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Question

How to classify closed simply connected topological 4-manifolds?

> N: closed simply connected topological 4-manifold.
» Two important invariants of N:

1. The intersection form Qp: symmetric unimodular bilinear form
over Z, given by

Qv : H*(N;Z) x H*(N;Z) — 7,
(a,b) +—— (aUb,[N]).

2. The Kirby-Siebenmann invariant ks(N) € H*(N;Z/2) = Z/2.
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Theorem (Freedman)

M, N: closed simply connected topological 4-manifolds

1. M is homeomorphic to N
< Qum = Qn and ks(M) = ks(N)

2. Bilinear form @: not even
= any (Q, Z/2) can be realized

3. Bilinear form Q:' even
— only (Q, S'g”TfQ) mod 2) can be realized
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Smooth category

Question

How to classify closed simply connected smooth 4-manifolds?

» Whitehead, Munkres, Hirsch, Kirby—-Siebenmann:
M smooth = ks(M) = 0

» + Freedman's theorem:
Theorem

Two closed simply connected smooth 4-manifolds are
homeomorphic if and only if they have isomorphic intersection
forms.
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Two questions

Q: symmetric unimodular bilinear form

Question (Geography Problem)

Can Q be realized as the intersection form of a closed simply
connected smooth 4-manifold?

Suppose that the answer to the Geography Problem is yes
Question (Botany Problem)

How many non-diffeomorphic 4-manifolds can realize Q7
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Q: symmetric unimodular bilinear form

Question (Geography Problem)

Can Q be realized as the intersection form of a closed simply
connected smooth 4-manifold?

Q

N

indefinite
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Donaldson’s Diagonalizability Theorem

Theorem (Donaldson)
Q: definite
Q can be realized <— Q = +I/

Completely answers the Geography Problem when @ is definite
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Theorem (Hasse—Minkowski)

1. Q: not even
Q = diagonal form with entries £1.

2. Q: even

Q%kEg@q<O > for some k € Z and q € N.

1
10
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Fact

Q: not even
Q can be realized by a connected sum of copies of CP? and CP2
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definite indefinite

— N

not even even

> Q%kEg@q(o 1),k€Z,q€N

10
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/ Q \
indefinite

— N

even

Q%kEg@qG é),keZ,qu

Wu's formula: the closed simply connected 4-manifold M
realizing @ must be spin
Rokhlin’s theorem: k = 2p

By reversing the orientation of M, may assume k > 0
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Conjecture (version 1)

The form

01
2pEg @ g (1 0)

can be realized as the intersection form of a closed smooth spin
4-manifold if and only if g > 3p.

» The “if" part is straightforward
> If g > 3p, the form can be realized by
# K3 # (5% x5?)

p q—3p

01
> Ki: 2E3€B3(1 0)

2 2_01
>S><5.(1 0



The %—Conjectu re

The “only if” part can be reformulated as follows:

Conjecture (version 2)

Any closed smooth spin 4-manifold M must satisfy the inequality
11 .
ba(M) = | sign(M)]

where by(M) and sign(M) are the second Betti number and the
signature of M, respectively.
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Progress on the %—Conjecture

» p =1, assuming H1(M;Z) has no 2-torsions: Donaldson
(anti-self-dual Yang—Mills equations)

> p =1, assumingH{M:Z)-has-no2-tersions: Kronheimer
(Pin(2)-symmetries in Seiberg—Witten theory)

» Furuta's idea: combined Kronheimer's approach with “finite
dimensional approximation”

» Attacked the conjecture by using Pin(2)-equivariant stable
homotopy theory
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Furuta's ——Theorem

Definition

Q: even

Q is spin realizable if it can be realized by a closed smooth spin
4-manifold.

Theorem (Furuta)

For p > 1, the bilinear form

01
2pEg ® q (1 0>

is spin realizable only if ¢ > 2p + 1.
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Furuta's 1§0—Theorem

Corollary (Furuta)

Any closed simply connected smooth spin 4-manifold M that is not
homeomorphic to S* must satisfy the inequality

by(M) > 1go|sign(/\/l)| + 2.

