-
section;

3. eliminate duplicates in A4 and/or B using hashing or hash filters, then per-
form Algorithm 1 or 2.

Each of these evaluation strategy will have a cost essentially determined by the
number of records a, b in A and B, and the number of distinct elements «, f/ in 4
and B, and for typical sorting methods, the costs are:

182
0022-0000/85 $3.00

Quintessential example of the effectiveness of algorithm science and analytic combinatorics.



Starting point: three integer functions

Def. r(X) is the number of trailing 1s in the binary representation of x. «— position of rightmost 0

Def. R(x)=2r\

15 14 13 12 11 10 9 8 7 6@4 3 2 1 0 r(x) R(x) R (x)>
1 01 1110111110101 1 2 10
1 01 0101010001110 0 1 1
011 0100101011111 32 100000
-
cwhacki . 0110100101011 111 X
Bit-whacking magic: 1001011010100000 x S
R(X) IS easy to compute. 0110100101 1000©0@PO0 X + 1 > on a typical
O OOOO0OOO0OOO0OO0O0O1O0O0O0OO00O0 x&x+1 computer

: _ _ _ for bit-whacking magic
Def. p(X) is the number of 1s in the binary representation of x. «—  for this and r(x)

see Knuth volume 4A
|2



First step: Hash the values

Transform value to a “random” computer word.
e Compute a hash function that transforms
data value into a 32- or 64-bit value. e
e Cardinality count is unaffected (with high probability).
e Built-in capability in modern systems.
e Allows use of fast machine-code operations.

20th century: use 32 bits (millions of values)
21st century: use 64 bits (quintillions of values)

State-of-the-art-"Mersenne twister" uses only a few machine-code instruictions.

Bottom line: Do cardinality estimation on streams of (binary) integers, not arbitrary value types.

01111000100111110111000111001000
01111000100111110111000111001000
01110101010110110000000011011010
00110100010001111100010100111010
00010000111001101000111010010011
00001001011011100000010010010111
00001001011011100000010010010111
00111000101001001011010101001100
00111000101001001011010101001100
01101001001000011100110100110011

NNNNTNANNANATTITINATTINANTTINTTINANTNATNANTN

“‘Random” except for the fact
that some values are equal.

|3



Initial hypothesis

Fact. Hash values are not random.
Hypothesis. Hash values are "sufficiently” random.

Implication. Need to run experiments to validate any hypotheses about performance.

No problem!
e We always validate hypotheses in algorithm science.
e End goal is development of algorithms that are useful in practice.
e It is the responsibility of the designer to validate utility before claiming it.

e After decades of experience, discovering a performance problem due to
a bad hash function would be a significant research result.

Unspoken bedrock principle of algorithm science.
Experimenting to validate hypotheses is WHAT WE DO!




Probabilistic counting (Flajolet and Martin, 1983)

Maintain a single-word sketch that summarizes a data stream xo, xi, ..., Xi, ...
e For each x; in the stream, update sketch by bitwise or with R(xi) [ 2"X}) ] . BYR '} N | |
e Use r(sketch) [ number of trailing 1s in the sketch ] to estimate Ig N; \ ¢ %
e Equivalently, use R(sketch)[ 27 (sketch) | to estimate N; Q Q \

e Refine with a correction factor, informed by analysis

estimate of Ig Ni

!

31 30292827262524232229]8]7]6]5]4]3]2]]109 8 76543210
sketch coooo00001011011111111111111111111 r(xi) =4

typical sketch Xi 00110101011111101010101010001111/R.=]6
Ni ~ 106 (xi)
R) 000000000000000000000000000(10000<
sketch|R(xi)OOOOOOO1011@11111111111111111111(—”&55’3,7)%6

leading bits almost surely 0 trailing bits almost surely 1

estimate of N —> 1000000000000000000 =2~10°
|5



Example Probablilistic Counting actions (32-bit values)

X R(x)

