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Meir & Moon (1970, 1974): X, number of cuts of size-n tree for
two random tree models:

@ random Cayley-trees (= rooted labelled trees)

@ random recursive trees (= increasingly labelled trees)

Start the cutting down procedure with random size-n tree
— tree models behave quite different

Expectation/variance for Cayley-trees:

E(X,) ~ \/? V(X,) ~ (1 - g) ‘n

Expectation/variance for recursive trees:

n n2 n2
E(X) ~ —— = V(X,,)=o( )

E(X,) ~ ,
(%) log n log= n log? n
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(d)

Xn = 1+X5n,

S,, ¢ size of subtree containing root

Size of remaining subtree:

Cayley-trees:

Recursive trees:

P{s,

IP){5n=

[n mm(n _ m)n—m—l
m} = (m) (n—1)n""t

n
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Cutting down trees

Recursive approach

Used recursive description:

d . .
X, (@) 1+ Xs,, S,, ¢ size of subtree containing root

Size of remaining subtree:

Cayley-trees: P{S,

[n mm(n_ m)n—m—l
m} = (m) (n—1)n""t
T (h=D(n-m(n-m+1)

Recursive trees: P{S, = m}

G. f. treatment of recurrences for first moments yields results

Limitation of approach: only applicable (in direct way) if
randomness is preserved for remaining tree
— property only holds for few (important) random tree families
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Further studies via recursive approach

e Pan (2003, 2004, 2006):

@ characterization of simply gen. tree families (=
cond. GW-trees) satisfying randomness preservation property

o Cayley-trees
o d-ary trees
o generalized ordered trees

@ Rayleigh limiting distribution of X,
for such “very simple tree families”

X () Rayleigh(c), density f,(x) = z e_2X22 20
igh(o nsi > (x o X =

@ Cutting down non-crossing trees — Rayleigh-limit law

o Cutting down recursive trees
— Moments do not characterize limit law
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e Fill, Kapur & Pan (2006):

each cut costs a toll depending on size of the tree

— study total costs of one-sided and two-sided destruction of
“very simple trees”

— limiting distribution results via method of moments

e Pan & Kuba (2007): application of two-sided destruction to
analysis of Union-Find-algorithms (maintaining set partitions)

e Drmota, lksanov, Mdhle & Résler (2009):
stable limit law of number of cuts X,, for recursive trees

n nloglog n

- — = 2, d
Iognn log Q, Y ~ Stable(1),

log? n

n

_ it -z
characteristic fct. @y(t) = otlogltl=Ztl
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Cutting down trees

Probabilistic treatments of cutting trees

e Janson (2006):

@ Description of cutting procedure via records in
edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Cut < Edge-record
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Cutting down trees

Probabilistic treatments of cutting trees

e Janson (2006):
o Rayleigh limit law for all conditioned GW-trees
(simply generated trees):

X, (d
RGN Rayleigh(c), o dependent on offspring-distr.
Vvn

@ Limiting distribution results for deterministic trees

@ Edge-cutting procedure behaves asympt. as
vertex-cutting procedure

e Holmgren (2008, 2010, 2011):

@ Stable limit laws for large class of log n-trees: split trees
(including binary search trees)
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Probabilistic treatments of cutting trees

Goldschmidt & Martin; Mohle & lksanov; Addario-Berry, Broutin
& Holmgren; Bertoin & Miermont; Abraham & Delmas; Marckert
& Wang; Cai, Devroye, Holmgren & Skerman; Burghart; ...

— Many further probabilistic treatments related to cutting trees
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Probabilistic treatments of cutting trees

Goldschmidt & Martin; Mohle & lksanov; Addario-Berry, Broutin
& Holmgren; Bertoin & Miermont; Abraham & Delmas; Marckert
& Wang; Cai, Devroye, Holmgren & Skerman; Burghart; ...

— Many further probabilistic treatments related to cutting trees

@ Further tree/graph families, extensions and refinements

@ Relations to coalescence models

Question: Might recursive approach also be useful to
contribute to study of some of such extensions?

