The Euler Totient Function on Lucas Sequences

J.C. Saunders ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics
University of Calgary

BIRS: Alberta Number Theory Days XIII

Binary Recurrence Sequences

The Fibonacci sequence is $1,1,2,3,5,8,13, \ldots$
The Fibonacci sequence is an example of a binary recurrence sequence.

Definition

A binary recurrence sequence is a sequence of integers that satisfies a given recursion relation of the form $u_{n}=P u_{n-1}+Q u_{n-2}$ where P and Q are fixed integers and $\left(u_{n}\right)_{n}$ is the sequence in question. There are two important kinds of binary recurrence sequences.

We have an explicit form for the nth term of such a sequence begin $u_{n}=a \alpha^{n}+b \beta^{n}$, where a nnd b are constants and α and β are the roots of the polynomial $x^{2}-P x-Q$. If $a b \neq 0$ and α / β isn't a root of unity, then $\left(u_{n}\right)_{n}$ is nondegenerate.

Lucas Sequences

There are two special kinds of binary recurrence sequences.

Definition

A Lucas sequence of the first kind is a binary recurrence sequence $\left(u_{n}\right)_{n}$, starting with $u_{0}=0$ and $u_{1}=1$. A Lucas sequence of the second kind is a binary recurrence sequence $\left(v_{n}\right)_{n}$, starting with $v_{0}=2$ and $v_{1}=P$.

The Fibonacci sequence is a Lucas sequence of the first kind. Another example of a Lucas sequence of the first kind is the Pell sequence: $1,2,5,12,29,70,169, \ldots$. An example of a Lucas sequence of the second kind are the Lucas numbers: $2,1,3,4,7,11,18, \ldots$.

If $\left(u_{n}\right)_{n}$ is a Lucas sequence of the first kind, then $u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$. If $\left(v_{n}\right)_{n}$ is a Lucas sequence of the second kind, then $v_{n}=\alpha^{n}+\beta^{n}$

The Euler Totient Function and Luca's Result

The Euler Totient Function φ counts the number of integers from 1 to n that are coprime to n. It is a multiplicative function, i.e. $\varphi(m n)=\varphi(m) \varphi(n)$ for any coprime pairs of positive integers m and n.

Theorem (Luca (2002))

Let $\left(u_{n}\right)_{n}$ and $\left(v_{n}\right)_{n}$ be two nondegenerate binary recurrence sequences with $u_{n}=r_{1} u_{n-1}+s_{1} u_{n-2}, v_{n}=r_{2} v_{n-1}+s_{2} v_{n-2}$ with the roots of the charactristic equations being α_{1} and β_{1}, and α_{2} and β_{2}, respectively, satisfying one of the statements
A1) Not all four numbers $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}$ are integers.
A2) $\log \left|\alpha_{1}\right|$ and $\log \left|\alpha_{2}\right|$ are linearly independent over Q.
A3) $\left|\alpha_{1}\right|>\max \left\{\left|\beta_{1}\right|^{2},\left|\beta_{2}\right|^{2}\right\}>1$.
Also, suppose $\left(v_{n}\right)$ is a Lucas sequence of the second kind or that s_{2} is even and r_{2} is odd. Then the equation

$$
\varphi\left(\left|a u_{m}\right|\right)=\left|b v_{n}\right| .
$$

Examples

Removing the assumptions A 1 through A 3 is likely not possible. For instance, take $u_{n}=v_{n}=2^{n}-1$. If $n=p$ a prime such that $2^{p}-1$ is a Mersenne prime, then we have

$$
\varphi\left(u_{p}\right)=\varphi\left(2^{p}-1\right)=2^{p}-2=2\left(2^{p}-1\right)=2 v_{p}
$$

and it is conjectured that there are infinitely many Mersenne primes. On the other hand, Luca's result shows that the equations $\varphi\left(L_{m}\right)=L_{n}$ and $\varphi\left(F_{m}\right)=L_{n}$ only have finitely many solutions where F_{m} is the m th Fibonacci number and L_{n} is the nth Lucas number. Moreover, Luca found all of the solutions to these two equations, which are

$$
\begin{aligned}
& (m, n)=(0,1),(1,1),(2,0),(3,0) \text { and } \\
& (m, n)=(1,1),(2,1),(3,1),(4,0),(5,3),(6,3), \text { respectively. }
\end{aligned}
$$