00110010100000000110011110111111) 1000000

no change with high probability
001100101000000000111121111111121 100000000000000

no change with low probability
001100101000000001111111112111111 1000000000000000

sketch changes but not r(sketch)
00110010100000000100011111111111 100000000000

sketch changes and r(sketch) increases by 1
00110010100000000100111111111111 1000000000000

sketch changes and r(sketch) increases by more than 1

sketch

000000000000000011001111Yy2111111
1000000
000000000000000011001111421111111

0000000000000000110011111111111
100000000000000
0000000000000000110011111111111

0000000000000000110011111111111
1000000000000000
000000000000000{111001111171171111

0000000000000000110011111111111
100000000000
00000000000000001101111111171711111

0000000000000000110111111711717111
1000000000000
000000000000000012111171711717117711171

estimate of N —> 1000000000000000

|6



Probabilistic counting (Flajolet and Martin, 1983)

public long R(long x)
{ return ~x & (x+1); }

public long estimate(Iterable<String> stream)

{
long sketch;

for (s : stream)
sketch = sketch | RChash(s));

return R(sketch) /.77351;

Early example of “a simple algorithm whose analysis isn’t”

Q. (Martin) Estimate seems a bit low. How much?

A. (unsatisfying) Obtain correction factor empirically.

A. (Flajolet) "Without the analysis, there is no algorithm?

Maintain a sketch of the data
e A single word

e OR of all values of R(hash(s))
e Return smallest value not seen

with correction for bias

sy klin M@
Maky

|7



Mathematical analysis of probabilistic counting

Theorem. The expected number of trailing 1s in the PC sketch is

lg(¢N) + P(lgN) +0o(1) where ¢ = 77351 trailing 1s
in sketch

and P is an oscillating function of lg N of very small amplitude.

Proof (omitted).
1980s: Flajolet tour de force ¥ @
1990s: trie parameter /
|| || ]
2 1st century: standard analytic combiantorics
N . highest null
left of
Kirschenhofer, Prodinger, and Szpankowski right spine

Analysis of a splitting process arising in probabilistic counting and other related algorithms, ICALP 1992.

Jacquet and Szpankowski
Analytical depoissonization and its applications, TCS 1998.

In other words. In PC code, R(sketch)/.77351 is an unbiased statistical estimator of N.
|8



Validation of probabilistic counting

Hypothesis. Expected value returned is N for random values from a large range.

Quick experiment. 100,000 31-bit random values (20 trials)

Flajolet and Martin: Result is “typically one binary order of magnitude off.”

Of course! (Always returns a power of 2 divided by .77351.)

Need to incorporate more experiments for more accuracy.

16384/.7735
32768/.7735
65536/.7735

1
1
1

2
4
8

1181
2362
4725

19



Stochastic splitting

Goal: Perform M independent PC experiments and average results.

Alternative 1: M independent hash functions? No, too expensive.

Alternative 2: M-way alternation? No, bad results for certain inputs. / 01 01 01

02 02 02
01 02 03 04 01 02 03 04 01 02 03 04 =
? 03 03 03
04 04 04
Alternative 3: Stochastic splitting
e Use second hash to divide stream into 2" independent streams |

_ _ key point: equal values
e Use PC on each stream, Y|EId|ng 2m sketches . all go to the same stream

e Compute mean = average number of trailing bits in the sketches. l
e Return 2mean/ 7753 1.

09 07 07
1 e

1T 10 11
original paper calls it 11 09 07 23 31 07 22 22 10 11 39 21 =
stochastic "averaging” —— 23 22 22 2]
later developments

make "splitting" more apt .



Probabilistic counting with stochastic splitting in Java

public static long estimate(Iterable<Long> stream, int M)

{

long[] sketch = new Tong[M];
for (long x : stream)

{
1nt k = hash2(x, M);

sketch[k] = sketch[k] | RChash(x));
}

1nt sum = 0;
for (int k = 0; k < M; k++)
sum += r(sketchl[k]);
double mean = 1.0 * sum / M;
return (1nt) (M * Math.pow(2, mean)/.77351);

Q. Accuracy obviously improves as M
increases, but by how much?

ldea. Stochastic splitting

e Use second hash to split into
M = 2m independent streams

e Use PC on each stream,
vielding 2m sketches .

e Compute mean = average #
trailing 1 bits in the sketches.

e Return 2mean/ 77351.