@ k-cutting trees
@ Isolating multiple nodes in trees

@ Separating nodes in trees
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k-cuts in trees
k-cut model for rooted trees

e Cai, Devroye, Holmgren & Skerman (2019)
Berzunza, Cai & Holmgren (2020, 2021):

Adapting cutting down procedure:

A vertex has to be cut k-times
before this vertex and its subtrees are discarded.

Considered tree models:
@ paths and “path-like trees”
@ conditioned Galton-Watson trees

— Limiting behaviour of required cuts X, to cut down tree
changes
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k-cuts in trees
k-cuts in paths

k = 1: Cutting down path:
d
X, (@ umber of records in sequence of n i.i.d. Unif[0,1] r.v.
(d) . . S :
=" number of left-to-right maxima/minima in random permutation

d . .
@) number of cycles in random permutation
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k-cuts in paths

k = 1: Cutting down path:
d
X, (@ umber of records in sequence of n i.i.d. Unif[0,1] r.v.
(d) . . S :
=" number of left-to-right maxima/minima in random permutation

d . .
@) number of cycles in random permutation

Limiting behaviour of X,:
Goncharov (1942); Shepp-Lloyd (1966):

X, —logn (d)

— N(0,1
Vlogn (01)
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k-cuts in paths

k = 2: number of cuts X,Ek] have complicated behaviour,
Cai, Devroye, Holmgren and Skerman (2019):
First two moments:

1-1 2 5_2
E(X,) ~men' ™%, E(X7) ~ yn”
(k!)%r(%) F(%)(k!)% wcot(g)r(g)(k;)%

o k>2
M= —p=71 > W= )1 +2- B 2k-2)(k-1) )
T7 k:2

)
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k-cuts in trees

k-cuts in paths

k = 2: number of cuts X,Ek] have complicated behaviour,
Cai, Devroye, Holmgren and Skerman (2019):

First two moments:

- 2 2-2
]E(Xn) ~ Nih ’ ]E(Xn) ~ Ykh )
2
(K1)FF(2) F(2)(k!)* 7 cot(Z)M(2)(k1) R Ko
Ny = k Y= —X +2 2(k=2)(k-1) ’ )
k-1 "~ k-1 2
z, k=2

d
Limiting distribution: ﬁ( 1_) 2Ny (Bk),
k

n

Bii=) B, Bp:=(1—up)(]_[ L/,->_ks,,, sp:=(k!Z(]_[Uj)Es>k,

p=z1 1<j<p lsssp \s<j<p

E; @ Exp(1), U; @ Unif[0,1], j =1, mutually independent
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+  remove random number of bricks (= cutting off)
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Consider k = 2: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity:
number of nodes already cut once

— “Urn model” with non-deterministic ball replacement scheme:

—~ 1l

Bl — remove random number of bricks (= cutting off)
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k-cuts in trees
Stochastic recurrence

X j: number of cuts to destroy path of length n
starting with j random nodes already cut once

Distributional recurrence:

o (d) c o .
Xnj = VnjXnjs1+(1=V5;)Xs;s,, 0<j<nnz1 Xyo=0,

where V,; (@) Bernoulli(l - JE),

n\ n.—1—n1 o
P{(51,52) = (n1,/1)} = } . (h)((#_l_h)a giﬁfsjn__li
Jj
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Generating functions approach

probability generating function E( vX”’f) — recurrence

suitable g.f. F := F(z,x,v) := Zn,jzo (7) CE(V) 2"

15/32



k-cuts in trees
Generating functions approach

probability generating function E( vX”’f) — recurrence

suitable g.f. F := F(z,x,v) := Zn,jzo (7) CE(V) 2"
— Linear first-order PDE:

~ ~ zX ~
ZFZ—V(FX-FmF)

15/32



k-cuts in trees
Generating functions approach

probability generating function E( vX”’f) — recurrence

: . 2 o Xojy
suitable g.f. F := F(z,x,v) =} .9 (7) CE(v™) 2"
— Linear first-order PDE:

. ~ zx -
F,=v|F+ ——F—F
ik V<X 1-2(1+x) )
Explicit solution:
x—t
5 I°° zte VvV — dt

