Reduced bandwidth: a qualitative strengthening of twin-width in minor-closed classes (and beyond)

O-joung Kwon (Incheon National University, **IBS Discrete Math Group, Korea)**

Joint with Édouard Bonnet (ENS Lyon, LIP) and David Wood (Monash University)

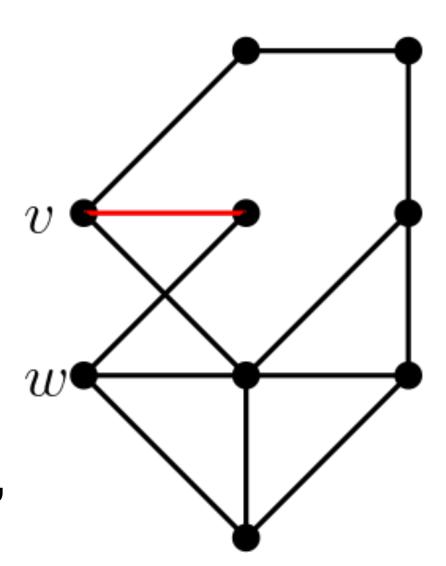
2021 Banff international workshop on "Graph Product Structure Theory"

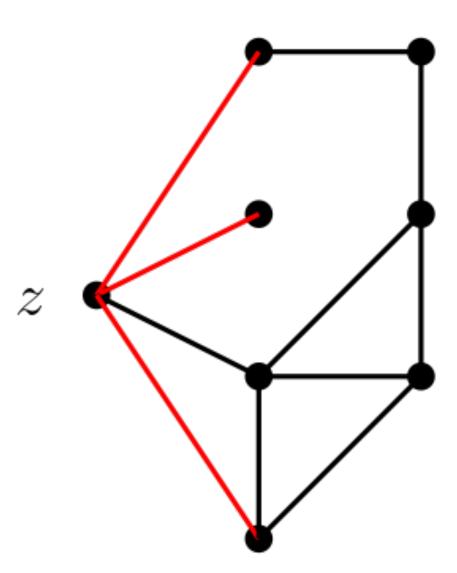
Identifying vertices

- We consider graphs where some edges are colored red.
- When we identify two vertices v and w to z in a graph G,
 - all edges between z and $N(v) \triangle N(w)$ become red,
 - for $x \in N(v) \cap N(w)$,

> if at least one of vx and wx was red, then zx becomes red,

> otherwise, it becomes black.





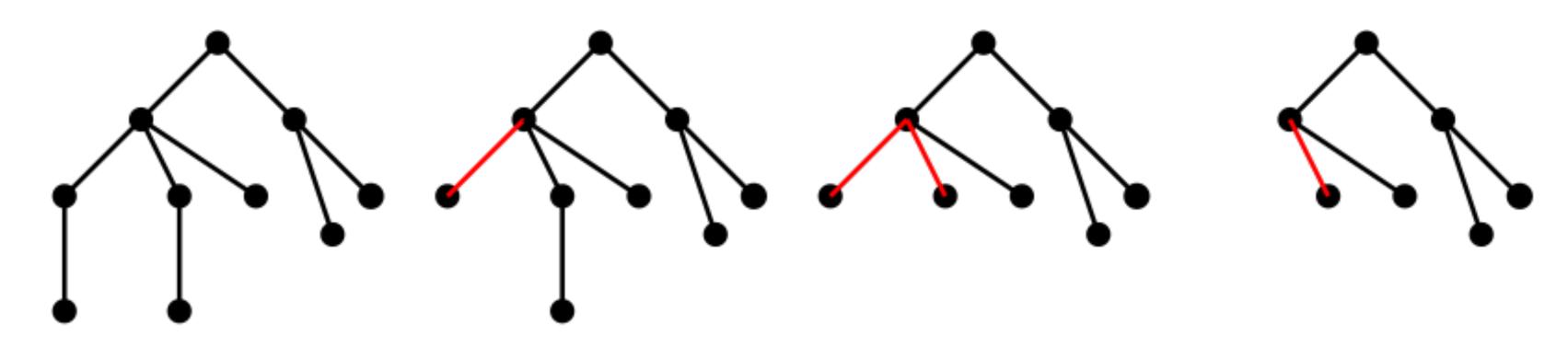
Identifying vertices

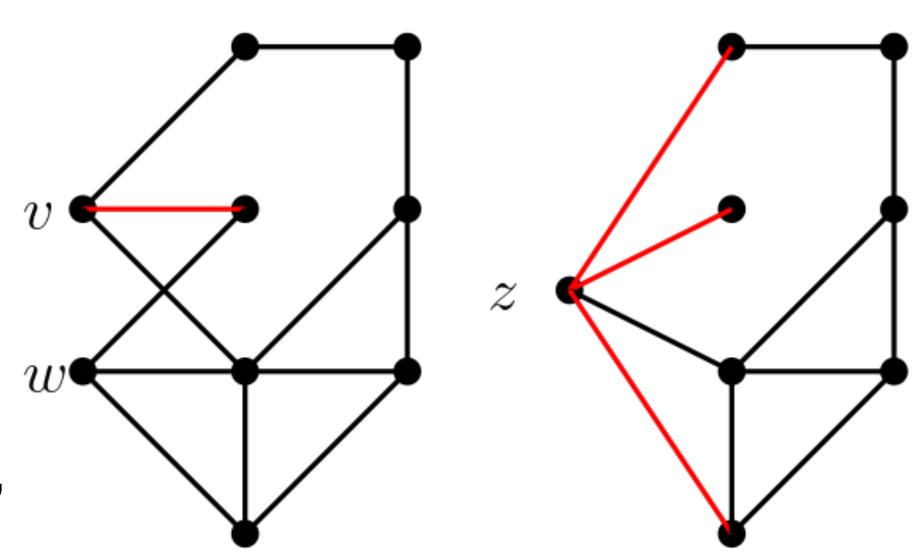
- We consider graphs where some edges are colored red.
- When we identify two vertices v and w to z in a graph G,
 - all edges between z and $N(v) \bigtriangleup N(w)$ become red,
 - for $x \in N(v) \cap N(w)$,

> if at least one of vx and wx was red, then zx becomes red,

> otherwise, it becomes black.

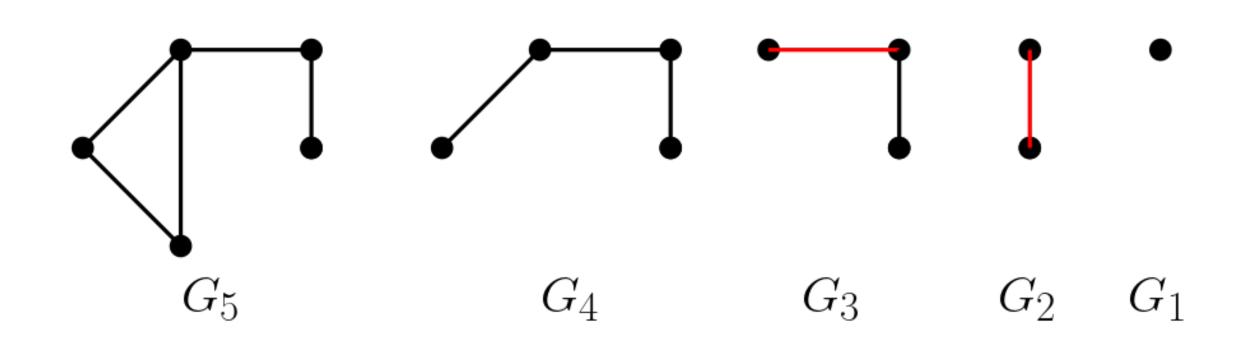
one vertex without creating a vertex of large red degree?





General question: Can we recursively identify a given graph into

Twin-width (Bonnet, Kim, Thomassé, Watrigant 2020)



- A trigraph is a graph whose edges are colored black or red.
- For a graph G, a sequence $G = G_n, G_{n-1}, \dots, G_1$ of trigraphs is a reduction sequence if G_1 is a singleton graph.
- Cographs have twin-width 0 (Cographs on ≥ 2 vertices always have twins).

• Twin-width of a graph G is the minimum k such that there is a reduction sequence $G = G_n, G_{n-1}, \ldots, G_1$ of G for which the maximum red degree of G_i is at most k.