Theoretical analysis of PCSA

Definition. The relative accuracy is the standard deviation of the estimate divided by the actual value.

Theorem (paraphrased to fit context of this talk).

Under appropriate assumptions about the hash function, PCSA
e Uses 64M bits.
e Produces estimate with a relative accuracy close to 0.78/vVM .

Proof (another quintessential Flajolet tour de force, omitted).

exact analysis via Mellin transform techniques
precise asymptotic estimates
uniform bounds computed with MACSYMA

22



Preliminary validation of PCSA

Hypothesis. Accuracy is as specified for the hash functions we use and the data we have.
Validation (Flajolet and Martin, 1985). Extensive reproducible scientific experiments (1)

Validation (RS, this morning).
log.07.f3.txt

109.108.229.102
pool-71-104-94-246.1sanca.dsl-w.verizon.net
117.222.48.163

% java PCSA 6000000 1024 < log.07.f3.txt poo1-71-104-94-246.1sanca.ds1-w.verizon.net

1106474 1.23.193.58
188.134.45.71
T 1.23.193.58
gsearch.CS.Princeton.EDU

<1% larger than actual value poo1-71-104-94-246.1sanca.ds1-w.verizon.net

81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
CPE-121-218-151-176.1nse3.cht.bigpond.net.au

Q. Is PCSA effective? A. ABSOLUTELY!

23



Summary: PCSA (Flajolet-Martin, 1983)

is a demonstrably effective approach to cardinality estimation

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 31, 182-209 (1985)

Q. About how many different values are present in a given stream?

PHILIPPE FLAJOLET

INRIA, Rocquencourt, 78153 Le C hesnay, France
AND

G. NIGEL MARTIN

IBM Development Laboratory, Hursley Park,
Winchester, Hampshire SO212JN, United Kingdom

Received June 13, 1984; revised April 3, 1985
P C s ! This paper introduces a class of probabilistic counting algorithms with which one can

estimate the number of distinct elements in a large collection of data (typically a large file
stored on disk) in a single pass using only a small additional storage (typically less than a
hundred binary words) and only a few operations per element scanned. The algorithms are
based on statistical observations made on bits of hashed values of records. They are by con-

struction totally insensitive to the replicative structure of elements in the file; they can be used
in the context of distributed systems without any degradation of performances and prove
e Makes one pass through the stream PRSI
|

1985 Acudemic Press. Inc

I. INTRODUCTION

e Uses a few machine instructions per value st e o

the need arises for efficient processing methods. A complex query can however
generally be evaluated in a number of different manners, and the overall perfor-
mance of a data base system depends rather crucially on the selection of

appropriate decomposition strategies in each particular case.
- . Even a problem as trivial as computing the intersection of two collections of data
. S e S W O r S t O a C I e V e r e at I Ve a C C l I ra C y . A and B lends itself to a number of different treatments (see, e.g.,, [7]):

‘0B 1. Sort 4, search each element of B in 4 and retain it if it appears in A;

2. sort A, sort B, then perform a merge-like operation to determine the inter-
section;

3. eliminate duplicates in 4 and/or B using hashing or hash filters, then per-
form Algorithm 1 or 2.

Each of these evaluation strategy will have a cost essentially determined by the

u u u u number of records @, b in A and B, and the number of distinct elements «, ff in A4

Results validated through extensive experimentation
[ |

182
0022-0000/85 $3.00

A poster child for AS/AC
Open questions

e Better space-accuracy tradeoffs? “IT IS QUITE CLEAR that other observable reqularities on hashed

e Support other operations? values of records could have been used...  _ Fjgjolet and Martin

For full details, see "The Story of HyperLoglLog: How Flajolet Processed Streams with Coin Flips" ). Lumbroso, 201 3.



Hyperbit: A Memory-Efficient Alternative’to HyperlLoglog

*The problem

¢ A solution

e A better solution

* Another approach
*Final-frontier



We can do better (in theory)

Alon, Matias, and Szegedy
The Space Complexity of Approximating the Frequency Moments
STOC 1996; JCSS 1999.