X X=t
F(Z,X, V) = e 1-z(1l+t)e v
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k-cuts in trees
Generating functions approach

probability generating function E( vX”’f) — recurrence
suitable g.f. F:= F(z,x,v):=Y, o (;)-E( Xni)Z" 5
— Linear first-order PDE:
. - zx ~
Fo=v|F+ — = _F
ik V( T 1-2(1+x) )
Explicit solution:

x—t
0 zte VvV dt

IE(Z,X, V) =e x 1-z(1+t)e v

Solution of original problem: vanish auxiliary quantity x = 0:
F(z,v):= F(z,0,v) = Zn>1IE

zte V d
_rat
= F(L V) = @0 1-z(1+t)e” Vv

15/32



k-cuts in trees
Moments

n
J4
Expectation: [E(X,)=H, + Z —Q( )
=1 ¢

n—=1 £ 00
-1) n-1 —x . .
with  Q(n) = Z % = L (1+ %) 'e™dx, Ramanujan's Q-function
=0

16/32



k-cuts in trees
Moments

Expectation: [E(X,)=H, + Z Q(4)

Ramanujan’s Q-function

. = (n - 1)£ *© X\ n-1 —x
with Q(n):;T = L (1+E) e " dx,
Asymptotics of m-th integer moments:

\EW arccos ( - % )

E((%)m)~ﬁ.[wm1e < m=0

ﬁwarccos(—%) 27r(%)r(%+1)wm

T = Zmzl m!
2

Exponent  ¢(w) :=
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Moment generating function

X, (d
Fréchet and Shohat moment conv. thm. = 22 1%, X,
n
with X characterized via moments: E(X™) = r(lLJr!%)[Wm]e@(W)

m

Moment generating function M(s) = E(e™) =Y, ., T [wmlet™
2
Use Mittag-Leffler-transform:

f(z) = anz" SN f(z

nz0

C+ioo E (Zt)

Zf r(1+an)

B.(f(2)) = 2ij f( )dt, Mittag-Leffler-fct. E,(z) = Zm

)
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k-cuts in trees

Moment generating function

X, (d
Fréchet and Shohat moment conv. thm. = 22 1%, X,
n
with X characterized via moments: E(X™) = r(lLJr!%)[Wm]e@(W)

Moment generating function M(s) = E(e™) =Y, ., r(mem) [wmlet™
2

Use Mittag-Leffler-transform:
f(z2)=) fz" 2% #(z) = Z fnm

nz0

B.(f(z)) = lfcm Ea(2t) f( )dt, Mittag-Leffler-fct. E,(z) = Z z’
Z))= 5 1 - r- z P ——Y
& M1+ an)
Representation of m.g.f.: £ o)
1 C+ioo 224t 1,;‘” )
—_ —_ t2 _
M(s) = 5 J (1 + J dT)e @ dt, NC> %
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k-cuts in trees

Recursive approach for general k

General k: adaptions for recursive approach
@ Require k — 1 auxiliary quantities:
J1 nodes cut once, ..., ji_1 nodes cut (k — 1)-times
@ “Urn model”-description with k types of balls
@ Generating functions approach — linear first-order PDE:

. . . . ~ Xp-12F
zF, = v| F, + x\F, + xoF,, + -+ x_oF,, , +
“ ( X 1T T 7200 k=27 X1 1—z(14xg + X0+ =+ + Xk_1)

@ PDE is explicitly solvable

@ Vanishing all auxiliary variables x,...,xx—1 =0

(o]
- dt
({ 1—z(1+t+£|+~--+L_1l)e_t
Fk(27 V) =e 21 (k=11
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k-cuts in trees

Limiting behaviour

Asymptotic behaviour of m-th integer moment:

X, \" ! m w
E(( nl) >~ e U
nl=% r(1+ P’ m)

with exponent:

© (KI)¥T(2 4+ 1)r(k=m
I S G i B

o0 dx
= klw _
o x*—klwx + k!