Reduced-f of a graph

- We consider any natural graph parameter f(maximum degree, tree-width, band-width, component size, ...)
- Reduced f of a graph G is the minimum k such that there is a reduction sequence $G = G_n, G_{n-1}, \ldots, G_1$ of G for which $\max f(G_i) \leq k$. $1 \le i \le k$
- (Bonnet et al. 2020 TWW I) Reduced-maximum degree = twin-width (Bonnet et al. 2021 TWW VI) Reduced-component size ~ rank-width

Reduced-number of edges ~ linear rank-width

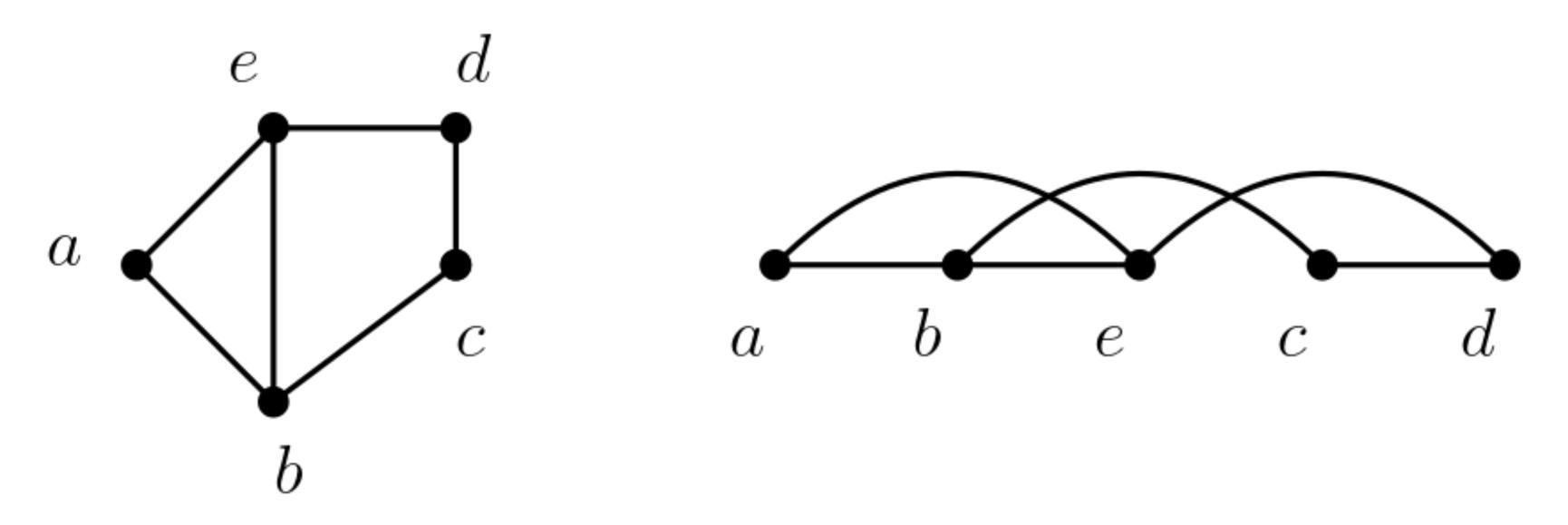
Reduced-f of a graph

- If f is bounded on all stars, then reduced f is bounded for all graphs.
- We may consider max $\{f, \Delta\}$ as a function, where $\Delta(G)$ denotes max degree.
- Question: Are there differences between following classes?
 - graphs of bounded reduced- Δ
 - graphs of bounded reduced-max{treewidth, Δ }
 - graphs of bounded reduced-max{pathwidth, Δ }
 - graphs of bounded reduced-bandwidth
 - graphs of bounded reduced-component size
- reduced-bandwidth?

perfect matching

• Question: Do some known classes of bounded twin-width have actually bounded

Reduced-bandwidth of a graph



- Band-width of a graph *G*: minimum *k* such that there is a permutation $L: V(G) \rightarrow [n]$ where $|L(u) L(v)| \leq k$ for every edge *uv*.
- If band-width is at most k, then maximum degree is at most 2k.

Main results (product theorem + neigbhorhood complexity)

- Theorem (Bonnet, K, Wood 2021) Proper minor-closed classes have bounded reduced-bandwidth. Their r-powers also have bounded reduced-bandwidth.
- This strengthens the results in TWW I that proper minor-closed classes have bounded twin-width.

Main results (product theorem + neigbhorhood complexity)

- Theorem (Bonnet, K, Wood 2021) Proper minor-closed classes have bounded reduced-bandwidth. Their r-powers also have bounded reduced-bandwidth.
- This strengthens the results in TWW I that proper minor-closed classes have bounded twin-width.
 - Theorem (Bonnet, K, Wood 2021) Planar graphs have reduced-bandwidth at most 466 and twin-width at most 583. By the result of (Morin 2021), we can produce in polynomial time.

Graphs of Euler genus g have reduced-bandwidth at most 164g+468. Planar map graphs have reduced-bandwidth at most 10000.

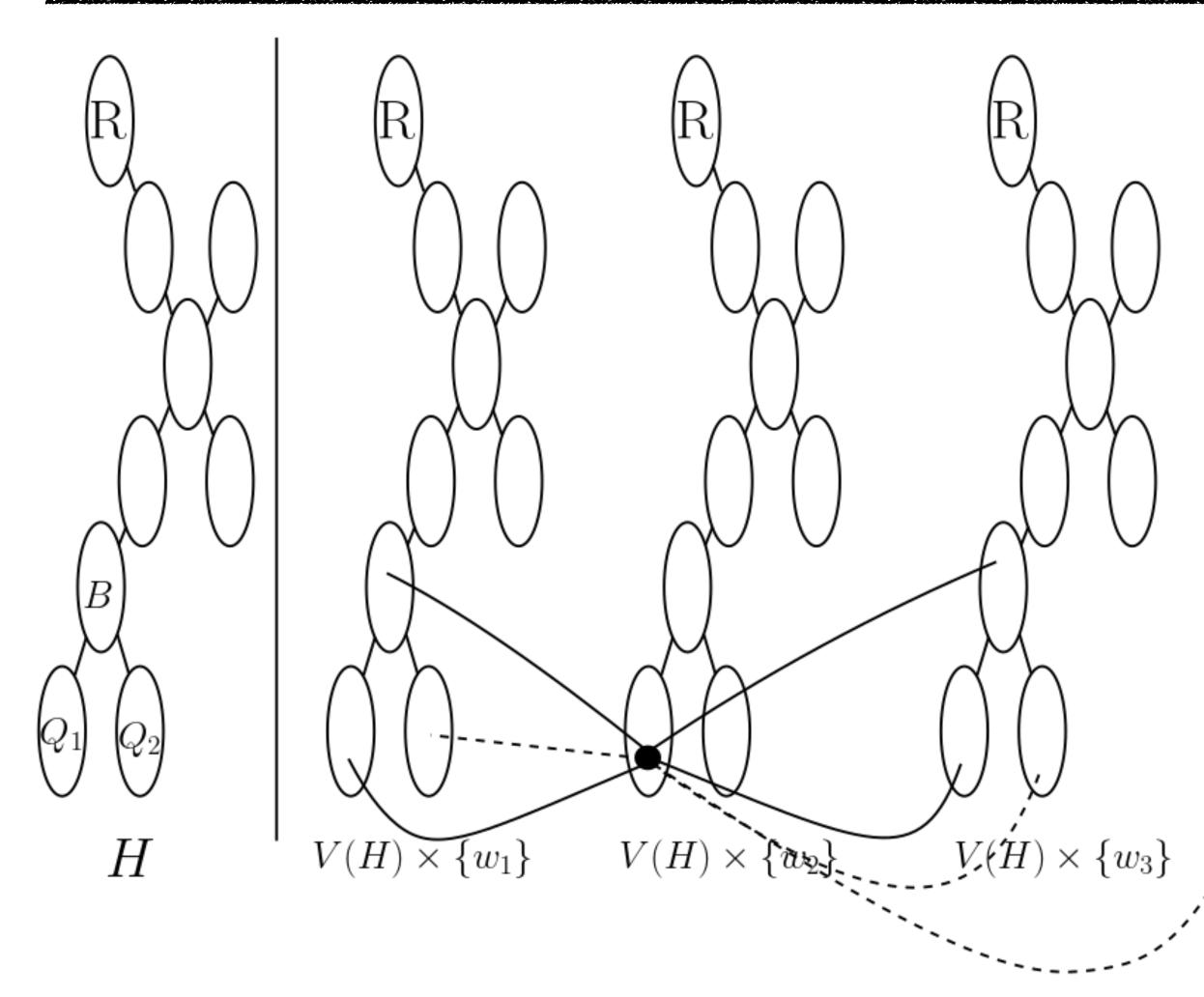
• Previous bounds for planar graphs in TWW I/ TWW VI papers were $\geq 2^{1000}$.