Contributions
e Studied problem of estimating higher moments
e Formalized idea of randomized streaming algorithms
e Won Gddel Prize in 2005 for “foundational contribution”

Theorem (paraphrased to fit context of this talk).
With strongly universal hashing, PC, for any c >2, Replaces “uniform hashing” assumption

e Uses O(log N) bits. with “random bit existence” assumption
e |S accurate to a factor of ¢, with probability at least 2/c.

BUT, no impact on cardinality estimation in practice
e “Algorithm” just changes hash function for PC
e Accuracy estimate is too weak to be useful
e No validation

26



We can do better (in theory)

papers about cardinality estimation
and other streaming algorithms

papers about streaming algorithms
having validated implementations

Theory
of
Algorithms

27



We can do better (in theory)

Bar-Yossef, Jayram, Kumar, Sivakumar, and Trevisan

Counting Distinct Elements in a Data Stream
RANDOM 2002.

Contribution
Improves space-accuracy tradeoff at extra stream-processing expense.

Theorem (paraphrased to fit context of this talk).

With strongly universal hashing, there exists an algorithm that
e Uses O(M log log N) bits. «—— PCSA uses M Ig N bits

o Achieves relative accuracy O(1/vVM).

STILL no impact on cardinality estimation in practice
e Infeasible because of high stream-processing expense.
e Big constants hidden in O-notation
e No validation

Algorithms

28



We can do better (in theory and in practice)

Flajolet, Fusy, Gandouet, and Meunier

HyperLoglog: the analysis of a near-optimal cardinality estimation algorithm
AofA 2007; DMTCS 2007.

Contributions
e Presents HyperLoglLog algorithm
e Easy variant of PCSA that uses a much smaller sketch
e [dea: Harmonic mean of r() values
e Reduces memory used without extra expense

e Full analysis, fully validated with experimentation

PCSA saves sketches (Ig N bits each)
00000000000000000000000001101111

HyperLoglog saves r() values (Iglg N bits each)
00100 ( = 4)

29



We can do better (in theory and in practice): HyperLoglog algorithm (2007)

pub1ic static long estimate(Iterable<Long> stream, int M)
8-bit bytes (code to pack into

1nt[] [int[] bytes = new int[M]; )«  MIglgN bits omitted)

ong X : stream

1nt k = hash2(s, M);

int x = hash(s);
if (bytes[k] < Bits.r(x)) bytes[k] = Bits.r(x);

double sum = 0.0;
for (Aint k = 0; k < M; k++)

sum += Math.pow(2, -1.0 - bytes[k]);
return (int) (bias * M * M / sum);

about .709 for M = 64

Flajolet-Fusy-Gandouet-Meunier 2007

Theorem (paraphrased to fit context of this talk).

ldea. Harmonic mean of r() values
e Use stochastic splitting

e Keep track of min(r (x)) for
each stream

e Return harmonic mean.

Flajolet, Fusy, Gandouet, and Meunier
HyperlLoglog: the analysis of a near-
optimal cardinality estimation algorithm
AofA 2007; DMTCS 2007.

Under appropriate assumptions about the hash function, HyperLoglLog

e Uses M Ig Ig N bits (6 in the real world).

o Achieves relative accuracy close to 1.079 /v/M.

30



Memory use for cardinality estimation algorithms with M-way stochastic splitting

Probabilistic Counting HyperLoglLog
M 64-bit words M 6-bit bytes

R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o

Pictured: M = 128



HyperLoglog accuracy hypothesis

Theorem (Flajolet, Fusy, Gandouet, and Meunier).
Let H,,(S,M) be the harmonic mean of the sketch computed by HyperLoglLog for a stream S

having N distinct values when using M substreams. Then the statistic

1

is approximately Gaussian with mean N and variance ¢* ~ ¢, / M where ¢, =31In2 -1 =1.079.

Hypothesis. The reported estimate will be within 3¢ of the actual count 99% of the time.

Consequence. HLL can solve the practical cardinality count problem with 6144 bits.