= iLln(—x-) x; roots of p(x) = x* — klwx + k!
k—(k-1)xw I J P ’ )

J
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k-cuts in trees

Limiting behaviour

d
Convergence in distribution )i”l —>( ) X,
k
X characterized via moments: !
m! (w)
E(X™) = [w"]e”
k-1
r(1+ &=bm)
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k-cuts in trees

Limiting behaviour

d
Convergence in distribution )i”l —>( ) X,
k
X characterized via moments: !
m! (w)
E(X™) =z —————— - [w"]e”
k=1
r(1+ &=bm)

Moment generating function

M(s) = o™y = L [T B ey,

277 Jezico t

with E,(z): Mittag-Leffler-function
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k-cuts in trees
k-cutting trees

Berzunza, Cai & Holmgren (2020, 2021); Wang (2021):
Limiting distribution result for conditioned GW-trees:

X @

with X characterized via moments or via functional of Brownian
continuum random tree
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k-cuts in trees
k-cutting trees

Berzunza, Cai & Holmgren (2020, 2021); Wang (2021):
Limiting distribution result for conditioned GW-trees:

@, 5

with X characterized via moments or via functional of Brownian
continuum random tree
Recursive approach:

@ only applicable for “very simple trees”

@ yields first-order linear PDE (for Cayley-trees)

@ PDE does not seem to be explicitly solvable

@ only moments could be computed iteratively
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Isolating multiple nodes in trees

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:
@ Take a tree T with a distinguished set S € V/(T) of nodes
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Isolating multiple nodes in trees

Previous studies for number of cuts

¢ Addario-Berry, Broutin & Holmgren (2014):
isolating / random nodes in Cayley-trees:

30 @)
\/ﬁ X
X¢: chi-distributed r.v. with 2¢ degrees of freedom,
2-1 _x2
density fk(X) = me 2,X > 0
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Isolating multiple nodes in trees

Previous studies for number of cuts

¢ Addario-Berry, Broutin & Holmgren (2014):
isolating / random nodes in Cayley-trees:

30 @)
\/ﬁ X
X¢: chi-distributed r.v. with 2¢ degrees of freedom,
2-1 _x2
density fk(X) = me 2,X > 0

e Kuba & Panholzer (2014):
isolating ¢ random nodes in recursive trees:

Iogn (d)

x1a (@,

— Beta(4,1)

23/32



Isolating multiple nodes in trees

Isolation of multiple nodes

Consider multiple isolation in Cayley-trees:
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Isolating multiple nodes in trees

Isolation of multiple nodes

Consider multiple isolation in Cayley-trees:

@ “random path”: all nodes on path from root to random node

@ “random ancestor-tree”: all nodes on each path from root
to £ random nodes
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Recursive approach

X0t number of cuts to isolate all nodes in ancestor-tree of
£ random nodes
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Isolating multiple nodes in trees

Recursive approach

X0t number of cuts to isolate all nodes in ancestor-tree of
£ random nodes
. n-1 n
o Suitable g.f. F(z,uv):=y,, (1) -E(v"")z"u"

@ — quasi-linear first-order PDE
e Explicit solution: (T(x) = xe’™ tree function)

T(z) - =¥ log (%)
+T|(1+u): ! 1-vT(z)

1
1-vT(z) ) Tl Y

1-v
F(z,u,v) = lo
( ) v g( v '°g(ﬁr(1))
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Isolating multiple nodes in trees

Recursive approach

X0t number of cuts to isolate all nodes in ancestor-tree of
£ random nodes

@ Suitable g.f. F(z,u,v):= Zn,e %_'I(Z) CE(V) 2"

@ — quasi-linear first-order PDE
e Explicit solution: (T(x) = xe’™ tree function)

T(z) - =¥ Iog(_;)
+T|(1+u): ! 1-vT(z)

1
1-vT(z) ) Tl 1-

1-v
F(z,u,v) = lo
( ) v € ( Vv Iog( 1—v$'(z) )

@ Method of moments — limiting distribution (¢ fixed):

Xn d
= ng, chi distributed r.v.