Theorem

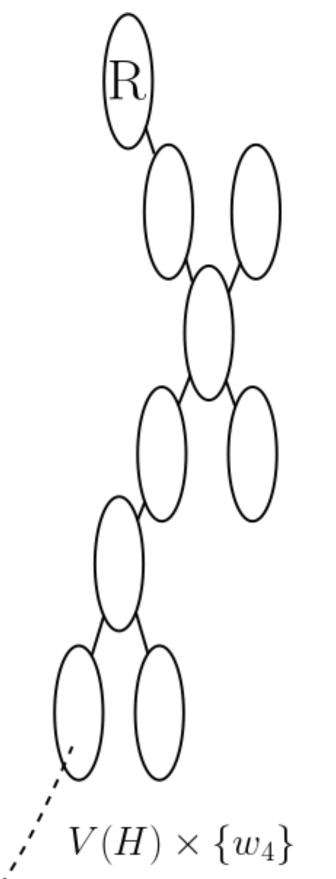
- (Product theorem (Ueckerdt, Wood, Yi 2021)) Every planar graph is a subgraph of $H \boxtimes P$ for some graph H of treewidth at most 6 and a path P.
- (Neighborhood complexity) For every vertex set S in a planar graph G, $|\{N(v) \cap S : v \in V(G) \setminus S\}| \le 6|S| - 9.$

Theorem Planar graphs have reduced-bandwidt

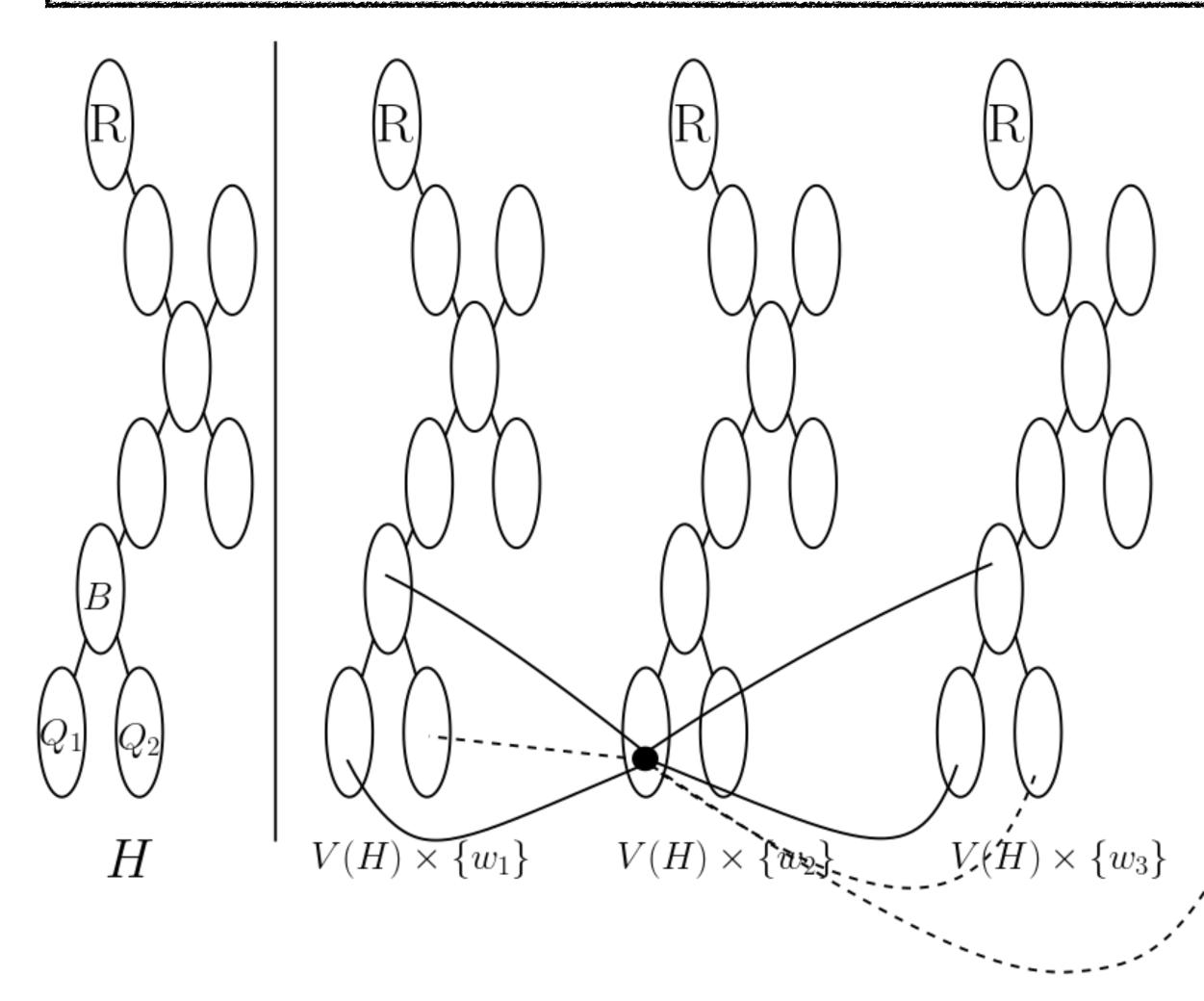
- (Product theorem (Ueckerdt, Wood, Yi 2021)) Every planar graph is a subgraph of $H \boxtimes P$ for some graph H of treewidth at most 6 and a path $P = w_1 w_2 \cdots w_t$.
- (Neighborhood complexity) For every vertex set *S* in a planar graph *G*, $|\{N(v) \cap S : v \in V(G) \setminus S\}| \le 6|S| 9.$
- **Difficulty**: when you identify two vertices, planarity may be destroyed, and it is hard to find a natural sequence preserving planarity.
- Idea: we will not use planarity when constructing a reduction sequence.
- We can slightly **improve** bounds by looking at neighborhood complexity in the product structure carefully. But we do not know whether we can improve to ≤ 100 .



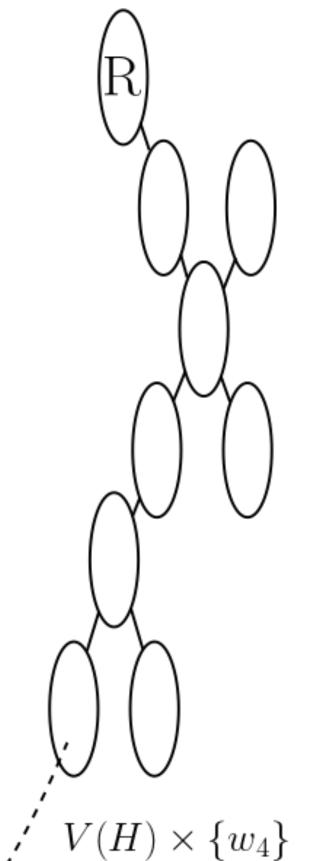
Planar graphs have reduced-bandwidth at most 466 and twin-width at most 583.