M = 1024
6 =4/3In2—-1/32=.032

32



HyperlLoglog validation |

Experiment. 100 trials for x*10000 inputs for x from 1 to 100 (10000 trials)

.' i lmmnmw""'
Il l"

L

!
i
368217

0 1000000

== eXxact cardinality

® Ohe experiment
e average of 100 trials

33



HyperlLoglog validation |l

Experiment. 10000 trials for 1 million inputs

h;/potﬁl;esized
Istripution
2000 //\‘j////'
1500 : ‘ !
1000 ’ “| ‘1
500 \
0 100000 368217 1000000

Histogram of number of estimates between x*2000 and (x+1)*2000

34



Posted on Facebook, 2018 (continued)

facebook

To speed up these queries, we implemented HyperLoglLog (HLL) in Presto, a distributed SQL query engine.

HLL works by providing an approximate count of distinct elements.
With HLL, we can perform the same calculation in 12 hours with less than 1 MB of memory.

We have seen great improvements, with some queries being run within minutes.
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Hyperloglog validation in the Real World
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Hyperbit: A Memory-Efficient Alternative’to HyperlLoglog

*The problem

¢ A solution
A-better solution

* Another approach
*Final-frontier



We can do a bit better (in theory) but not much better

Indyk and Woodruff
Tight Lower Bounds for the Distinct Elements Problem, FOCS 2003.

Theorem (paraphrased to fit context of this talk). Algorithms
Any algorithm that achieves relative accuracy O(1/vVM) must use Q(M) bits

Kane, Nelson, and Woodruff
Optimal Algorithm for the Distinct Elements Problem, PODS 2010.

Upper bound

Theorem (paraphrased to fit context of this talk).

With strongly universal hashing there exists an algorithm that
e Uses O(M + loglog N ) bits. 47 optimal Lower bound
e Achieves relative accuracy O(1/vVM).

Not a practical algorithm (never implemented, no validation)
e Tough to beat HyperLoglLog’s low stream-processing expense.
e Constants hidden in O-notation not likely to be small (need to be <6)

Open: Does there exist an "optimal” algorithm for the practical cardinality estimation problem?
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Can we beat HyperLoglog in practice?

Necessary characteristics of a better algorithm
e Makes one pass through the stream.
e Uses a few dozen machine instructions per value
e Uses a few hundred bits

e Achieves 10% relative accuracy or better m,

“I've long thought that there should be a simple algorithm that uses a small constant times M bits...”

— Jérémie Lumbroso

machine instructions memory memory bound IO’-;[ZZ‘ZZ% cy
per stream element bound when N <204 "N < 264
HyperLoglLog 20-30 M loglog N oM 6144

- a few | love HyperLoglLog
BetterAlgorithm g few dozen cM 2M or 3M thousand ,\ 7—)

Also, results need to be validated through experimentation.
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Krakow, 2016
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Trip to Krakow
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A proposal: HyperBitBit (Sedgewick, 2016)

public static long estimate(Iterable<String> stream, int M)

{

¥

ldea.
.
<«— M = 64 likely to be value of choice » Tis estimate of Ig/N
e sketch is 64 indicators
for (String x : stream) whether to increment T
t e sketch? is is 64 indicators
long x = hash(s); _
int k = hash2(x, 64): whether to increment T
by 2
o Update when half the bits
1t (p(sketch) >= 32) in sketch are 1
{ sketch = sketch2; T++; sketch?2 = 0; } _
) e correct with p(sketch)
and bias factor

]

bias factor (to be determined empirically)
recall that p(x) is the number of 1 bits in x
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Example HyperBitBit actions (M=8) <, ustream

# trailing 1s

estimate of lg N

X k(x)

;

r(x)

T

sketch sketch?2
76543210 76543210

111000110100011001111010@ @ @ @ 00100000 00100000

no change because

101...1110001101000TTOOTTTTTTTTI @
no change because both sketch bits are set

001...T1100017T010001TT7T0O00TT1TOTTT1T11 1
set sketch bit because r(x)>T

11T0...T11T000110100017T001T0T1TT1TT1TT1T111 6
set both sketch bits because r(x)>T+1