The inequality of manifolds with boundaries are proved by
Manolescu, and Furuta—Li.



» Furuta proved his theorem by studying a problem in
Pin(2)-equivariant stable homotopy theory



» Furuta proved his theorem by studying a problem in
Pin(2)-equivariant stable homotopy theory

» We give a complete answer to Furuta's problem



» Furuta proved his theorem by studying a problem in
Pin(2)-equivariant stable homotopy theory

» We give a complete answer to Furuta's problem

» Here is a consequence of our main theorem:
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Pin(2)-equivariant stable homotopy theory

» We give a complete answer to Furuta's problem

» Here is a consequence of our main theorem:
Theorem (Hopkins—Lin-Shi-X.)

For p > 2, if the bilinear form 2pEg & q (g é) is spin realizable,

then
2p+2 p=1,2,5,6 (mod 8)
q>4.2p+3 p=3,47 (mod 8)
2p+4 p=0 (mod 8).
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Corollary (Hopkins—Lin—=Shi-X.)
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The limit is 2 + 4

Corollary (Hopkins—Lin-Shi-X.)

Any closed simply connected smooth spin 4-manifold M that is not
homeomorphic to S*, S? x S?, or K3 must satisfy the inequality

by(M) > %O|sign(/\/l)| +4.

Furthermore, we show this is the limit of the current known
approaches to the %-Conjecture
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» Seiberg—Witten equations: a set of first order, nonlinear,
elliptic PDEs

dta—p~t(¢o*)o = 0

Do+ p(a)p = 0
d*a = 0

> SW:T(ST) @ iQ (M) — 1(S7) @ iQ2 (M) @ iQ°(M)/R



Seiberg—Witten theory

» M: smooth spin 4-manifold with b;(M) =0

Seiberg-Witten equations: a set of first order, nonlinear,
elliptic PDEs

v

dta—p~t(¢o*)o = 0

Do+ p(a)p = 0
d*a = 0

SW T(S1) @ iQY (M) — I(57) @ iQ2 (M) @ iQ°(M)/R
Sobolev completion — SW Hiy — Hy (Seiberg-Witten
map)

v

v
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Furuta's idea

> SW Hi; — H, satisfies three properties:
1. SW(0)=0
2. SWisa Pin(2)-equivariant map
Pin(2) := {e?} U {je’} c H
3. SW maps Hy \ B(Hi, R) to Ho \ B(Ha, ¢)

H; H,

SW

R

> SH = Hy/(H \ B(H:, R))
» SH2 — Ha/(Ha \ é(H2,5))

» SW induces a Pin(2)-equivariant map between spheres

swhisH _ gh
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SW' st — st

» Problem: SM and S™ are both infinite dimensional

> In order to use homotopy theory, we want maps between finite
dimensional spheres
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Finite dimensional approximation

SW=L+C
» L: linear Fredholm operator
» C: nonlinear operator
bounded sets — compact sets

v

v

V5: finite dimensional subspace of H, with V5 M Im(L)
Vi=L"YW)
> SWap:=L+Pry,0C: Vi — V

v
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> EVVapr satisfies three properties:

1. SW,p(0) =0

2. SW,p is a Pin(2)-equivariant map

3. When V; is large enough,
SWapr maps S(Vh R+ 1) to W, \ B(VQ,E)

Hy

R+1

R+1

ﬁ’ﬂ])l'

Hy

V5




Vi

R+1

‘571‘11 apr

Va




Vi

R+1

1)
R+
V17
R+1)/5(

V17

B(

Vi

)

>

€))
: V2a
Va/(Va\ B(

2

» SV2 —
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Vi Va

‘571‘11 apr

R+1

» S' = B(Vi,R+1)/S(Vi,R+1)
> SV2 = Vy/(Vo\ B(Va,e))

» SV and SV2 are finite dimensional representation spheres



v

v

v

Vi Va

‘571‘11 apr

R+1

SVi =B(W,R+1)/S(Vi,R+1)
SV2 = Wy /(Va \ B(Va,¢))
SV1 and S"2 are finite dimensional representation spheres