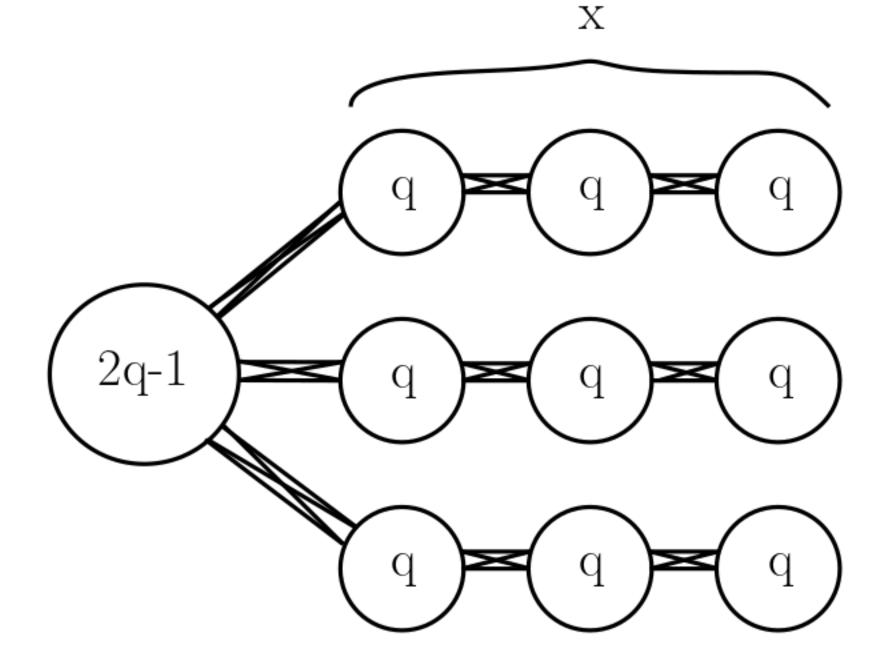
- Look at a vertex v in $(V(Q_1) \setminus V(B)) \times \{w_2\}.$
- Neighbors are contained in $(V(Q_1) \cup V(B)) \times \{w_1, w_2, w_3\}$



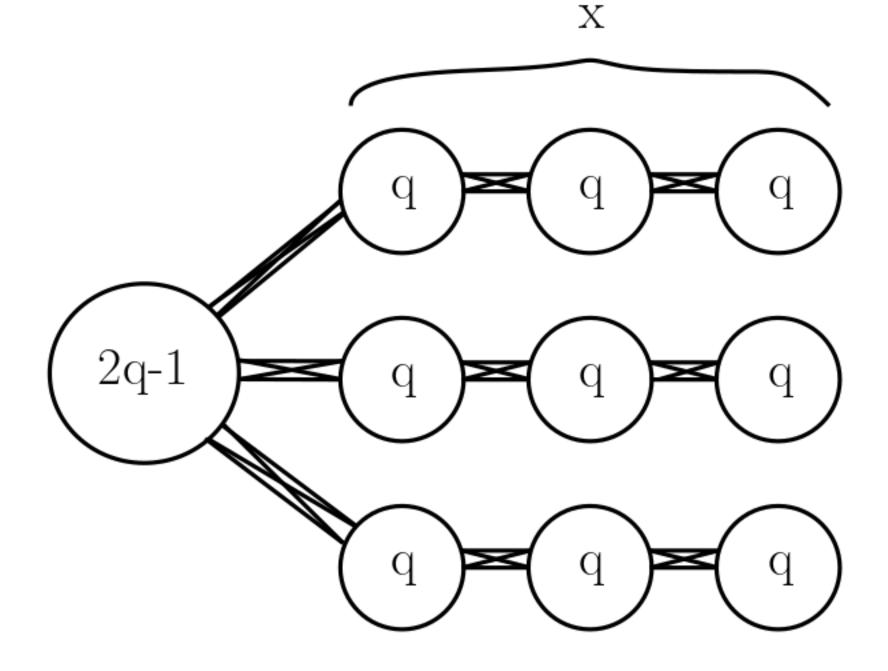
Planar graphs have reduced-bandwidth at most 466 and twin-width at most 583.



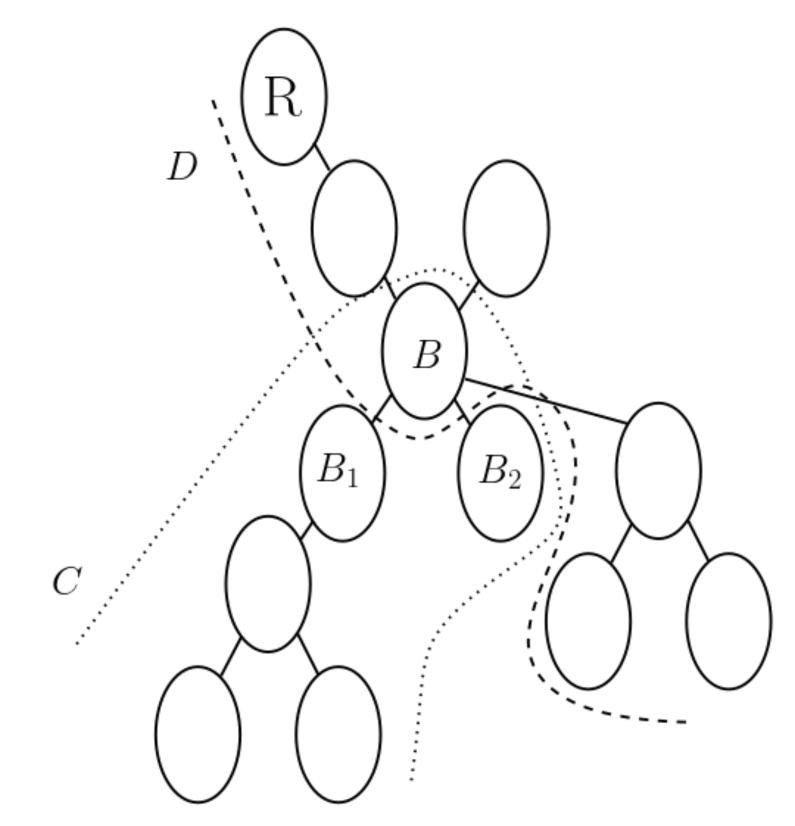
- Look at a vertex v in $(V(Q_1) \setminus V(B)) \times \{w_2\}.$
- Neighbors are contained in $(V(Q_1) \cup V(B)) \times \{w_1, w_2, w_3\}$
- We want to identify $((V(Q_1) \cup V(Q_2)) \setminus V(B)) \times V(P)$ so that no red edges incident with $V(B) \times V(P)$ are created.
- Idea: pick two vertices in the same silce that are twins to $V(B) \times V(P)$



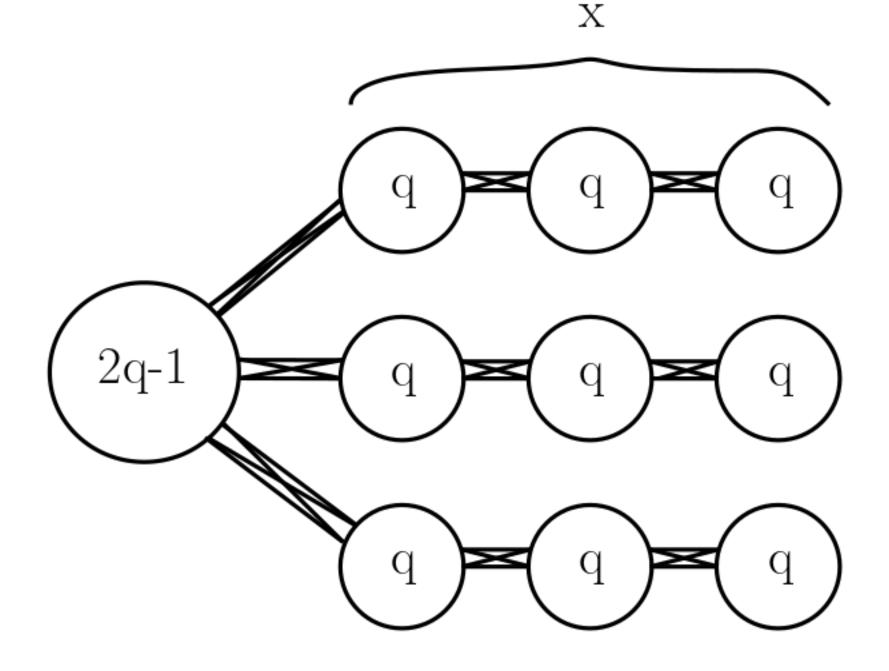
- $S_{x,q}$ (each circle is a clique)
- $\Delta(S_{x,q}) \leq 5q 2$ and bandw $(S_{x,q}) \leq 4q - 2$



- $S_{x,q}$ (each circle is a clique)
- $\Delta(S_{x,q}) \leq 5q 2$ and bandw $(S_{x,q}) \leq 4q - 2$