000...1T1100017T010001TT7T00TT1TO0TTTT1T11 0
set sketch bit because r(x)>T

increment T and reset sketches
because half the bits in sketch are set

5
5

00100000 00100000

00100000 001)00000

00100000 00100000
00100020 00100000

00100010 00100000
oCﬁ00010 oCﬁooooo

01100010 01100000

0110001(1)(01100000

@ 01100000 00000000
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A proposal: HyperBitBit (Sedgewick, 2016)

public static long estimate(Iterable<String> stream, int M)
{
int T = 0;
long sketch = 0
long sketch2 =
for (String x : stream)

{
long x = hash(s);
int k = hash2(x, 64);
if (r(x) > T) sketch = sketch (1L << k)3
if (r(x) > T + 1) sketch2 = sketch2 | (1L << k);
1T (p(sketch) >= 32)
{ sketch = sketch?2; T++; sketch?2 = 0; }

}

return (int) (Math.pow(2, T + bias + p(sketch)/32.0));

Q. What is the bias factor?

Q. Does this even work?

ldea.
e T is estimate of Ig N

e sketch is 64 indicators
whether to increment T

e sketch2 is is 64 indicators
whether to increment T
by 2

e Update when half the bits
in sketch are 1

e correct with p(sketch)

and bias factor
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HyperBitBit preliminary validation

. . . after some hacking to settle on bias = 5.4 ...

Exact values for web log example HyperBitBit estimates

% java Hash 1000000 < Tog.07.f3.txt % java HyperBitBit 1000000 < Tlog.07.f3.txt
242601 234219
% java Hash 2000000 < Tog.07.f3.txt % java HyperBitBit 2000000 < log.07.f3.txt
483477 499889
% java Hash 4000000 < log.07.f3.txt % java HyperBitBit 4000000 < log.07.f3.txt
883071 916801
% java Hash 6000000 < log.07.f3.txt % java HyperBitBit 6000000 < Tog.07.f3.txt
1097944 1044043
1,000,000 2,000,000 4,000,000 6,000,000
Exact 242,601 483,477 883,071 1,097,944
HyperBitBit 234,219 499,889 916,801 1,044,043
ratio 1.05 1.03 0.96 1.03

It does seem to work!
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Next challenge: analyze HyperBitBit

2016

2017
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Sweden, 2018
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HyperBitBit analysis (Janson, 2018)

Key observation: the process obeys a Poisson distribution.

N

In a data stream with v distinct values

e Pr{a given item has more than T trailing 1s} =1/ AR

0Tl
* Pr {no item has more than T trailing 1s} ~ € vI2 (1 —

\ corresponding bit in sketch is O

Each HyperBi1tBi1t phase begins when T is incremented
e sketch2 is setto O
e sketch is set to sketch?2, say it has gM Os
e After Mv distinct values (approximately v per stream) are added

e number of Os in each sketch is binomially distributed

. nT+2
e expected number of Os in sketch2 is ~ Me vI2

. nT+1
e expected number of Os in sketchis ~ Mge v/z

event: "next item in the data stream
has more than T trailing 1s”

1010011110111011
0001111100000101
0110110110110011
0000000111011111
0101110001000100
0000101001010101
1010101111111100
0001011100110111
1110010000111111
1010110011111100
0110001001100011
0110011100100011
0001000100011100
0100010001110111
0110100000101100
0011011110110000
1111000100111110
0001111100010100
1010001000100011
0010101010111111
1110101110001000
0110000110111101
0101010110110110
1001010101111111
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HyperBitBit analysis (continued)

Def. Let g7 be the expected proportion of Os in sketch, at the beginning of phase T.

Def. Let VT be the expected number of values added to each stream during phase T.

Expected proportion of Os in sketch?2 e—vT/2T+2

Expected proportion 0s in sketch qre€

T+1
Phase T ends after Mvt new values where qTe_VT/z T =1/2
Solve for v vy =2"""1n(2g;)

Expected proportion of Os in sketch2 at that point e ~In(2qr)/2
1

THEREFORE 47+1 = >
V “dT

go 1.0000
g1 0.7071
g2 0.8408
g3 0.7711
gs 0.8052
gs 0.7879
gs 0.7966

qz 0.7923
gs 0.7944
go 0.7933

g=2"13=0.7937

Lemma 1. As T increases, proportion of Os in sketch approaches 2-1/3 (solution of g = 1/4/2qg ).