When $\left(u_{n}\right)_{n}$ and $\left(v_{n}\right)_{n}$ are the same sequence

One case that the assumptions A 1 through A 3 excludes is the equation

$$
\varphi\left(\left|a u_{m}\right|\right)=\left|b u_{n}\right| .
$$

where $\left(u_{n}\right)_{n}$ is a Lucas sequence of the first kind. There are also results on this more specific equation. For instance, when $u_{n}=\frac{b^{n}-1}{b-1}$, where $b>1$, we have further results by Luca, and Faye and Luca.

Theorem (Luca (2005))

Let $b>1$ and $1 \leq x, y<b$. Then the equation

$$
\varphi\left(x \frac{b^{n}-1}{b-1}\right)=y \frac{b^{m}-1}{b-1}
$$

only has finitely many solutions.

Theorem (Chen and Tian (2017))

Let $x>y \geq 1$. Then all of the solutions to

$$
\varphi\left(\frac{x^{m}-y^{m}}{x-y}\right)=\frac{x^{n}-y^{n}}{x-y}
$$

are $(x, y, m, n)=(a, b, 1,1)$ for any integers $a>b \geq 1$. Also, all of the solutions to

$$
\varphi\left(x^{m}-y^{m}\right)=x^{n}-y^{n}
$$

are $(x, y, m, n)=(a+1, a, 1,1)$ for any integer $a \geq 1$.

Theorem (Bai (2020))

Let $x>y \geq 1$. Then all of the solutions to

$$
\varphi\left(\left|\frac{x^{m}-y^{m}}{x-y}\right|\right)=\left|\frac{x^{n}-y^{n}}{x-y}\right|
$$

where $x y \neq 0$ and $n, m>0$, are
$(x, y, m, n)=(a \pm 1,-a, 1,2),(a \pm i,-a, 2,1)$, where a is an integer and $i=1,2$. Also, all of the solutions to

$$
\varphi\left(\left|x^{m}-y^{m}\right|\right)=\left|x^{n}-y^{n}\right|
$$

are $(x, y, m, n)=\left(2^{t-1} \pm 1,-2^{t-1} \pm 1,2,1\right),\left(-2^{t-1} \pm 1,2^{t-1} \pm 1,2,1\right)$, where $t \geq 2$ is an integer.

Useful Properties of Lucas Sequences

Let $\left(u_{n}\right)_{n}$ be a Lucas sequence of the first kind. For all natural numbers N there exists $z(N) \in \mathbb{N}$ such that $N \mid u_{n}$ if and only if $z(N) \mid n$. We call $z(N)$ the order of appearance of N in the sequence $\left(u_{n}\right)_{n}$.

Lemma (Lucas (1878))

Let p be a prime. Then $z(p)=p$ if $p \mid D$. Also, if $p \nmid D$ and D is a quadratic residue $(\bmod p)$, then $z(p) \mid p-1$. If $p \nmid D$ and D isn't a quadratic residue $(\bmod p)$, then $z(p) \mid p+1$.

Lemma (Lucas (1878))

Let $a, k, m \in \mathbb{N}$ and q be a prime such that $q^{a} \| u_{m}$ and $q \nmid k$. Then for any $I \geq 0$, we have $q^{a+\prime} \mid u_{k m q^{\prime}}$ with $q^{a+\prime} \| u_{k m q^{\prime}}$ if $q^{a} \neq 2$.

Primitive Prime Factors

Another interesting result we'll be using on the prime factors of u_{n} is due to Carmichael. First, a definition.

Definition

A primitive prime factor of u_{n} (respectively, v_{n}) is a prime factor p of u_{n} (respectively, v_{n}) such that $p \nmid u_{m}$ (respectively, $p \nmid v_{m}$) for all $1 \leq m<n$.

Lemma (Carmichael (1913))

If $n \neq 1,2,6$, then u_{n} has a primitive prime factor, except in the case of $n=12$ in the usual Fibonacci sequence $1,1,2,3,5,8, \ldots$.