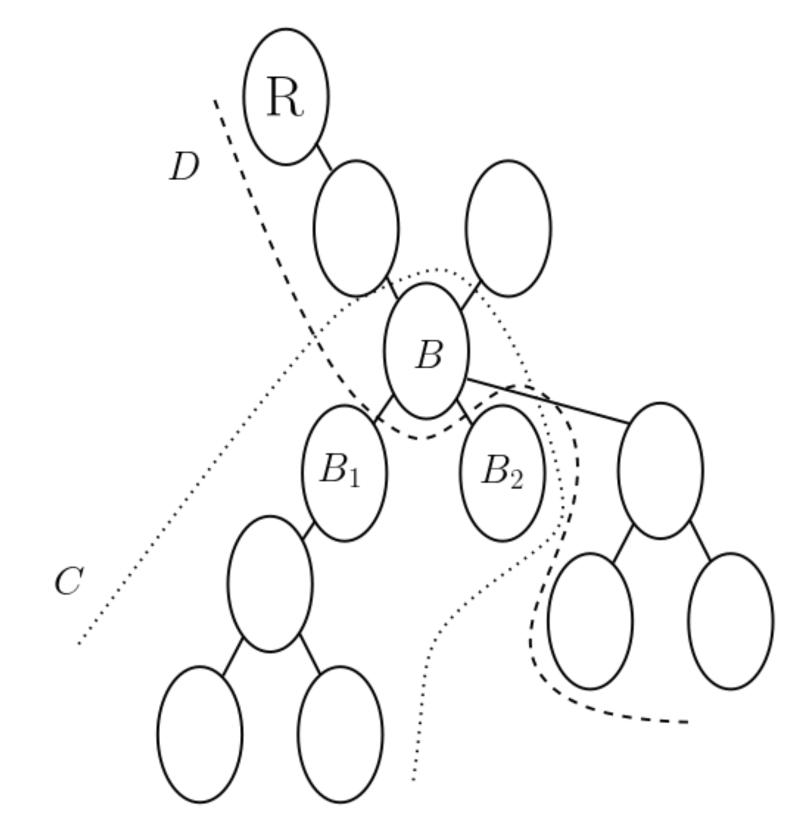


- (k, q)-rooted decomposition
 = internal bags have size ≤ k + 1, leaf bags have size ≤ q
- rooted separation is a separation (C, D) as in the picture



- $S_{x,q}$ (each circle is a clique)
- $\Delta(S_{x,q}) \leq 5q 2$ and bandw $(S_{x,q}) \leq 4q - 2$

• A parameter f is good if it is closed under subgraph / disjoint union



- (k, q)-rooted decomposition
 = internal bags have size ≤ k + 1,
 leaf bags have size ≤ q
- rooted separation is a separation (C, D) as in the picture

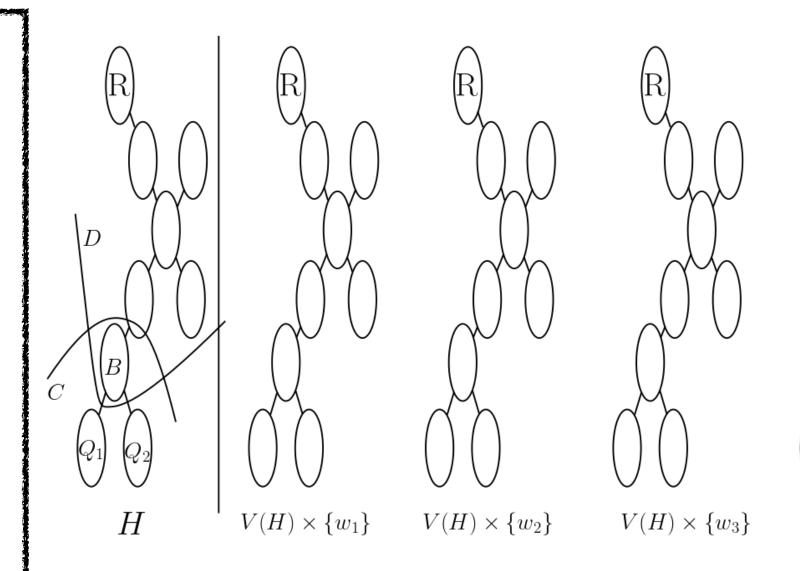
• Let f be a good parameter and $g : \mathbb{N} \to \mathbb{R}$ be a function where $f(S_{x,q}) \leq g(q)$ for all q. Let $(\mathcal{T}, \mathcal{B})$ be a (k, q)-rooted treedecomposition of H and let F be a trigraph with $V(F) \subseteq V(H \boxtimes P)$ such that

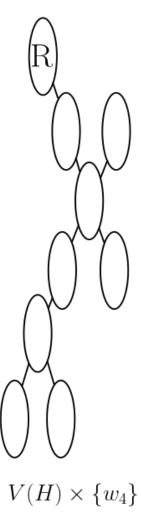
1) (red edge condition) for every red edge vw, there is a leaf bag B with parent B' so that $v, w \in (B \setminus B') \times V(P)$,

2) (separation condition) for every rooted separation (C, D) of H and $z \in V(P)$, $|\{N_F(v) \cap (D \times V(P)) : v \in ((C \setminus D) \times \{z\}) \cap V(F)\}| \le q$

3) (neighborhood condition) for every vertex $v \in (V(H) \times \{z\}) \cap V(F)$ for some $z \in V(P)$, $N_F[v] \subseteq V(H) \times N_P[z].$

Then reduced f of F is at most g(q).





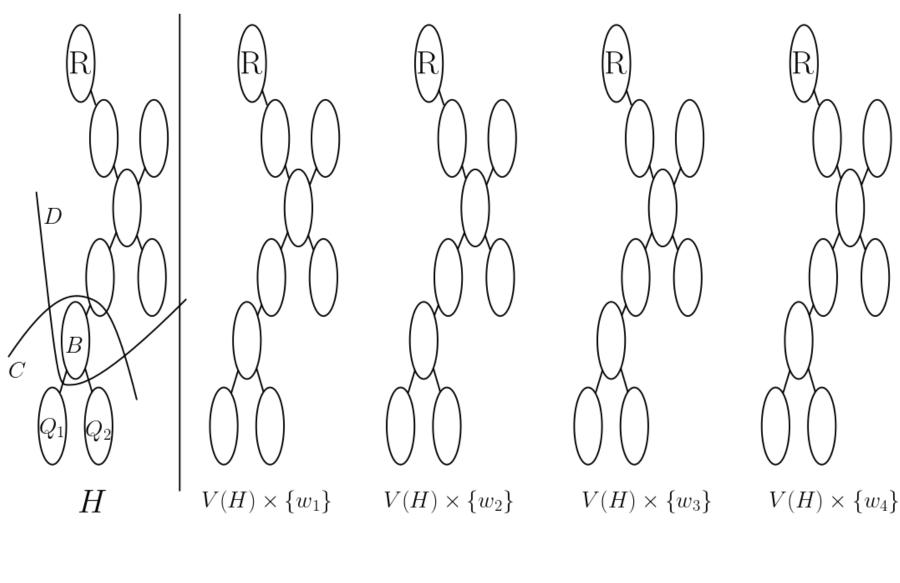
• Let f be a good parameter and $g : \mathbb{N} \to \mathbb{R}$ be a function where $f(S_{x,q}) \leq g(q)$ for all q. Let $(\mathcal{T}, \mathcal{B})$ be a (k, q)-rooted treedecomposition of H and let F be a trigraph with $V(F) \subseteq V(H \boxtimes P)$ such that

1) (red edge condition) for every red edge vw, there is a leaf bag B with parent B' so that $v, w \in (B \setminus B') \times V(P)$,

2) (separation condition) for every rooted separation (C, D) of H and $z \in V(P)$, $\left| \left\{ N_F(v) \cap (D \times V(P)) : v \in ((C \setminus D) \times \{z\}) \cap V(F) \right\} \right| \le q$

3) (neighborhood condition) for every vertex $v \in (V(H) \times \{z\}) \cap V(F)$ for some $z \in V(P)$, $N_F[v] \subseteq V(H) \times N_P[z].$

Then reduced f of F is at most g(q).



- For planar graphs, we can take k=6 and $q=6^{*}(7^{*}3)-9=117$.
- bandw($S_{x,q}$) $\leq 4q 2$ and $\Delta(S_{x,q}) \le 5q - 2.$
- So, reduced-bandw ≤ 466 and twin-width ≤ 583 .