Lemma 2. Expected number of values in phase Tis My, ~ 2MIn =131+ = A (4/3)In2 - 27



HyperBitBit analysis accounting summary

41n?2
3

2T

Lemma 2. Expected number of values in phase Tis ~ M

41n?2
3

2T

Lemma 3. Expected number of values before phase Tis ~ M

Lemma 4. If there are M Os in the sketch on termination, then the

expected number of values in the last phase is M(In =173 _ In ) N T+1

Theorem. When HyperB1tBi1t terminates with M Os in sketch in
21n?2

3

phase T, then N/Mis ~ ( 2lnﬂ>2T

increases from .9242 to 1.8484
as p decreases from .7933 to .5

M41;2 Z i

0<i<T

Mv where v satisfies
—y21+1

qe =p
and g =271
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HyperBitBit validation (2)

368217 Y \
L traaiiasaiiiisseicant Prrraisinraaen. ool estimate is far

| b i RN too high 1%@#!

0 1000000

OBVIOUSLY the estimate is too high because values with > T+1 zeros are recounted later on.
There are too many recounted values to ignore.

HyperBitBitBit ? No. Would be better, but still a problem.
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Next challenge: estimate the number of recounts in HyperBitBit

2019 2022

2021 2020
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Hyperbit: A Memory-Efficient Alternative’to HyperlLoglog

*-The problem

¢ A solution
A-better solution

* Another approach
* Final frontier



A simpler algorithm: HyperBit

Insight: We need to estimate all the forgotten values—why bother keeping track of them for T+1 ?

public static long estimate(Iterable<String> stream,

{

oy ShEter 0 < M= 64

for (String x : stream)
{

long x = hash(s);

int k = hash2(x, 64);
1f (r(x) > T) sketch
1f (p(sketch) >= 32)
{ T++; sketch = 0; }

= sketch (1L << k);

}
return (int) (Math.pow(2, T)*M* 27 ):

| I

int M)
|dea.

e Tis estimate of lgN

e sketch is M indicators
whether to increment T

e Set a sketch bit when r(x)>T

e Update when half the bits
in sketch are 1

e Correct at end with
bias factor
that is a function of p(sketch)

bias factor (to be analyzed)

Preliminary experimental validation inconclusive—but maybe analyzing this will be informative.
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Example Hyperbit actions (M=8)

substream # tmi/i”g I's estimate of Ig N
X k(x) r(x) T sketch

76543210
10100000

...11100011010001100111101011 @ @ @1010000

no change because 5 101|0)j0000
101...1T1T1T0007TTOT0O000TTOOTTTTTTTTI @ 9 5 10{1j0000O0
no change because sketch bit for substream is already set 10(1)j000O0O0
001...1T1T1T0001171T010001T1T001T1T0T1TTTTTT1 1 6 5 10100 0(0|0
set sketch bit for substream because 5 101000(1)0
000..11T100017117T010001TT1T000T1TTTTTTTTI 0 8 5 1010001
set sketch bit for substream because 5 1010001

half the sketch bits are set so increment T and reset sketch 6 00000000O0



HyperBit analysis

Starting point is the same as for HyperBitBit, but simpler

In a data stream with v distinct values
o Pr {a given item has more than T trailing 1s} = 1/2"+

_y/T+1 1
* Pr {no item has more than T trailing 1s} ~ € V2T (1

\ corresponding bit in sketch is O

Each HyperBit phase begins when T is incremented
e sketch is setto 0
e After Mvr distinct values (approximately vr per stream) are added

e number of Os in sketch is binomially distributed
e expected number of Os in sketch is ~ Me 2"

e phase ends when e =1/2, or v; =2"""1n2

Lemma. Expected number of values in phase Tis ~ Mv, =M -In4 - 21

1010011110111011
0001111100000101
0110110110110011
0000000111011111
0101110001000100
0000101001010101
1010101111111100
0001011100110111
1110010000111111
1010110011111100
0110001001100011
0110011100100011
0001000100011100
0100010001110111
0110100000101100
0011011110110000
1111000100111110
0001111100010100
1010001000100011
0010101010111111
1110101110001000
0110000110111101
0101010110110110
1001010101111111
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HyperBit analysis (estimating the values that will be recounted)

Idea. Estimate the number of values accounted for in phase T that will be recounted in phase T+1 .

