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Abstract
� A brief biological introduction for salmonella motion in mucus is given

� Illustrate motivations for modeling such motion

� Outline the structure of the process model and describe the SDEs

� Process model is treated as Hidden Markov Model for learning and inference

� A brief introduction to parameter estimation with incomplete data through
Expectation Maximization

� Will compare impact of different mucosal conditions on salmonella motion

� Will use additional statistical tools to understand accuracy and things like first
passage time

Biological Background and
Motivations
� Salmonella swim with flagella and this creates a distinct movement

pattern

� Run and Tumble models have been used to model this

� Flagella rotate synchronously to create forward motion and
asynchronously to turn the cell

� Studies have already shown that various mucosal conditions can impact
salmonella motion, in particular in Rag1−/− mice, which lack mature T
and B lymphocytes

� Specifically, antibodies that bind to the LPS in salmonella cell walls
hinder active motion

� This is because antibodies act as anchors

� A model was created to observe the extent of this for Salmonella in
mouse GI tracts

Model
� Cells switch between swimming, tumbling, and dormant

� Tumble must be used as an intermediate state between swim and
dormant

� This means there are four transition rates

Model Diagram

� Biologically supported by previous run and tumble models and video
data

� Each state experiences some variant of Brownian Motion

SDEs
� Specific SDEs can then be written to describe each state individually

Dormant (S = 0): dX =
√

2D0dW

Tumble (S = 1): dX =
√

2D1dW

Swim (S = 2): dX = v(φ, θ)dt +
√

2D2dW

� φ and θ indicate orientation, uniformly random each time entering
the Swim state

� For simplicity, we can discretized the unit sphere to get a finite
number of φ and θ angles

Chapman-Kolmogorov Equation
∂

∂t
p(n, nb,x, t) = δnb,0Dv∇

2p

+ (N − n + 1)konp(n− 1, nb,x, t) + (n + 1)koffp(n + 1, nb,x, t)

+ (n− nb + 1)aonp(n, nb − 1,x, t) + (nb + 1)aoffp(n, nb + 1,x, t)

− [(N − n)kon + nkoff + (n− nb)aon + nbaoff] p(n, nb,x, t)
(1)

Statistical Tools for Parameter
Estimation
� Because of the stochastic nature of the model, in addition to the

latent states, statistical tools are needed to estimate parameters

� Understanding how to estimate parameter values in the case of
complete data and the case of incomplete data is necessary

Maximum Likelihood Estimation

� In the case of complete data, i.e. no latent states, Maximum
Likelihood Estimation (MLE) can be used to estimate parameters

� A likelihood function is function to describe the probability of seeing
a certain set of observations, say X1:T = X1, X2, ..., XT , given the
parameters θ

� By optimizing the likelihood function, or equivalently the
log-likelihood, we obtain the parameter values that maximize our
likelihood of seeing X1:T

Expectation Maximization

� For incomplete data, a more advanced algorithm called Expectation
Maximization (EM) is needed as we do not know the complete set
of data

� EM consists of two steps, the E-step and the M-step

� E-step focuses on optimizing expectations while holding parameters
constant

� M-step focuses on optimizing parameters while holding expectations
constant

� The Forward-Backward algorithm is an algorithm for the E-step
which computes two probabilities, α = P (St, X1:t) and
β = P (Xt+1:T |St), by passing through the set of cell position
data, X1:t, twice (once forward and once backward)

� These two probabilities are then used to calculate two expectations
which represent the probability of being in state S at time t and the
joint probability of being in state Si and time t− 1 and state Sj at
time t

P (St = j|X1:t, θ) =
αt,jβt,j∑
i αt,iβt,i

P (St = j, St+1 = k|X1:t, θ) =
αt(k)φk,jP (Xt+1|Sk)βt+1(k)∑
j
∑
k αtφt+1,tP (Xt+1|St+1)βt+1

� Where φk,j is the state transition probability matrix

� These two expectations can then be used to re-estimate the
parameters, which makes up the M-step

� We can iterate over these two steps, recomputing first the
expectations then the parameters, until a convergence is reached

Future work
� In the process of running position data for wild type cells, which

means they are a natural strain with no atypical mutations, through
EM algorithm to determine parameter values for locations in the GI
tract

� Position data is pulled from microscopy videos via a particle
tracking algorithm

Image of Video of Wild-Type cells from Mouse Duodenum

� Will compare results and evaluate how location in the GI tract
impacts motion for wild type cells

� Confidence of parameter estimation will be examined

� First Passage Time will be examined

� Possibly look for population heterogeneity

� Expand the process model to include population heterogeneity, and
use a reducible HMM to estimate the parameter values

References

[1] A.P. Dempster, N.M. Laird, and D.B. Rubin (1997) Maximum
Likelihood for Incomplete Data via the EM Algorithm Journal of
the Royal Statistical Society Vol. 39, No. 1

[2] Zoubin Ghahramani (2001) An Introduction to Hidden Markov
Models and Bayesian Networks International Journal of Pattern
Recognition and Artificial Intelligence Vol. 15, No. 1

[3] Shuichi Nakamura and Tohru Minamino (2019) Flagella-Driven
Motility of Bacteria biomolecules, 14 July 2019

[4] L.R. Rabiner and B.H. Juang (1986) An Introduction to Hidden
Markov Models IEEE ASSP Magazine January 1986

[5] Holly A. Schroeder, Jay Newby, Alison Schaefer, Babu Subramani,
Alan Tubbs, M. Gregory Forest, Ed Miao and Samuel K. Lai
(2020) LPS-binding IgG arrests actively motile Salmonella
Typhimurium in gastrointestinal mucus Mucosal Immunology 13,
pages814–823 (2020)