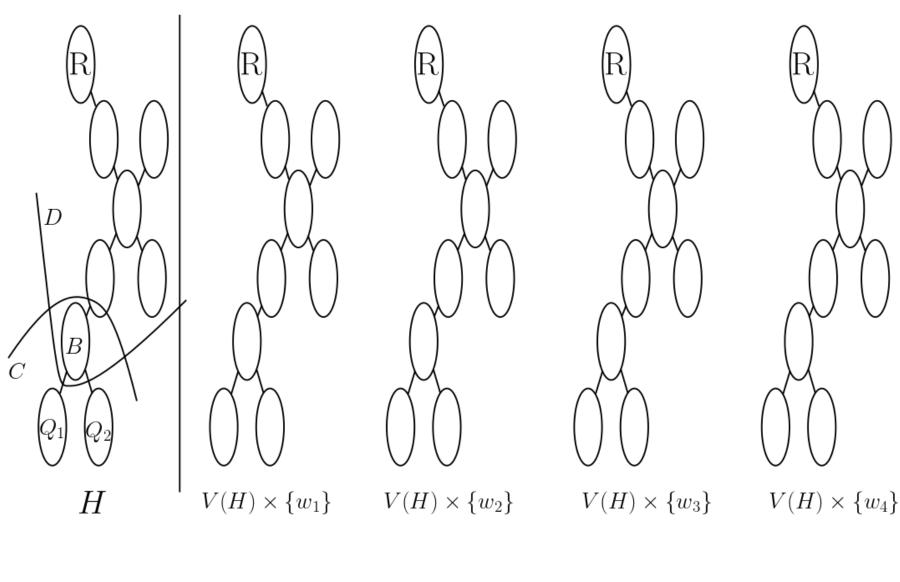
• Let f be a good parameter and $g : \mathbb{N} \to \mathbb{R}$ be a function where $f(S_{x,q}) \leq g(q)$ for all q. Let $(\mathcal{T}, \mathcal{B})$ be a (k, q)-rooted treedecomposition of H and let F be a trigraph with $V(F) \subseteq V(H \boxtimes P)$ such that

1) (red edge condition) for every red edge vw, there is a leaf bag B with parent B' so that $v, w \in (B \setminus B') \times V(P)$,

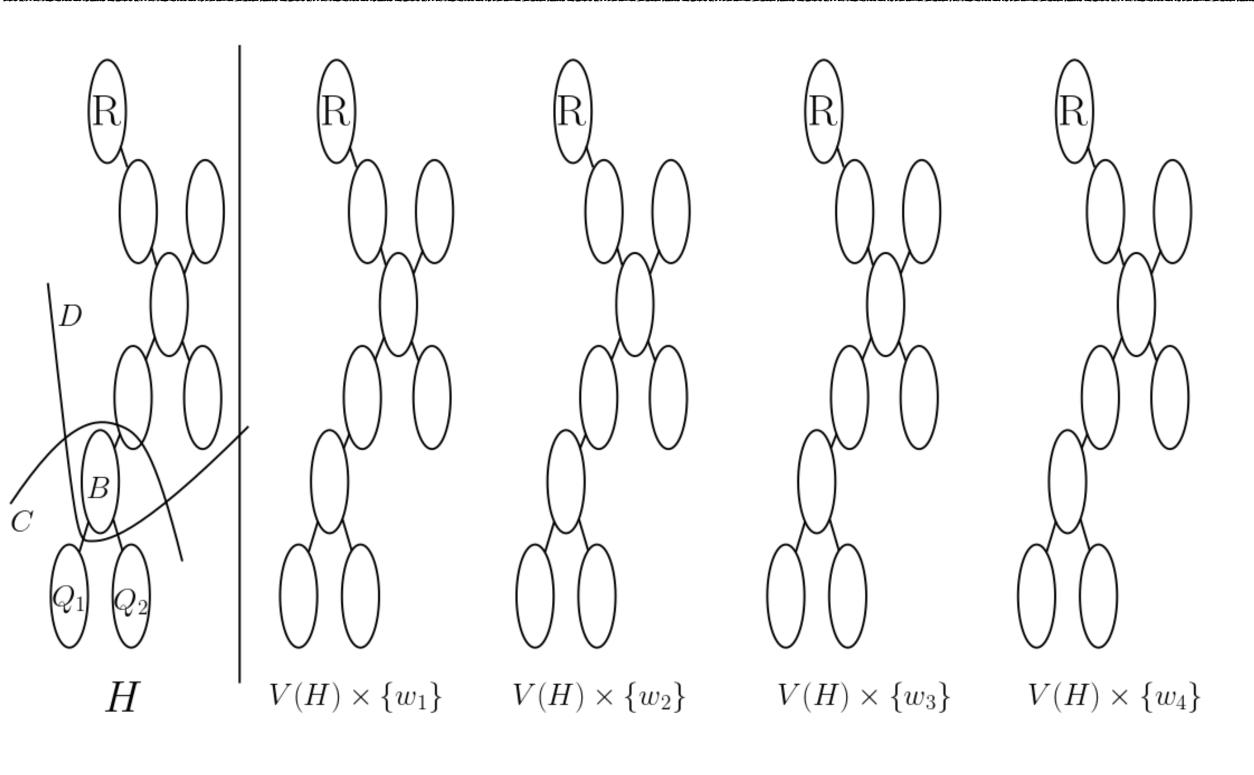
2) (separation condition) for every rooted separation (C, D) of H and $z \in V(P)$, $\left| \left\{ N_F(v) \cap (D \times V(P)) : v \in ((C \setminus D) \times \{z\}) \cap V(F) \right\} \right| \le q$

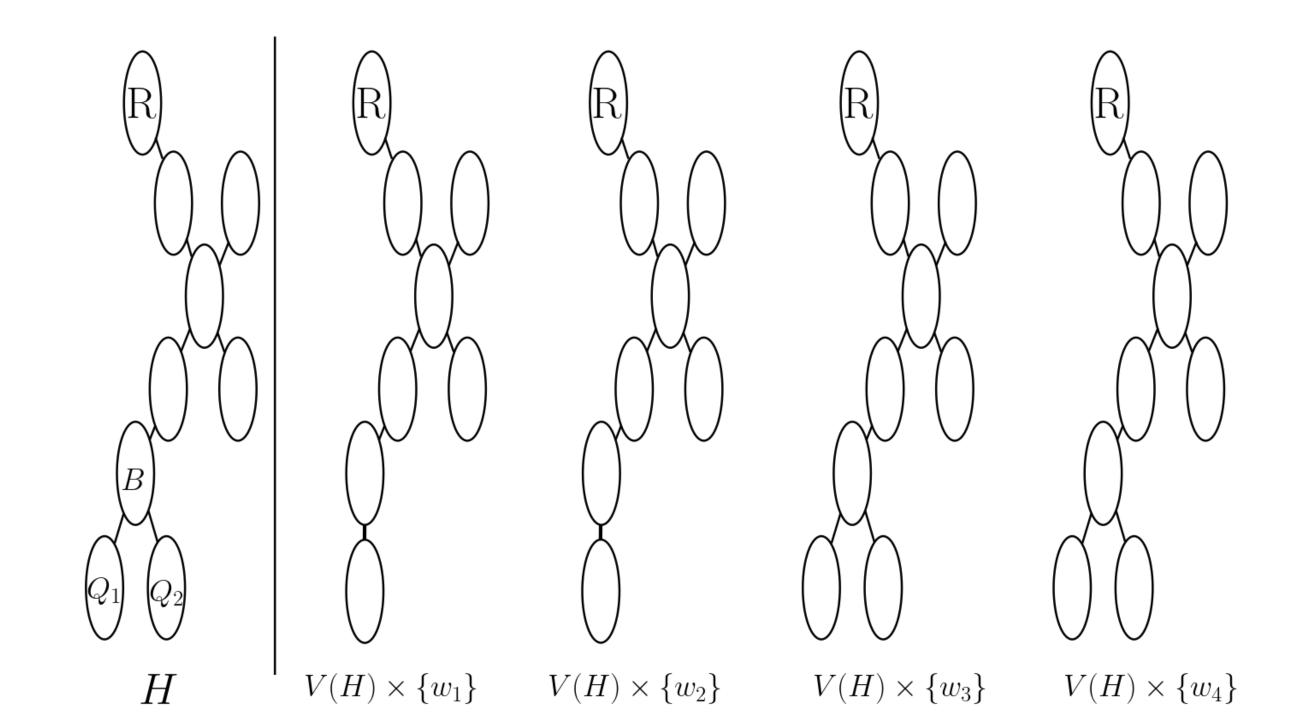
3) (neighborhood condition) for every vertex $v \in (V(H) \times \{z\}) \cap V(F)$ for some $z \in V(P)$, $N_F[v] \subseteq V(H) \times N_P[z].$

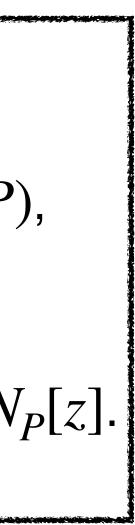
Then reduced f of F is at most g(q).