Method of Proof

Let $u_{n}=\frac{b^{n}-1}{b-1}, x=y=1$, and $\operatorname{gcd}(n, m)=k \leq n-m=\lambda$. Then we have

$$
b^{k} \leq b^{\lambda}<\frac{u_{n}}{u_{m}}=\prod_{p \mid u_{n}}\left(1+\frac{1}{p-1}\right)
$$

Therefore,

$$
k \leq \lambda \ll \sum_{p \mid u_{n}} \frac{1}{p}=\sum_{d \mid n} S_{d}
$$

where

$$
S_{d}:=\sum_{z(p)=d} \frac{1}{p} .
$$

We get

$$
S_{d} \leq \sum_{p \equiv 1} \sum_{\substack{(\bmod d) \\ p \leq d^{2}}} \frac{1}{p}+\frac{\omega_{d}}{d^{2}} \ll \frac{\log \log d}{\varphi(d)} .
$$

We deduce

$$
k \leq \lambda \ll 1+\sum_{p \mid n} \frac{\log \log p}{p}
$$

We obtain

$$
\sum_{p \mid k} \frac{\log \log p}{p} \ll(\log \log \log k)^{2}
$$

by the Prime Number Theorem. Also, if $p \mid n$ and $p \nmid m$, then $p^{\gamma} \| u_{m}$ where we can bound γ. If $p|d| n$, then u_{d} has a primitive prime factor, say q, and we have $d \mid q-1$, since $q \mid u_{q-1}$. So, $q \mid u_{n}$, so that $p|q-1| u_{m}$. Therefore, we can bound the number of factors of n / p, which allows us to bound

$$
\sum_{\substack{p \mid n \\ p \nmid m}} \frac{\log \log p}{p}
$$

The prime factors of n are bounded using this technique, bounding n.

Fibonacci and Pell Sequences

Theorem (Luca and Nicolae (2009))

The only Fibonacci numbers whose Euler totient function is another Fibonacci number are 1, 2, and 3.

Theorem (Faye and Luca (2015))

The only Pell numbers whose Euler totient function is another Pell number are 1 and 2.

My Result

Theorem (S. (2021))

For any fixed natural number $P \geq 3$, if we define the sequence $\left(u_{n}\right)_{n}$ as $u_{0}=0, u_{1}=1$, and $u_{n}=P u_{n-1}+u_{n-2}$ for all $n \geq 2$, then the only solution to the Diophantine equation $\varphi\left(u_{n}\right)=u_{m}$ is
$\varphi\left(u_{1}\right)=\varphi(1)=1=u_{1}$.
This completely exhausts the problem of finding solutions to $\varphi\left(u_{n}\right)=u_{m}$ where $\left(u_{n}\right)_{n}$ is a Lucas sequence of the first kind with recurrence relation $u_{n}=P u_{n-1}+u_{n-2}$ and $P>0$. If, instead, we have $P<0$ and $\left(u_{n}\right)_{n}$ is the corresponding Lucas sequence, then we can see that $\left(\left|u_{n}\right|\right)_{n}$ is the corresponding Lucas sequence of $-P$. Therefore, it suffices to investigate the case of $P>0$ for a Lucas sequence of the first kind with $Q=1$, which we do here.

Lemma
Let $m, j \in \mathbb{N}$.
i) Suppose P is odd. Then $3 \cdot 2^{j} \mid m$ if and only if $2^{j+2} \mid u_{m}$.
ii) Suppose P is even and $2^{t_{1}} \| P$. Then $2^{j} \mid m$ if and only if $2^{j+t_{1}-1} \mid u_{m}$.

We first deduce that m is even. Let k be the number of distinct prime factors of u_{n} and let q_{1}, \ldots, q_{k} be these prime factors. Then $2^{k-1} \mid u_{m}$, so that $2^{k} \ll m$ where the implies constant depends on the P.