§|/T/apr induces a Pin(2)-equivariant map

,SAl/\//:pr s, gV



sV
P
—

+

pr

sV
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» Vi and V5 are direct sums of two types of
Pin(2)-representations
» H: 4-dimensional, Pin(2) acts via left multiplication
» R: 1-dimensional, pull back of the sign representation via
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> Pin( )-fixed points of SV1 and SV2 are both S° = {0} U {o0}
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Proposition (Furuta)

If the intersection form of the manifold M is 2pEg & q (? é)
then ~
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as virtual Pin(2)-representations.
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50 c SV2
Proposition (Furuta)

If the intersection form of the manifold M is 2pEg & q (2 é)

then B
Vi — Vo = pH — gR

as virtual Pin(2)-representations.

——+ .
The stable homotopy class of SW_, is called the Bauer—Furuta

apr
invariant BF (M)



[NZ . SPH
I\SW — T\RF}M)

[N S0 Sqﬁé
Proposition (Furuta)

If the intersection form of the manifold M is 2pEg & q <(1) (1)>
then

V1 — V2 = pH — q]li
as virtual Pin(2)-representations.

The stable homotopy class of §VVV:pr is called the Bauer—Furuta
invariant BF (M)



Furuta—Mahowald class

Definition

For p > 1, a Furuta—Mahowald class of level-(p, q) is a stable map
v SPH Sq@

that fits into the diagram
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If the bilinear form 2pEg & q <(1) (1)> is spin realizable, then there

exists a level-(p, q) Furuta—Mahowald class.

Theorem (Furuta)

A level-(p, q) Furuta—Mahowald class exists only if g > 2p + 1.
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Question

What is the necessary and sufficient condition for the existence of
a level-(p, q) Furuta—Mahowald class?

» The dream would be g > 3p (this would directly imply the

1 o
5 -conjecture)

» However, Jones found a counter-example at p =5

» Subsequently, he made a conjecture
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if

2p+2 p=1 (mod 4)
q> 2p+2 p=2 (mod 4)
2p+3 p=3 (mod 4)
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» Necessary condition: various progress has been made by Stolz,
Schmidt and Minami

» Before our current work, the best result is given by
Furuta—Kamitani
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Question

What is the necessary and sufficient condition for the existence of
a level-(p, q) Furuta—Mahowald class?

» Much less is known about the sufficient condition

» So far, the best result is by Schmidt: constructed a
Furuta—Mahowald class of level-(5, 12)

» We completely resolve this question



Main Theorem

Theorem (Hopkins—Lin-Shi-X.)
For p > 2, a level-(p, q) Furuta—Mahowald class exists if and only
if
2p+2 p=1,2,56 (modS8)
gq><2p+3 p=3.4,7 (mod 8)
2p+4 p=0 (mod 8).



Comparison of known results

Minimal g such that a level-(p, g) Furuta—Mahowald class exists:

Jones’ conjecture
2p+2
2p+2
2p+3
2p+4
2p+2
2p+2
2p+3
2p+4

Our theorem
2p+2
2p+2
2p+3
2p+3
2p+2
2p+2
2p+3
2p+4

Furuta—Kamitani
>2p+1
>2p+2
>2p+3
>2p+3
>2p+1
>2p+2
>2p+3
>2p+3

T T T T T T T T

O~NOOT B WN



Comparison of known results

Minimal g such that a level-(p, g) Furuta—Mahowald class exists:

Jones’ conjecture
2p+2
2p+2
2p+3
2p+4
2p+2
2p+2
2p+3
2p+4

Our theorem
2p+2
2p+2
2p+3
2p+3
2p+2
2p+2
2p+3
2p+4

Furuta—Kamitani
>2p+1
>2p+2
>2p+3
>2p+3
>2p+1
>2p+2
>2p+3
>2p+3

T T T T T T T T

OO0 WN



The limit is 2 + 4

Corollary (Hopkins—Lin—=Shi-X.)

Any closed simply connected smooth spin 4-manifold M that is not
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The limit is 2 + 4

Corollary (Hopkins—Lin—=Shi-X.)

