Characterizing robust dynamics in regulatory networks

Marcio Gameiro

Department of Mathematics Rutgers University

gameiro@math.rutgers.edu

Bistable hysteretic switch

What is a switch?

Bistable hysteretic switch

What is a switch?

Goal: Design 3-node networks that function as robust bi-stable hysteretic switches.

Bistable hysteretic switch

What is a switch?

Goal: Design 3-node networks that function as robust bi-stable hysteretic switches.

Robust in the sense that it should function across a wide range of parameters (stable under perturbations).

DSGRN (Dynamic Signatures Generated by Regulatory Networks) can compute a coarse description of dynamics of a network that is valid for all of parameter space.

DSGRN (Dynamic Signatures Generated by Regulatory Networks) can compute a coarse description of dynamics of a network that is valid for all of parameter space.

DSGRN can evaluate robustness across all of parameter space.

DSGRN (Dynamic Signatures Generated by Regulatory Networks) can compute a coarse description of dynamics of a network that is valid for all of parameter space.

DSGRN can evaluate robustness across all of parameter space.

We rank all 3-node networks according to their ability to function as a robust bi-stable switch.

All three-node networks

All three-node networks

Score: "percent" of parameters exhibiting hysteresis

Hysteresis scores of all (14,068) three node networks

Hysteresis scores of all (14,068) three node networks

There is no "the right" model for a biological network

If a model is selected it is very difficult and expensive to obtain parameter values and dynamics can vary widely with parameters

There is no "the right" model for a biological network

If a model is selected it is very difficult and expensive to obtain parameter values and dynamics can vary widely with parameters

DSGRN philosophy:

Compute a coarse description of the dynamics of a network that is valid for all of parameter space

There is no "the right" model for a biological network

If a model is selected it is very difficult and expensive to obtain parameter values and dynamics can vary widely with parameters

DSGRN philosophy:

Compute a coarse description of the dynamics of a network that is valid for all of parameter space

Description of dynamics does not dependent on a particular ODE model

Denote by \mathcal{X}_n a quantity associated with node n and assume that:

Cummins, et. al., SIADS, 2016

Denote by \mathcal{X}_n a quantity associated with node n and assume that: (i) \rightarrow (n)

An increase in x_i increases the rate of production of x_n

Cummins, et. al., SIADS, 2016

Denote by \mathcal{X}_n a quantity associated with node n and assume that:

An increase in x_i increases the rate of production of x_n

 \rightarrow (n)

(i)

An increase in x_i decreases the rate of production of x_n

The rate of change of x_n is given by

The rate of change of x_n is given by

The function $\Lambda_n(x)$ is constant off the hyperplanes $x_i = \theta_{n,i}$

Hence we have a natural decomposition of phase space out-edge into rectangular regions threshold

We want to determine whether x_n is increasing or decreasing within one of these regions

That is we want to determine the sign of

$$-\gamma_n\theta_{*,n} + \Lambda_n(x)$$

We want to determine whether x_n is increasing or decreasing within one of these regions

That is we want to determine the sign of

$$-\gamma_n\theta_{*,n} + \Lambda_n(x)$$

Note that $\Lambda_1(x) = \sigma^+(x_1)\sigma^-(x_2)$ can take on the values $p_0 = \ell_{1,1}\ell_{1,2}$ $p_1 = (\ell_{1,1} + \delta_{1,1})\ell_{1,2}$ $p_2 = \ell_{1,1}(\ell_{1,2} + \delta_{1,2})$ $p_3 = (\ell_{1,1} + \delta_{1,1})(\ell_{1,2} + \delta_{1,2})$