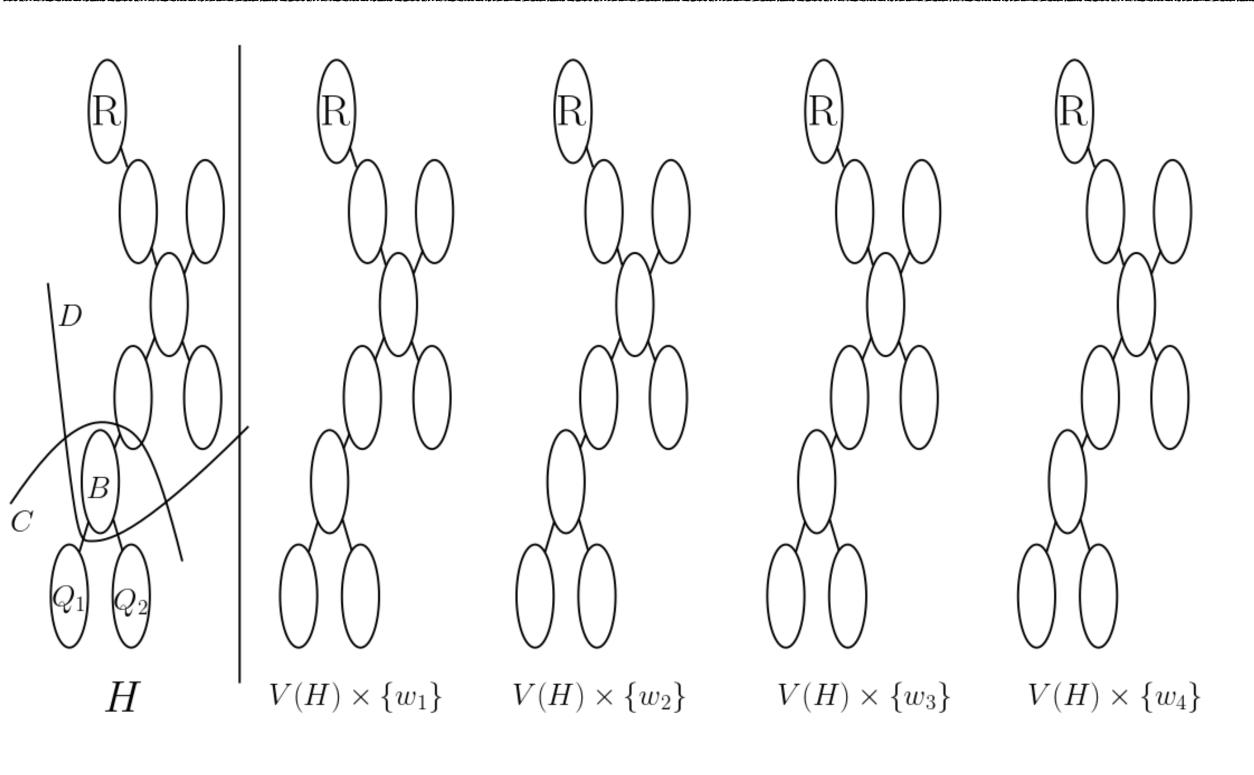


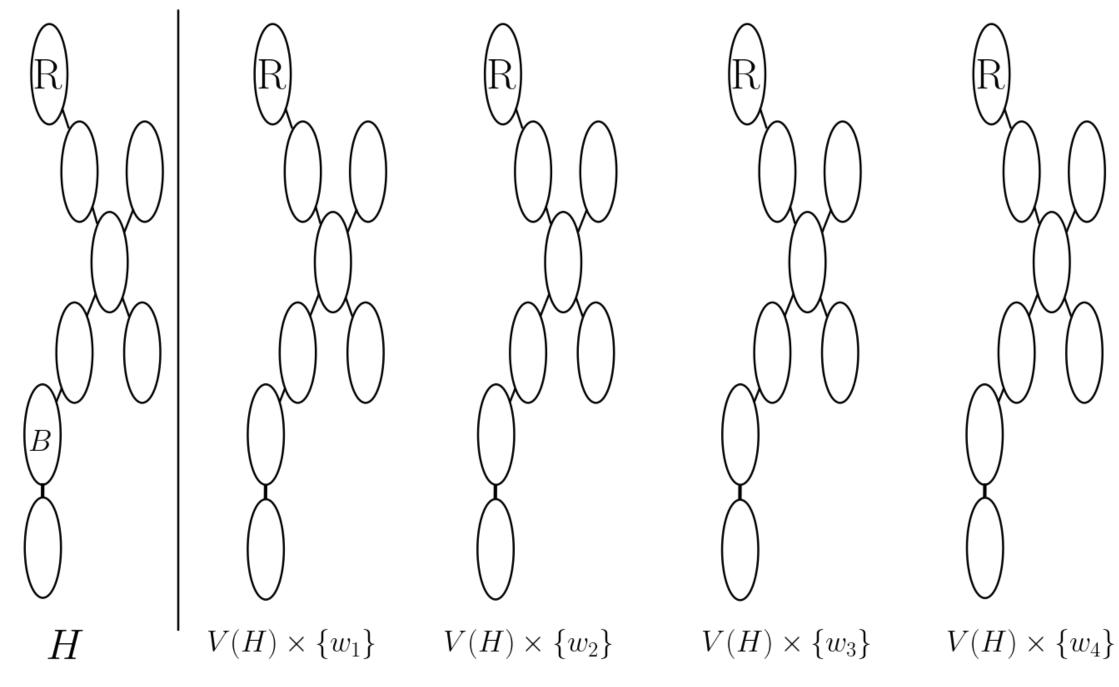
- For planar graphs, we can take k=6 and $q=6^{*}(7^{*}3)-9=117$.
- bandw($S_{x,q}$) $\leq 4q 2$ and $\Delta(S_{x,q}) \le 5q - 2.$
- So, reduced-bandw ≤ 466 and twin-width ≤ 583 .
- Can be applied to any class with product structure!