Jnlogn
2
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Isolating multiple nodes in trees

Recursive approach

Suitable to gain further results on multiple isolation
in Cayley-trees (very simple trees):
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Isolating multiple nodes in trees

Recursive approach

Suitable to gain further results on multiple isolation
in Cayley-trees (very simple trees):

@ isolating all descendants of random node or ¢ random nodes
@ isolating all leaves in tree

@ behaviour if number ¢ of nodes grows with size n
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Separating nodes from root in trees

Separating nodes in trees

Burghart (2022): far-reaching generalization of cutting procedure
to separating nodes in graphs
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Separating nodes from root in trees

Analysis of separation procedure

Interesting quantities:

Y,: number of cuts until all nodes from P are separated

R,: size of the remainder tree when all nodes are separated
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Separating nodes from root in trees

Analysis of separation procedure

Interesting quantities:

Y,: number of cuts until all nodes from P are separated

R,: size of the remainder tree when all nodes are separated

Apply recursive approach to separation procedures
in Cayley-trees:

@ separation of / random nodes

@ separation of all leaves

28/32
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Separating / random nodes

Recursive approach — easily gives explicit solution for g.f.
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Separating / random nodes

Recursive approach — easily gives explicit solution for g.f.

. . Y,1 (d)
¢ = 1: separating a single node: N Y1,

221(2 +1)

m+1 ’
2

density: fi(x) = j e_%dt, x>0

integer moments: E(Y{") = m = 0,
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Separating nodes from root in trees

Separating / random nodes

Recursive approach — easily gives explicit solution for g.f.

(d)

. . Y,
¢ = 1: separating a single node: \/Lnl — Y1,
me 27T(Z41)
integer moments: E(Y]) = — %1 mz0,

2

density: fi(x) = j e_%dt, x>0

Yn,2
Jn
(2m +3)221'1(2 +2)

T m+D(m+2)(m+3)’

©(t—x)(t+ 2
(X)g—?ax).e Tdt, x>0

d
{ = 2: separating two nodes: Q» Y5,

integer moments: E(Y,") mz=0,

density: f(x) = J

X
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Separating nodes from root in trees

Separating / random nodes

Recursive approach — easily gives explicit solution for g.f.

. . Y1 (d)
¢ = 1: separating a single node: \/Lnl — Y1,
me 27T(Z41)
integer moments: E(Y]) = — %1 mz0,

2

density: fi(x) = j e_%dt, x>0

Yn,2
Jn

(2m+3)22"' (2 +2)

d
{ = 2: separating two nodes: Q» Y5,

integer moments: E(Y,") = D (m+ D(m+3)’ mz=0,
©(t—x)(t+ _2
density: f(x) = J (X)g—?)x) -e 2dt, x>0

general /: moments could be extracted
29/32
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Separating all leaves

Recursive approach more involved:
— requires auxiliary parameters
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Separating nodes from root in trees

Separating all leaves

Recursive approach more involved:
— requires auxiliary parameters

o {i leaves that are “active” during cutting procedure
(leaf has not been separated)

o { leaves that are “inactive” during cutting procedure
(internal node in original tree)

— linear first-order PDE involving evaluations of tree function

— explicit solution for g.f., somewhat involved
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Separating nodes from root in trees

Results for separating leaves

d
Size R, of remainder tree: R, Q R, R discrete law
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Separating nodes from root in trees

Results for separating leaves

d
Size R, of remainder tree: R, Q R, R discrete law

Probability g.f. p(v) = E(v"):
1Y 1
=12 |, e ®
L1 Jl vl—K)+(-1-v+ettv(l=v)+ e 'K+ vKHM + (2 + v — vK)M? - M3dt
€Jo (1-K)(1-M)3 ’
with K= K(t) = T(te" ™ 5 M= M(t) = T(te e )y
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Separating nodes from root in trees

Results for separating leaves

d
Size R, of remainder tree: R, Q R, R discrete law
Probability g.f. p(v) = E(v"):
1Y 1
=12 |, e ®
1 Jl vil—K)+(-1-v+ettv(l=v)+ e 'K+ vKHM + (2 + v - vikK)M? = M®
0 (1-K)(1-M)3

e dt,
L N
with K= K(t) = T(te ™ ) M= M(1) = T(re™0 )
Probabilities for small remainder tree size/expectation:

1 (! 1
P{R=0}=1-5 Jo 1——K(t)dt ~ 0.462117, (separating = isolating)

| =

1t tef
]P){R = 1} == - EL 1——l<(t)dt ~ (0.217584,

_ 1 (P1-(1+2eT)K(E) +2K°(t)
BR = |, (1= K(0))* I

t ~ 1.385782
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End of talk
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