Hence if we determine all admissible total orders of $\{p_0, p_1, p_2, p_3\}$

Kepley, et. al., SIAM J. Appl. Algebra Geometry, 2021

Hence if we determine all admissible total orders of $\{p_0, p_1, p_2, p_3\}$

We can determine all possible signs of

 $-\gamma_1\theta_{*,1} + \Lambda_1(x)$

Hence if we determine all admissible total orders of $\{p_0, p_1, p_2, p_3\}$

We can determine all possible signs of

$$-\gamma_1\theta_{*,1} + \Lambda_1(x)$$

Total orders $p_0 < p_1 < p_2 < p_3$ and $p_0 < p_2 < p_1 < p_3$

Kepley, et. al., SIAM J. Appl. Algebra Geometry, 2021

Hence if we determine all admissible total orders of $\{p_0, p_1, p_2, p_3\}$

We can determine all possible signs of

$$-\gamma_1\theta_{*,1} + \Lambda_1(x)$$

Total orders $p_0 < p_1 < p_2 < p_3$ and $p_0 < p_2 < p_1 < p_3$

Parameter graph

$$PG = \prod_{n=1}^{N} PG(n)$$

Each node determines all possible signs of

 $-\gamma_n \theta_{*,n} + \Lambda_n(x)$

Parameter graph

$$PG = \prod_{n=1}^{N} PG(n)$$

Each node determines all possible signs of

 $-\gamma_n\theta_{*,n} + \Lambda_n(x)$

State transition graph

Signs of $-\gamma_n \theta_{*,n} + \Lambda_n(x)$ determine the state transition graph

State transition graph (STG) or Combinatorial multi-valued map \mathcal{F}

Morse graph

The nontrivial strongly connected components (SCC) capture the recurrent dynamics

Linear time algorithm to compute SCC

Vertices: Morse sets (Recurrent Dynamics)

Edges: Non-recurrent (gradientlike) dynamics

SCC

Software and examples

GitHub repository

https://github.com/marciogameiro/DSGRN

Install with pip install DSGRN

DSGRN Visualization

http://chomp.rutgers.edu/projects/dsgrn_viz/

3D example

z

Can this network produce stable oscillation involving all five variables?

Can this network produce stable oscillation involving all five variables?

Answer: Yes for 6904 regions.

Can this network produce stable oscillation involving all five variables?

Answer: Yes for 6904 regions.

Can this network produce stable oscillation involving all five variables?

Answer: Yes for 6904 regions.

Classical hysteresis

Gedeon, et. al., PloS Comp Bio, 2018

4,068 Networks

Parameter spaces: |2D to 30D

Size of parameter graphs: 27 to 93,329,542,656

4,068 Networks

Parameter spaces: 12D to 30D

Size of parameter graphs: 27 to 93,329,542,656

Hysteresis score = $\frac{\# \text{ paths exhibiting hysteresis}}{\# \text{ of directed paths in } PG(0)}$

Hysteresis scores of all (14,068) three node networks

Hysteresis scores of all (14,068) three node networks

Hysteresis scores of all (14,068) three node networks

Hysteresis scores of all (14,068) three node networks

Hill model ODE simulations

$$\dot{x}_0 = -\gamma_0 x_0 + H_0(x) + s$$

 $\dot{x}_1 = -\gamma_1 x_1 + H_1(x)$
 $\dot{x}_2 = -\gamma_2 x_2 + H_2(x)$

Hill function nonlinearities

Hill model ODE simulations

Regulatory Network	12		33		108		4346	
Hill function exponent n	Hysteres Score	is Perturbed Score	Hysteres Score	is Perturbed Score	Hysteresis Score	Perturbed Score	Hysteresis Score	Perturbed Score
30	81.2 %	51.7~%	84.4~%	41.2~%	57.9 %	56.1~%	0 %	0 %
20	70.8 ~%	41.3~%	74.9 ~%	34.0 ~%	45.4~%	46.8~%	0 %	0 %
10	39.7 %	18.8~%	45.3~%	16.6~%	18.2~%	21.8~%	0 %	0 %
5	7.3~%	2.1 ~%	7.6~%	2.2~%	1.3~%	2.4 ~%	0 %	0 %
4	3.1~%	0.6 %	2.2 ~%	0.5~%	0.2~%	0.3 %	0 %	0 %
DSGRN (full path)	100 %	79.1~%	83.3 %	61.7~%	33.9 %	25.1~%	0 %	0 %
DSGRN (partial path	n) 80.9 %	64.1~%	42.5~%	27.7~%	18.9 % 🔪	13.3~%	0 %	0 %

DSGRN scores

Hill model simulations with sampled parameter values (1,000 curves per entry) - 12-30 dimensional parameter space

DSGRN takes a fraction of the time and covers all of the parameter space

Acknowledgments

Rutgers:

- K. Mischaikow
- W. Cuello
- S. Harker
- S. Kepley
- E. Queirolo
- B. Rivas
- K. Spendlove
- E. Vieira
- L. Zhang

Montana State:

- T. Gedeon
- B. Cummins
- W. Duncan
- Duke:S. Haase

https://github.com/marciogameiro/DSGRN

DSGRN software

