Near optimal efficient decoding from sparse pooled data
 arXiv:2108.04342

Max Hahn-Klimroth \& Noela Müller

August 12th, 2021

Questions

- What is pooled data?
- What is sparse?
- What is near optimal in this context?
- How does it work?

Pooled data

- n items x_{1}, \ldots, x_{n}, each of a specific weight $\sigma_{i} \in\{0,1, \ldots, d\}$.
- A ground-truth or signal $\sigma \in\{0,1, \ldots, d\}^{n}$ is drawn uniformly from a probability distribution.
- We can pool items together and measure them (additive model).
- All measurements need to be possible to be conducted in parallel (non-adaptivity).

Pooled data

- Special case of compressed sensing (e.g. Donoho)
- In this talk: $d=1$, Quantitative Group Testing
- QGT studied since the 1960's (Erdős, Rényi, Soderberg, Shapiro, Djackov, Kucherov, Gebrinski, ...) and of interest today (Alaoui et al., Feige \& Lellouche, Gebhard et al., Karimi et al., Scarlett \& Cevher, ...)

Sparsity

Definition

σ is sparse if

$$
\|\boldsymbol{\sigma}\|_{0}:=k \ll n
$$

- We assume $k=n^{\theta}$ for some $\theta \in(0,1)$.
- Important in inference problems: e.g. compressed sensing is efficiently solvable by convex optimisation if the signal is sparse $\left(\ell_{0}-\ell_{1}\right.$ equivalence, Donoho 2013).

Theorem

If $\boldsymbol{\sigma}$ is sparse and A a Rademacher matrix or a Gaussian matrix, we can reconstruct σ from $A \sigma$ efficiently by solving

$$
\min \|z\|_{1} \quad \text { s.t. } \quad A \sigma=z, z \in \mathbb{R}
$$

Near optimal

Lemma (Folklore lower bound)

The number of measurements m required for recovery of σ is at least

$$
m \geq k \frac{\log (n / k)}{\log k}=\frac{\theta}{1-\theta} k
$$

- The number of possible results is $(k+1)^{m}$ and we need to distinguish $\binom{n}{k}$ possible ground-truth values.

Near optimal

Lemma (Djackov's lower bound)

The number of measurements m required for recovery of σ is at least

$$
m \geq 2 \frac{\theta}{1-\theta} k
$$

Near optimal

Lemma (Exponential time upper bound)

There is a simple randomised construction on

$$
m \approx 2 \frac{\theta}{1-\theta} k
$$

measurements that allows exhaustive search to reconstruct σ w.h.p..

- Independent proofs by Feige \& Lellouche and Gebhard et al.
- Simple: Any measurement chooses $n / 2$ items uniformly at random.

How to do it efficiently?

- Compressed Sensing (Basis Pursuit and refinements)
- Irregular sparse parity check codes (Karimi et al.)
- Binary group testing (e.g. Aldridge et al., Coja-Oghlan et al.)
- Thresholding algorithms (Gebhard et al.)
- SubsetSelect Problem (Feige \& Lellouche)

How to do it efficiently?

- Compressed Sensing (Basis Pursuit and refinements): requires $m=\Omega(k \log (n))$.
- Irregular sparse parity check codes (Karimi et al.)
- Binary group testing (e.g. Aldridge et al., Coja-Oghlan et al.)
- Thresholding algorithms (Gebhard et al.)
- SubsetSelect Problem (Feige \& Lellouche)

How to do it efficiently?

- Compressed Sensing (Basis Pursuit and refinements): requires $m=\Omega(k \log (n))$.
- Irregular sparse parity check codes (Karimi et al.): requires $m=\Omega(k \log (n))$.
- Binary group testing (e.g. Aldridge et al., Coja-Oghlan et al.)
- Thresholding algorithms (Gebhard et al.)
- SubsetSelect Problem (Feige \& Lellouche)

How to do it efficiently?

- Compressed Sensing (Basis Pursuit and refinements): requires $m=\Omega(k \log (n))$.
- Irregular sparse parity check codes (Karimi et al.): requires $m=\Omega(k \log (n))$.
- Binary group testing (e.g. Aldridge et al., Coja-Oghlan et al.): requires $m=\Omega(k \log (n))$.
- Thresholding algorithms (Gebhard et al.)
- SubsetSelect Problem (Feige \& Lellouche)

How to do it efficiently?