Q. How many such values? A. Half of them.

. . 01111101111111111 <«— counted
011111hbh111111111 <— will be counted again in the next phase

if My values will be recounted on average then yr satisfies ¢ 72 = 3/4 and yr=2%11n4/3
Lemma 1. Expected number of values in phase T that will be recounted is M - 2'™!. (In4 — In 3)

Lemma 2. Expected number of values in phase T that will not be recounted is M -2’ - (2In3 — In4)

M-2T..In4 - M-2""1.(In4 —In3) = M-2".21n3 —1n4)

] ]

total count (last slide) will be recounted (above)
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HyperBit analysis (last phase)

Q. How many values need to be accounted for in the last (unfinished) phase ?

A. It depends on f (proportion of Os in the sketch on termination).

Three observations complete the analysis

_AT+1
1. As usual, the algorithm accounts for Mx values, where ¢ > = f so x = 27! In(1/5)

2. Add back the recount estimate M - 2" - (In4 —In3) from phase T-1 (it is too high).

recount estimate for previous phase
/ # values that generate half the 1s

1+ p
2

1 —
3. Replace that estimate with My where eV =1 ( > 'B) so y=2"In

1 +
Lemma 2. Expected # of values to count in the last phase is M - 2T(ln4 —In3—-2Inf+1n 5 'B)
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HyperBit analysis final accounting

Expected # of values accounted for in phase Tis M-2".(2In3 - In4)

Expected # of values accounted for before phase Tis M -2' - (2In3 —1n4) MQ2In3 —In4) Z 2!

0<i<T
Expected # of values accounted for when T is the last (unfinished) phase is |
%F
M - 2T(ln4 —In3—-2Inf+1n i 'B)
2 In 3-
Theorem. The expected number of values seen when
HyperBit terminates after completing T phases with M Os
in sketchis ~M-2"- (In3 =2Inf+ In((1 + f)/2)) na
In 3-

64 48 32
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Memory use for cardinality estimation algorithms

Probabilistic Counting HyperLoglLog HyperBit
M 64-bit words M 6-bit bytes IglgN + M bits

R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B B
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
R B B B e o o o o
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R B B B e o o o o
R B B B e o o o o

forT

Pictured: M = 128



HyperBit accuracy hypothesis

Theorem. The expected number of values seen when HyperBit terminates after
completing T phases with M Os in sketchis ~ M - 2" (1113 —2In/ + In((1 +ﬁ)/2))

Conjecture. The statistic is approximately Gaussian with variance o¢° ~ c / M where ¢ =~ 1.

N

Hypothesis. The reported estimate will be within 3¢ of the actual count 99% of the time.

suggested by experiments and history

Consequence. HyperBit solves the practical cardinality estimation problem with 1030 bits.

\ within 10% accuracy 99% of the time for M= 1024
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HyperBit validation |

Experiment. 100 trials for x*10000 inputs for x from 1 to 100 (10000 trials)

368217 B 00 R

=]
[ssiye]
..................
00000OCOOONOOEBRESS Pr-veotte000no00eS SO0OCGOIOGIOSIOGIOSIOIOSISIS O
................................

0 1000000

== eXxact cardinality

® oOne experiment
e average of 100 trials
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HyperBit validation Il

Experiment. 10000 trials for 1 million inputs

2000

1500

1000

500

hypothesized

/ distribution

0

100000

368217 1000000

Histogram of number of estimates between x*2000 and (x+1)*2000
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HyperBit vs. HyperlLoglog
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Bottom line. Comparable accuracy with one-sixth as much memory.

M= 64

Pictured

Optimal ?
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What's nexte

Fully analyze relative accuracy of HyperBit

HyperBit vs HyperBitBit 7

Determine optimal values of parameters

Continue to validate results

Algorithm science for other streaming algorithms
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Robert Sedgewick
Princeton University
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