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These are the shrinking self-similar solutions of the Ricci flow
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If M is three-dimensional and simply-connected, the only options

are

o the round three-sphere (u is constant);

o the Gaussian (flat Euclidean space with u(x) = %)

o the shrinking cylinder (M = S? x R with standard metric,
2

U(X,y) = y?)
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Solitons on Spheres

o Jensen (1973): New Sp(m + 1)-invariant homogeneous
Einstein metrics on S*™+3, m > 1:

e Bohm (1998): Many new cohomogeneity-one Einstein metrics
onS", n=5,6,7,8,9;

o Boyer-Galicki-Kollar (2005): Even more new Einstein metrics
on odd-dimensional spheres.

There does not appear to be any known non-round Ricci solitons
on S*.
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Compactness of Gradient Shrinkers on Four-Manifolds

In principle, if one could obtain explicit and coercive a priori
estimates on solitons, one could complete an exhaustive numerical
approach to classify all solitons.

o Haslhoffer-Miiller (2014): A normalised sequence of 4d
gradient shrinking Ricci solitons with Perelman entropy
bounded from below admits a subsequence convergent to an
orbifold Ricci shrinker in the Cheeger-Gromov sense.

If one simply wanted to find new solitons (rather than a
classification), one could use more efficient stochastic techniques
to detect new solutions, and then use Leray-Schauder degree
theory to confirm existence.
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The IVP is controlled by one real parameter at one end, and two
real parameters at the other end.
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As a shooting problem:

The obvious intersection is the round Einstein metric. There
appears to be a sequence of ‘almost’ intersections with unbounded
Riemann curvature.
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Theorem

There exists a C > 0 so that any SO(3) x SO(2)-invariant soliton
on S* has Riemann curvature bounded pointwise by C.

Conjecture

The only SO(3) x SO(2)-invariant soliton on S* is the round
metric, up to diffemorphism.

Could be upgraded to ‘Theorem’ with enough computational
power.

Conjecture
Possibly a new ancient solution?

Near this sequence of ‘almost Ricci solitons'.



