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Singularity Models of the Ricci Flow

A gradient shrinking Ricci soliton is a triple (M, g , u), where M is
a smooth manifold, g is a Riemannian metric, and u : M → R is a
smooth function so that

Ric(g) + Hessg (u) = g .

These are the shrinking self-similar solutions of the Ricci flow
∂g
∂t = −2Ric(g), and arise as singularity models for large classes of
initial metrics.
If M is three-dimensional and simply-connected, the only options
are

the round three-sphere (u is constant);

the Gaussian (flat Euclidean space with u(x) = |x |2
2 );

the shrinking cylinder (M = S2 × R with standard metric,

u(x , y) = y2

2 ).
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Solitons on Spheres

Jensen (1973): New Sp(m + 1)-invariant homogeneous
Einstein metrics on S4m+3, m > 1;

Böhm (1998): Many new cohomogeneity-one Einstein metrics
on Sn, n = 5, 6, 7, 8, 9;

Boyer-Galicki-Kollár (2005): Even more new Einstein metrics
on odd-dimensional spheres.

There does not appear to be any known non-round Ricci solitons
on S4.
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Böhm (1998): Many new cohomogeneity-one Einstein metrics
on Sn, n = 5, 6, 7, 8, 9;

Boyer-Galicki-Kollár (2005): Even more new Einstein metrics
on odd-dimensional spheres.

There does not appear to be any known non-round Ricci solitons
on S4.



Solitons on Spheres

Jensen (1973): New Sp(m + 1)-invariant homogeneous
Einstein metrics on S4m+3, m > 1;
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Böhm (1998): Many new cohomogeneity-one Einstein metrics
on Sn, n = 5, 6, 7, 8, 9;

Boyer-Galicki-Kollár (2005): Even more new Einstein metrics
on odd-dimensional spheres.

There does not appear to be any known non-round Ricci solitons
on S4.



Compactness of Gradient Shrinkers on Four-Manifolds

In principle, if one could obtain explicit and coercive a priori
estimates on solitons, one could complete an exhaustive numerical
approach to classify all solitons.

Haslhoffer-Müller (2014): A normalised sequence of 4d
gradient shrinking Ricci solitons with Perelman entropy
bounded from below admits a subsequence convergent to an
orbifold Ricci shrinker in the Cheeger-Gromov sense.

If one simply wanted to find new solitons (rather than a
classification), one could use more efficient stochastic techniques
to detect new solutions, and then use Leray-Schauder degree
theory to confirm existence.
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SO(3)× SO(2)-invariant solitons on S4

Up to diffeomorphism, an SO(3)× SO(2)-invariant metric S4 has
the form

dt2 + f 2
1 S1 + f 2

2 S2, (1)

for t ∈ (0,T ), with appropriate smoothness conditions at t = 0,T .

This metric is a soliton if
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The IVP is controlled by one real parameter at one end, and two
real parameters at the other end.
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SO(3)× SO(2)-invariant solitons on S4

As a shooting problem:

The obvious intersection is the round Einstein metric. There
appears to be a sequence of ‘almost’ intersections with unbounded
Riemann curvature.
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SO(3)× SO(2)-invariant solitons on S4

Theorem

There exists a C > 0 so that any SO(3)× SO(2)-invariant soliton
on S4 has Riemann curvature bounded pointwise by C.

Conjecture

The only SO(3)× SO(2)-invariant soliton on S4 is the round
metric, up to diffemorphism.

Could be upgraded to ‘Theorem’ with enough computational
power.

Conjecture

Possibly a new ancient solution?

Near this sequence of ‘almost Ricci solitons’.



SO(3)× SO(2)-invariant solitons on S4

Theorem

There exists a C > 0 so that any SO(3)× SO(2)-invariant soliton
on S4 has Riemann curvature bounded pointwise by C.

Conjecture

The only SO(3)× SO(2)-invariant soliton on S4 is the round
metric, up to diffemorphism.

Could be upgraded to ‘Theorem’ with enough computational
power.

Conjecture

Possibly a new ancient solution?

Near this sequence of ‘almost Ricci solitons’.



SO(3)× SO(2)-invariant solitons on S4

Theorem

There exists a C > 0 so that any SO(3)× SO(2)-invariant soliton
on S4 has Riemann curvature bounded pointwise by C.

Conjecture

The only SO(3)× SO(2)-invariant soliton on S4 is the round
metric, up to diffemorphism.

Could be upgraded to ‘Theorem’ with enough computational
power.

Conjecture

Possibly a new ancient solution?

Near this sequence of ‘almost Ricci solitons’.