- Compressed Sensing (Basis Pursuit and refinements): requires $m=\Omega(k \log (n))$.
- Irregular sparse parity check codes (Karimi et al.): requires $m=\Omega(k \log (n))$.
- Binary group testing (e.g. Aldridge et al., Coja-Oghlan et al.): requires $m=\Omega(k \log (n))$.
- Thresholding algorithms (Gebhard et al.): requires $m=\Omega(k \log (n))$.
- SubsetSelect Problem (Feige \& Lellouche)

How to do it efficiently?

- Compressed Sensing (Basis Pursuit and refinements): requires $m=\Omega(k \log (n))$.
- Irregular sparse parity check codes (Karimi et al.): requires $m=\Omega(k \log (n))$.
- Binary group testing (e.g. Aldridge et al., Coja-Oghlan et al.): requires $m=\Omega(k \log (n))$.
- Thresholding algorithms (Gebhard et al.): requires $m=\Omega(k \log (n))$.
- SubsetSelect Problem (Feige \& Lellouche): requires $m=\Omega(k \log (n))$.

How to do it nearly optimal and efficiently?

Theorem (HKN2021+)

There is a randomised polynomially time construction coming with a polynomial-time inference algorithm that allows reconstruction of $\boldsymbol{\sigma}$ by no more than

$$
m=(4+\delta) \frac{1+\sqrt{\theta}}{1-\sqrt{\theta}}\left(2 \frac{1-\theta}{\theta} k\right)=O(k)
$$

measurements.

- Closing the previously conjectured $\log n$ gap up to a moderate multiplicative constant.
- Basic idea: Equip a clever version of Gebhard et al.'s thresholding algorithm with a spatially coupled pooling design.

Spatial Coupling

- Was invented in coding theory (Kukedar et al. 2013)
- Asymptotically vanishing seed
- Most of items are in the so-called bulk

Decoding the seed

- The seed contains roughly $n^{\prime} \approx \frac{n}{\sqrt{k}}$ items out of which $k^{\prime} \approx \sqrt{k}$ have weight one.
- Apply an algorithm of your choice requiring $\approx k^{\prime} \log \left(n^{\prime}\right)=o(k)$ measurements (we used Basis Pursuit).

Decoding the bulk

- Suppose we already decoded compartments $1 \ldots i-1$ correctly.
- The unexplained neighbourhood sum of an item is the sum over its measurements subtracted by the weights of already contained items.
- The unexplained neighbourhood sum (random, binomially distributed) is increased by $\operatorname{deg}(x)$ if the weight of x is one.

Decoding the bulk

- Information in close compartments is much more valuable (weigh close compartments more in the sum).
- The summands of close compartments are significantly smaller. $\Rightarrow \mathrm{We}$ need to normalise each summand!
- Instead of calculating $\boldsymbol{U}_{x}=\sum_{r=1}^{s} \boldsymbol{U}_{x}^{j}$ (the unexplained neighbourhood sum) we calculate

$$
\boldsymbol{N}_{x}=\sum_{r=1}^{s} \omega_{r} \frac{\boldsymbol{U}_{x}^{j}-\mathbb{E}\left[\boldsymbol{U}_{x}^{j}\right]}{\sqrt{\operatorname{Var}\left(\boldsymbol{U}_{x}^{j}\right)}} .
$$

Decoding the bulk

- This weighted unexplained normalised neighbourhood sum is still increased by a constant (depending on $\operatorname{deg}(x)$) if the weight of x is one.
- If enough measurements are conducted, the distributions between items of weight zero and weight one are well separated w.h.p..

Summary

- Spatial coupling was previously used to optimise constants (Coja-Oghlan et al., 2021).
- We used it to decrease the order of measurements.
- Simple thresholding is not enough (this only improved the constant) normalised quantities allowed us to reduce the order.
- We could not use the (information-theoretically optimal) design with measurements of size $n / 2$ as error terms in concentration results became too high.
- In the used design, any algorithm would require

$$
m \geq 8 \frac{1-\theta}{\theta} k
$$

measurements.

Thank you!

Questions?

... and (hopefully) answers!