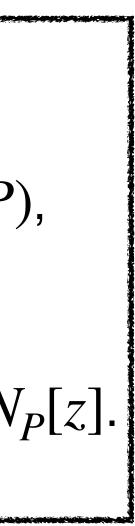


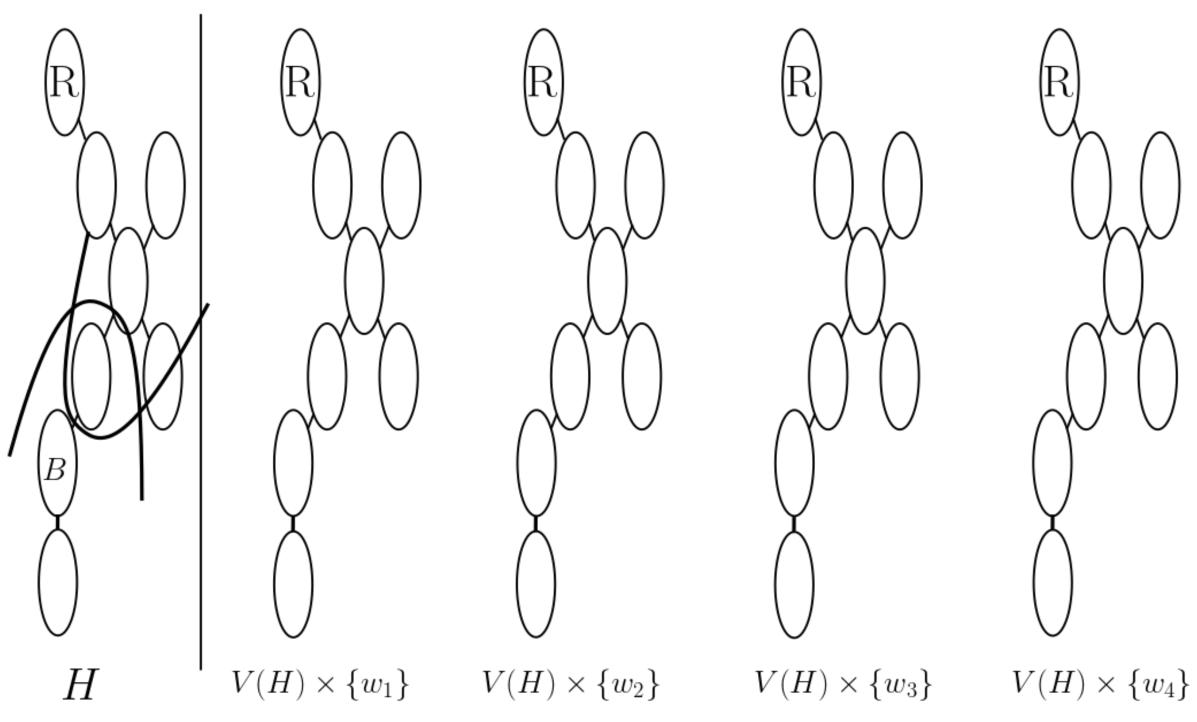


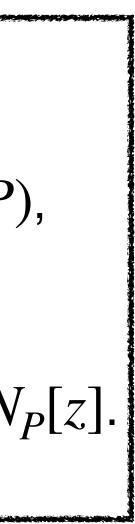


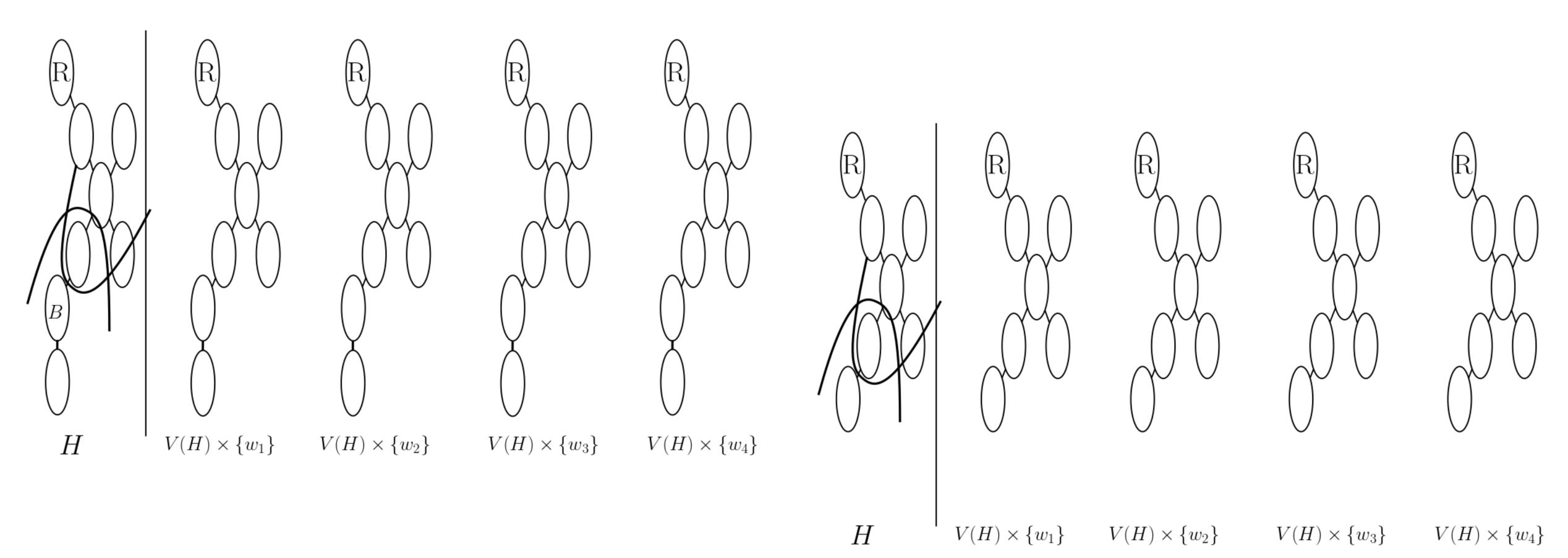


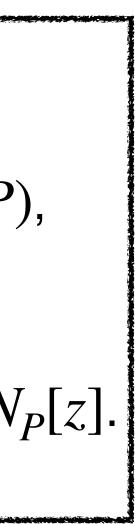


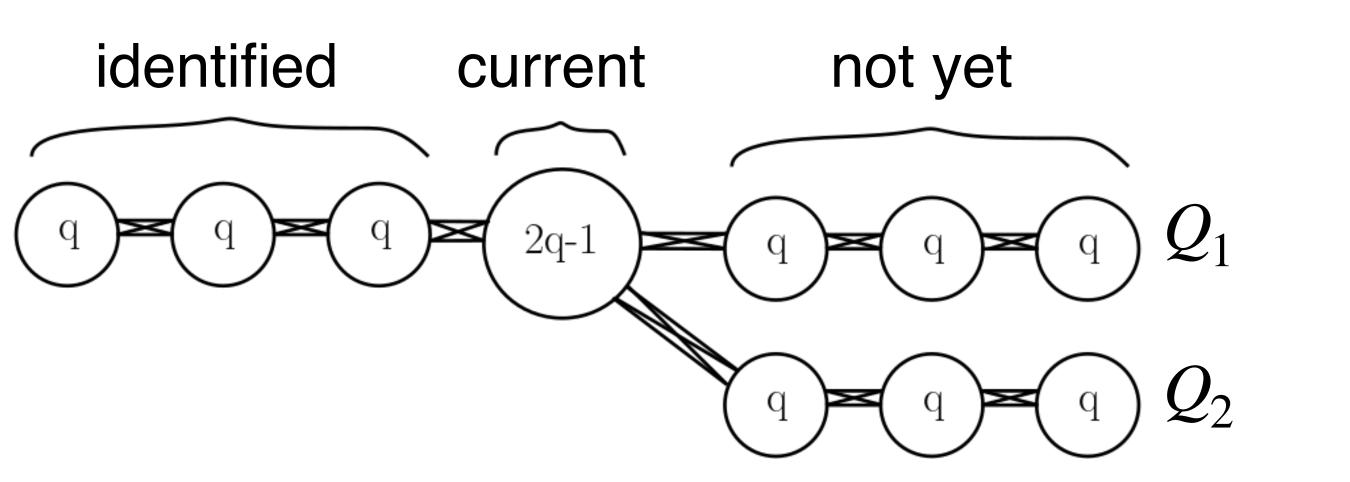






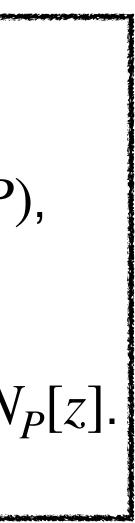






- One can see that each red component is always a subgraph of \$
- So, reduced f of F is at most g(q).

• Since f is closed under subgraph / disjoint union, red graph has f-value $\leq g(q)$.



r-powers

- For r-th powers :
 - 1) we consider the *r*-th power of $S_{x,q}$ instead of $S_{x,q}$
 - 2) (neighbourhood condition) $N_P[z]$ is replaced with $N_P^r[z]$
 - 3) (separation condition) We can use linear bounds on distance-r profiles by Eickmeyer et al. (2017) (or simply $(r + 1)^{|S|}$)
 - 4) For a map graph *G* and vertex set *S*, we prove that $|\{N(v) \cap S : v \in V(G) \setminus S\}| \le \max\{2^{10}, 37 \mid S \mid -81\}$ (where we apply |S| = 35)

X-minor free graphs

(Dujmović, Joret, Micek, Morin, Ueckerdt, and Wood 2020) For every graph X, there exists $k, a \in \mathbb{N}$ such that every X-minor-free graph G has a tree-decomposition in which every torso is a subgraph of $(H \boxtimes P) + K_a$ for some graph H of treewidth at most k and some path P.

- We consider the neighborhood complexity to bags in $H \boxtimes P$ together with K_{a} .
- We obtain a reduction sequence from bottom to top in the tree-decomposition, so that during the sequence, we do not create red edge to above bags.
- We need to extend the lemma to deal with information from below subtrees.

Conclusion

• Proper minor-closed classes and their r-powers have bounded reduced-bandwidth.

Question :

- Is it true that planar graphs have reduced-bandwidth / twin-width at most 10?
- We write $f_1 \prec f_2$ if there is a function ϕ such that for every graph G, $f_1(G) \le \phi(f_2(G)).$

Is there a parameter f such that

- planar graphs have bounded reduced f and $f \prec$ bandwidth but bandwidth $\not\prec f$?
- Is there a natural parameter tied to reduced-bandwidth?
- Is there an interesting application of reduced-bandwidth?

