A Brief Look at Salmonella Run and Tumble

Abstract

 - Illustrate motivations for modeling such motion

Outline the structure of the process model and describe the SDEs - Process model is treated as Hidden Markov Model for learning and inference A brief introduction to parameter estimation with incomplete data through Expectation Maximization
Will compare impact of different mucosal conditions on salmonella motion Will use additional statistical tools to understand accuracy and things like first passage time

Biological Background and

 MotivationsSalmonella swim with flagella and this creates a distinct movement

Run and Tumble models have been used to model this

- Fagella rotate synchronously to create forward motion and asynchronously to turn the cell

Studies have already shown that various mucosal conditions can impact salmonella motion, in particular in Rag $1^{1 /-}$ mice, which lack mature $T+$
and B lymphocytes and B lymphocytes
Specifically, antibodies that bind to the LPS in salmonella cell walls hinder active motion
This is because antibodies act as anchors A model was create
mouse GI tracts

Model

- Cells switch between swimming, tumbling, and dormant - Tumble must be used as an intermediate state between swim and dormant
This means there are four transition rates Model Diagram

Biologically supported by previous run and tumble models and video data
Each state experiences some variant of Brownian Motio

SDEs

- Specific SDEs can then be written to describe each state individually

Dormant ($S=0$): $d X=\sqrt{2 D_{0}} d W$
Tumble ($S=1$): $d X=\sqrt{2 D_{1}} d W$
Swim ($S=2$): $d X=v(\phi, \theta) d t+\sqrt{2 D_{2}} d W$

- ϕ and θ indicate orientation, uniformly random each time entering the Swim state
For simplicity, we can discretized the unit sphere to get a finite number of ϕ and θ angles

Chapman-Kolmogorov Equation

$\frac{\partial}{\partial t} p\left(n, n_{b}, \mathbf{x}, t\right)=\delta_{n_{b}, 0} D_{v} \nabla^{2} p$
$+(N-n+1) k_{\text {on }} p\left(n-1, n_{b}, \mathbf{x}, t\right)+(n+1) k_{\text {off }} p\left(n+1, n_{b}, \mathbf{x}, t\right.$ $+\left(n-n_{b}+1\right) a_{o n p} p\left(n, n_{b}-1, \mathbf{x}, t\right)+\left(n_{b}+1\right) a_{\text {off }} p\left(n, n_{b}+1, \mathbf{x}\right.$, $-\left[(N-n) k_{\text {on }}+n k_{\text {off }}+\left(n-n_{b}\right) a_{\text {on }}+n_{b} a_{\text {off }} p\left(n, n_{b}, \mathbf{x}, t\right)\right.$

Statistical Tools for Parameter Estimation
Because of the stochastic nature of the model, in addition to the latent states, statistical tools are needed to estimate parameters Understanding how to estimate parameter values in the case of complete data and the case of incomplete data is necessary
Maximum Likelihood Estimation

- In the case of complete data, i.e. no latent states, Maximum

In the case of complete data, i.e. no latent states, Maximum
Likelihood Estimation (MLE) can be used to estimate parameters

- A likelihood function is function to describe the probability of seeing A likelihood function is function to describe the probability of seeing
a certain set of observations, say $X_{1 \cdot T}=X_{1}, X_{2}, \ldots, X_{T}$, given the a certain set of
parameters θ
By optimizing the likel ihood function, or equivalently the
log-likelihood, we obtain the parameter values that maximize our likelihood of seeing $X_{1: T}$
Expectation Maximization
For incomplete data, a more advanced algorithm called Expectation Maximization (EM) is needed as we do not know the complete set of data
EM consists of two steps, the E-step and the M-step
E-step focuses on optimizing expectations while holding parameters constant
M-step focuses on optimizing parameters while holding expectations constant
The Forward-Backward algorithm is an algorithm for the E-step
which computes two probabilities, $\alpha=P\left(S_{t}, X_{1: t}\right)$ and $=P\left(X_{t+1: T} \mid S_{t}\right)$, by passing through the set of cell positio data, $X_{1: t}$, twice (once forward and once backward)
These two probabilities are then used to calculate two expectations Which represent the probability of being in state S at time t and the
joint probability of being in state $S_{\text {i }}$ and time $t-1$ and state S_{j}, at joint probability of being in state S_{i} and time $t-1$ and state S_{j} at

$$
P\left(S_{t}=j \mid X_{1: t}, \theta\right)=\frac{\alpha_{i, j}, \beta_{t, j}}{\sum_{i} t_{i, t} \beta_{t, i}}
$$

$P\left(S_{t}=j, S_{t+1}=k \mid X_{1: t}, \theta\right)=\frac{\alpha_{t}(k) \phi_{k, j} P\left(X_{t+1} \mid S_{k}\right) \beta_{t+1}(k)}{\sum \sum^{2} \alpha_{t}}$
$\sum_{j} \sum_{k} \alpha_{t} \phi_{t+1, t} P\left(X_{t+1} \mid S_{t+1}\right) \beta_{t+1}$
Where $\phi_{k, j}$ is the state transition probability matrix
These two expectations can then be used to re-estimate the parameters, which makes up the M-step
ece terate over these two steps, recomputing first the expectations then the parameters, until a convergence is reached

Future work

- In the process of running position data for wild type cells, which means they are a natural strain with no atypical mutations, throug EM algorithm to determine parameter values for locations in the G

Position data is pulled from microscopy videos via a particle tracking algorithm

Wil compare results and evaluate
Confidence of parameter estimation will be examine
First Passage Time will be examined

- Possibly look for population heterogeneity

Expand the process model to include population heterogeneity, and use a reducible HMM to estimate the parameter values

References

(1] A.P. Dempster, N.M. Laird, and D.B. Rubin (1997) Maximum Likelihood for Incomplete Data via the EM Algorithm Journal of he Royal Statistical Society Vol. 39, No.
(2] Zoubin Ghahramani (2001) An Introduction to Hidden Markov Models and Bayesian Networks International Journal of Patter Recognition and Artificial Intelligence Vol. 15, No.
[3] Shuichi Nakamura and Tohru Minamino (2019) Flagella-Driven Motility of Bacteria biomolecules, 14 July 2019
[4] L.R. Rabiner and B.H. Juang (1986) An Introduction to Hidden Markov Models IEEE ASSP Magazine January 1986
[5] Holly A. Schroeder, Jay Newby, Alison Schaefer, Babu Subramani Alan Tubbs, M. Gregory Forest, Ed Miao and Samuel K. La
(2020) LPS-binding IgG arrests actively motile Salmonella Typhimurium in gastrointestinal mucus Mucosal Immunalog

