A simulative approach to the construction of new Ricci solitons Timothy Buttsworth

A gradient shrinking Ricci soliton is a triple (M, g, u), where M is a smooth manifold, g is a Riemannian metric, and $u: M \to \mathbb{R}$ is a smooth function so that

 $Ric(g) + Hess_g(u) = g.$

A gradient shrinking Ricci soliton is a triple (M, g, u), where M is a smooth manifold, g is a Riemannian metric, and $u: M \to \mathbb{R}$ is a smooth function so that

$$Ric(g) + Hess_g(u) = g.$$

These are the shrinking self-similar solutions of the Ricci flow $\frac{\partial g}{\partial t} = -2Ric(g)$, and arise as singularity models for large classes of initial metrics.

A gradient shrinking Ricci soliton is a triple (M, g, u), where M is a smooth manifold, g is a Riemannian metric, and $u: M \to \mathbb{R}$ is a smooth function so that

$$Ric(g) + Hess_g(u) = g.$$

These are the shrinking self-similar solutions of the Ricci flow $\frac{\partial g}{\partial t} = -2Ric(g)$, and arise as singularity models for large classes of initial metrics.

If M is three-dimensional and simply-connected, the only options are

• the round three-sphere (*u* is constant);

A gradient shrinking Ricci soliton is a triple (M, g, u), where M is a smooth manifold, g is a Riemannian metric, and $u: M \to \mathbb{R}$ is a smooth function so that

$$Ric(g) + Hess_g(u) = g.$$

These are the shrinking self-similar solutions of the Ricci flow $\frac{\partial g}{\partial t} = -2Ric(g)$, and arise as singularity models for large classes of initial metrics.

If M is three-dimensional and simply-connected, the only options are

- the round three-sphere (*u* is constant);
- the Gaussian (flat Euclidean space with $u(x) = \frac{|x|^2}{2}$);

A gradient shrinking Ricci soliton is a triple (M, g, u), where M is a smooth manifold, g is a Riemannian metric, and $u: M \to \mathbb{R}$ is a smooth function so that

$$Ric(g) + Hess_g(u) = g.$$

These are the shrinking self-similar solutions of the Ricci flow $\frac{\partial g}{\partial t} = -2Ric(g)$, and arise as singularity models for large classes of initial metrics.

If M is three-dimensional and simply-connected, the only options are

- the round three-sphere (*u* is constant);
- the Gaussian (flat Euclidean space with $u(x) = \frac{|x|^2}{2}$);
- the shrinking cylinder $(M = \mathbb{S}^2 \times \mathbb{R}$ with standard metric, $u(x, y) = \frac{y^2}{2}$.

• Jensen (1973): New Sp(m + 1)-invariant homogeneous Einstein metrics on \mathbb{S}^{4m+3} , m > 1;

- Jensen (1973): New Sp(m + 1)-invariant homogeneous Einstein metrics on \mathbb{S}^{4m+3} , m > 1;
- Böhm (1998): Many new cohomogeneity-one Einstein metrics on Sⁿ, n = 5, 6, 7, 8, 9;

- Jensen (1973): New Sp(m + 1)-invariant homogeneous Einstein metrics on \mathbb{S}^{4m+3} , m > 1;
- Böhm (1998): Many new cohomogeneity-one Einstein metrics on Sⁿ, n = 5, 6, 7, 8, 9;
- Boyer-Galicki-Kollár (2005): Even more new Einstein metrics on odd-dimensional spheres.

- Jensen (1973): New Sp(m + 1)-invariant homogeneous Einstein metrics on \mathbb{S}^{4m+3} , m > 1;
- Böhm (1998): Many new cohomogeneity-one Einstein metrics on Sⁿ, n = 5, 6, 7, 8, 9;
- Boyer-Galicki-Kollár (2005): Even more new Einstein metrics on odd-dimensional spheres.

- Jensen (1973): New Sp(m + 1)-invariant homogeneous Einstein metrics on \mathbb{S}^{4m+3} , m > 1;
- Böhm (1998): Many new cohomogeneity-one Einstein metrics on Sⁿ, n = 5, 6, 7, 8, 9;
- Boyer-Galicki-Kollár (2005): *Even more* new Einstein metrics on odd-dimensional spheres.

There does not appear to be any known non-round Ricci solitons on \mathbb{S}^4 .

• Haslhoffer-Müller (2014): A normalised sequence of 4*d* gradient shrinking Ricci solitons with Perelman entropy bounded from below admits a subsequence convergent to an orbifold Ricci shrinker in the Cheeger-Gromov sense.

• Haslhoffer-Müller (2014): A normalised sequence of 4*d* gradient shrinking Ricci solitons with Perelman entropy bounded from below admits a subsequence convergent to an orbifold Ricci shrinker in the Cheeger-Gromov sense.