Any closed simply connected smooth spin 4-manifold M that is not
homeomorphic to S*, S? x S?, or K3 must satisfy the inequality

by(M) > %|sign(/\/’)| + 4.

In the sense of classifying all Furuta—Mahowald classes of
level-(p, @), this is the limit



Furuta—Mahowald classes

seit

Z=TES]
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RO(G)-graded homotopy groups

v

G: finite group or compact Lie group

v

RO(G): real representation ring

Classically, m,5° = [S", 5]

Equivariantly, 7¢S% = [S", S0]¢

Equivariantly, there are more spheres!

V: G-representation, 75S°% = [SY, S0]¢

WiSO: RO(G)-graded stable homotopy groups of spheres

v

v

v

v
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> ¢G. geometric fixed point functor
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Non-nilpotent elements in 7§ S°

There are many non-nilpotent elements in TriSO!
1. p:S9— 9
2. 96 GSO [S°, 5016 — [S°, 5% =12
> ¢G. geometric fixed point functor
» Any preimage of p : S° — S° is non-nilpotent
3. Euler class ay : S® — SV

» V' real nontrivial irreducible representation
> stable class in 7¢,,S°
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> o, € 7T£50

Definition
The G-equivariant Mahowald invariant of « with respect to
is the following set of elements in 7['250 :

I\/Ig(a) = {v|a =~p*, «ais not divisible by <1}

» We are interested in the case when «, (8 are non-nilpotent
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Equivariant Mahowald invariant
> o, € 7T£50
Definition
The G-equivariant Mahowald invariant of « with respect to
is the following set of elements in 7['250 :
I\/Ig(a) = {v|a =~p*, «ais not divisible by <1}
» We are interested in the case when «, (8 are non-nilpotent

> [Mg ()l = 1y] = la| — KIB]

5kl S—(k+1)8]

RN ] S

S0 @ o g—af §0 @ . gl
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5 (k+1)[8]

= [Mg (a)] — o] = —k|B|
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» 1: trivial representation
> o: sign representation

» The classical Borsuk—Ulam theorem follows from the following
stable statement:
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(C,-equivariant Mahowald invariant

» G = (, cyclic group of order 2
» RO(G) =Z & Z, generated by 1 and o

» 1: trivial representation
> o: sign representation

» The classical Borsuk—Ulam theorem follows from the following
stable statement:

Theorem (Borsuk—Ulam)
For all ¢ > 0, the RO(C,)-degree of M2(ad) is zero.

§(k+1)o
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Classical Mahowald invariant — Bruner-Greenlees

gntko gntk
gn _ (®2)7la ¥ o 50
e
gn o 50
e acm,S°

e consider the preimages of «

e Among all the elements in MS2((9<2)~1a), pick the one that has
the highest degree in its o-component

e Forget to the non-equivariant world = classical Mahowald in-
variant M(«)
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For g > 1, the set M(29) contains the first nonzero element of
Adams filtration q in positive degree.



Theorem (Landweber, Mahowald—Ravenel, Bruner—Greenlees)

For g > 1, the set M(29) contains the first nonzero element of
Adams filtration q in positive degree.
Moreover, the following 4-periodic result holds:

(8k+1)o ifg=4k+1
(8k+2)o ifqg=4k+2
(8k+3)o ifg=4k+3
(8k + 7)o if g =4k + 4.

M2 ((0)7129)| =
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» G = (4, cyclic group of order 4
» RO(G) =Z ®Z ®Z, generated by 1, o and A
> 1: trivial representation
> o: sign representation
» \: 2-dimensional, rotation by 90°
» Crabb, Schmidt, and Stolz studied the C4-equivariant
Mahowald invariant of powers of a, with respect to as)
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Theorem (Crabb, Schmidt, Stolz)

For g > 1, the following 8-periodic result holds:

8K\ if =8k +1
8K\ if g =8k +2
8k +2)\ ifq=8k+3
8k +2)\ ifq=8k+4

( )
4 = ( )
Mg (ad)| + g0 = (8k+2)\ ifq=8k+5
( )
( )
( )

azx
AN ifg=8k+6
8k+4)\ ifqg=8k+T7
8k +4)\  if g=8k+8.