The Case of $2^{416}<m<n$

Let $l:=n-m$. For large enough P or α, we have

$$
\prod_{i=1}^{r}\left(\frac{p_{i}}{p_{i}-1}\right)<\alpha^{\prime}<\frac{u_{n}}{u_{m}}=\prod_{i=1}^{k}\left(\frac{q_{i}}{q_{i}-1}\right)
$$

where p_{i} is the i th prime. For smaller values of α, we can "eliminate" a lot of the possible p_{i} primes and/or show that $l \geq 2,3$, so that we still get $k>r$.

n even

Suppose n is even. Then $n=2^{s} n_{1}$ where $s \geq 1$ and n_{1} is odd. It turns out, for all i, we have $u_{2 i}=u_{i} v_{i}$, where v_{i} is the corresponding Lucas sequence of the second kind. Also, in general, we have

$$
v_{i}^{2}-D u_{i}^{2}=4(-Q)^{i}
$$

So if i is odd and $p \mid v_{i}$, then

$$
-D u_{i}^{2} \equiv-4 Q^{i} \quad(\bmod p)
$$

If $Q=1$, then D is a quadratic residue $(\bmod p)$, so that $z(p) \mid p-1$. Also,

$$
u_{n}=u_{n_{1}} v_{n_{1}} v_{2 n_{1}} \cdots v_{2^{s-1} n_{1}}
$$

We can derive

$$
/ \log \alpha<\log \log \alpha+2.163+\sum_{\substack{d \mid n \\ d>\alpha^{2}}} T_{d}
$$

where

$$
T_{d}:=\sum_{\substack{I_{p}=d \\ p>\alpha^{4}}} \frac{1}{p}
$$

We split up the sum

$$
\sum_{\substack{d \mid n \\ d>\alpha^{2}}} T_{d}=L_{1}+L_{2}
$$

where

$$
L_{1}:=\sum_{\substack{d|n \\ r| d \underset{d}{d} r \mid 2 M}} T_{d} \text { and } L_{2}:=\sum_{\substack{d|n \\ d| d \text { for some } r \nmid m \\ d>\alpha^{2}}} T_{d} .
$$

n odd

Suppose n is odd. Then

$$
v_{n}^{2}-D u_{n}^{2}=-4
$$

So, if $p \mid u_{n}$, then -1 is a quadratic residue $(\bmod p)$, so that $p=2$ or $p \equiv 1(\bmod 4)$. Therefore, $4^{k-1} \mid u_{m}$, so $4^{k} \ll n$. We show that $n \lll 4^{k}$, leading to a contradiction for $n>m>2^{416}$.

We have

$$
\begin{aligned}
\alpha^{-ノ}>\frac{u_{m}}{u_{n}}=\prod_{i=1}^{k}\left(1-\frac{1}{q_{i}}\right) & \geq \prod_{2 \leq p \leq p_{k}}\left(1-\frac{1}{p}\right) \\
& >\frac{1}{1.79 \log p_{k}\left(1+\frac{1}{2\left(\log p_{k}\right)^{2}}\right)} .
\end{aligned}
$$

Noting that $2^{k} \ll m$ gives

$$
I<\frac{\log \log \log n}{\log \alpha}+0.83 .
$$

We prove by induction that

$$
q_{1} q_{2} \cdots q_{i}<\left(2 k \alpha^{1.83} \log \log n\right)^{\frac{3^{i}-1}{2}} .
$$

Therefore,

$$
\begin{aligned}
u_{n} \leq q_{1} q_{2} \cdots q_{k} u_{l} & <\left(2 k \alpha^{1.83} \log \log n\right)^{\frac{3^{k}-1}{2}}(\log \log n) \alpha^{-0.17} \\
& <\left(2 k \alpha^{1.83} \log \log n\right)^{\frac{3^{k}+1}{2}}
\end{aligned}
$$

Future Research

Can we get the same result for any Q ? What about other binary recurrence sequence?

Can we replace the Euler totient function with another arithmetic function, such as the sum of the divisors function or the sum of the k th powers of the divisors function? Luca proved that if $k \geq 2$ in this problem and the sequence is the Fibonacci sequence, then $n=m=1$ or $k=2$, $m=3$, and $n=5$.

Acknowledgements

I would like to thank the Univeristy of Calgary for the award of a postdoctoral fellowship, which made this research possible.

Thanks for listening! Any questions?