• Haslhoffer-Müller (2014): A normalised sequence of 4*d* gradient shrinking Ricci solitons with Perelman entropy bounded from below admits a subsequence convergent to an orbifold Ricci shrinker in the Cheeger-Gromov sense.

If one simply wanted to find *new* solitons (rather than a classification), one could use more efficient stochastic techniques to detect new solutions, and then use Leray-Schauder degree theory to confirm existence.

Up to diffeomorphism, an $SO(3)\times SO(2)\text{-invariant}$ metric \mathbb{S}^4 has the form

$$dt^2 + f_1^2 \mathbb{S}^1 + f_2^2 \mathbb{S}^2, \tag{1}$$

for $t \in (0, T)$, with appropriate smoothness conditions at t = 0, T.

Up to diffeomorphism, an $SO(3)\times SO(2)\text{-invariant}$ metric \mathbb{S}^4 has the form

$$dt^2 + f_1^2 \mathbb{S}^1 + f_2^2 \mathbb{S}^2, \tag{1}$$

for $t \in (0, T)$, with appropriate smoothness conditions at t = 0, T. This metric is a soliton if

$$-\frac{f_1''}{f_1} - 2\frac{f_2''}{f_2} + u'' = 1,$$

$$-\frac{f_1''}{f_1} - 2\frac{f_1'f_2'}{f_1f_2} + u'\frac{f_1'}{f_1} = 1,$$

$$-\frac{f_2''}{f_2} - \frac{f_1'f_2'}{f_1f_2} + \frac{1 - f_2'^2}{f_2^2} + u'\frac{f_2'}{f_2} = 1.$$
 (2)

Up to diffeomorphism, an $SO(3)\times SO(2)\text{-invariant}$ metric \mathbb{S}^4 has the form

$$dt^2 + f_1^2 \mathbb{S}^1 + f_2^2 \mathbb{S}^2, \tag{1}$$

for $t \in (0, T)$, with appropriate smoothness conditions at t = 0, T. This metric is a soliton if

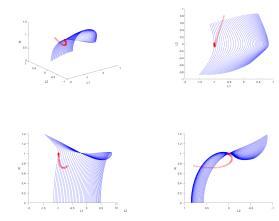
$$-\frac{f_1''}{f_1} - 2\frac{f_2''}{f_2} + u'' = 1,$$

$$-\frac{f_1''}{f_1} - 2\frac{f_1'f_2'}{f_1f_2} + u'\frac{f_1'}{f_1} = 1,$$

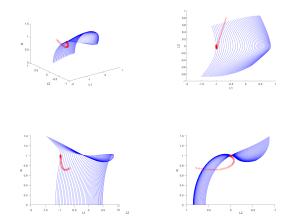
$$-\frac{f_2''}{f_2} - \frac{f_1'f_2'}{f_1f_2} + \frac{1 - f_2'^2}{f_2^2} + u'\frac{f_2'}{f_2} = 1.$$
 (2)

The IVP is controlled by one real parameter at one end, and two real parameters at the other end.

As a shooting problem:

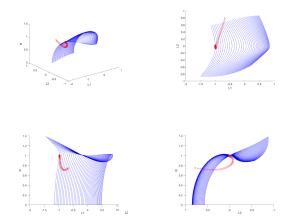


As a shooting problem:



The obvious intersection is the round Einstein metric.

As a shooting problem:



The obvious intersection is the round Einstein metric. There appears to be a sequence of 'almost' intersections with unbounded Riemann curvature.

Theorem

There exists a C > 0 so that any $SO(3) \times SO(2)$ -invariant soliton on \mathbb{S}^4 has Riemann curvature bounded pointwise by C.

Theorem

There exists a C > 0 so that any $SO(3) \times SO(2)$ -invariant soliton on \mathbb{S}^4 has Riemann curvature bounded pointwise by C.

Conjecture

The only $SO(3) \times SO(2)$ -invariant soliton on \mathbb{S}^4 is the round metric, up to diffemorphism.

Could be upgraded to 'Theorem' with enough computational power.

$\overline{SO(3)} imes SO(2)$ -invariant solitons on \mathbb{S}^4

Theorem

There exists a C > 0 so that any $SO(3) \times SO(2)$ -invariant soliton on \mathbb{S}^4 has Riemann curvature bounded pointwise by C.

Conjecture

The only $SO(3) \times SO(2)$ -invariant soliton on \mathbb{S}^4 is the round metric, up to diffemorphism.

Could be upgraded to 'Theorem' with enough computational power.

Conjecture

Possibly a new ancient solution?

Near this sequence of 'almost Ricci solitons'.