» (4 is a subgroup of Pin(2)
» Minami and Schmidt used this theorem to deduce the
nonexistence of certain Furuta—Mahowald classes
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Pin(2)-equivariant Mahowald invariant

v

G = Pin(2)

Irreducible representations H and R

v

v

By definition, a level-(p, g) Furuta—Mahowald class exists
if and only if the H-degree of |MPln 2)( H%)| +qgRis>p

To prove our main theorem, we analyze the Pin(2)-equivariant
Mahowald invariants of powers of az with respect to ay

v



Main Theorem
Theorem (Hopkins—Lin—=Shi—X.)
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(8k +2)H if g =16k +8 | (8k +6)H if g = 16k + 16.
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Main Theorem
Theorem (Hopkins—Lin-Shi-X.)
For q > 4, the following 16-periodic result holds:

M5 @ (a2)] + gR

( (8k—1)H if q=16k+1 | (8k+3)H if g=16k+9
(8k — 1)H if q=16k+2 | (8k +3)H if q = 16k + 10
(8k — 1)H if g =16k +3 | (8k + 4)H if g = 16k + 11
) (8k+1)H if g=16k+4 | (8k +5)H if g =16k + 12
~ ) (8k+1)H if g=16k+5| (8k+5)H if g =16k + 13
(8k +2)H if g =16k +6 | (8k + 6)H if g = 16k + 14
(8k +2)H if q=16k+7 | (8k+6)H if q= 16k + 15
(8k +2)H if g =16k +8 | (8k + 6)H if g = 16k -+ 16.

» Had it been (8k + 3)H instead, our result would be 8-periodic

» Jone's conjecture would be true
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» 1: trivial representation
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» 1: trivial representation
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(C,-equivariant Mahowald invariant

» G = (, cyclic group of order 2

» RO(G) =Z @& Z, generated by 1 and o
» 1: trivial representation
> o: sign representation

» Reflection x : S7 — 57

X

e

C,-equivariant map
[S°,S°% = Z @ Z, generated by 1 and
PCe(1+y)=2
1 4 x is non-nilpotent
» Question: |M&((1 + x)9)| =7
» Bruner-Greenlees: It is |[M(29)|o.
M(—): classical Mahowald invariant

vV vy VvVvyYy
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Pin(2)-equivariant to non-equivariant

» Cy-action on BS! = CP°°:
(z1,22,23,24, ..., 2201, Z2n) —
(22,21, —24,23,...,—Z2n, Z2n—1)

BPin(2) = BS'/Cy-action

A: line bundle associated to the principal bundle
G — BS' — BPin(2)

X(m) := Thom(B Pin(2), —m\)
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» Cy-action on BS! = CP°°:
(z1,22,23,24, ..., 2201, Z2n) —
(22,21, —24,23,...,—Z2n, Z2n—1)

B Pin(2) = BS!/C,-action
A: line bundle associated to the principal bundle
G — BS' — BPin(2)
X(m) := Thom(B Pin(2), —m\)
» inclusion of bundles mA < (m+ 1)\
= X(m+1) — X(m)
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» Cy-action on BS! = CP°°:
(z1,22,23,24, ..., 2201, Z2n) —
(22,21, —24,23,...,—Z2n, Z2n—1)

BPin(2) = BS'/Cy-action
A: line bundle associated to the principal bundle
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Pin(2)-equivariant to non-equivariant

» Cy-action on BS! = CP°°:
(z1,22,23, 24, ..., Z2n—1, Z2n) —
(_ZZa 21, _24; 237 ey _22na 22n71)

v

BPin(2) = BS'/Cy-action
A: line bundle associated to the principal bundle
G — BS' — BPin(2)
X(m) := Thom(B Pin(2), —m\)
» inclusion of bundles mA < (m+ 1)\
= X(m+1) — X(m)
= X(m+1) — X(m) — XL-"CP>

fiber bundle RP? < B Pin(2) — HP>

v

v

v



Pin(2)-equivariant to non-equivariant

» Cy-action on BS! = CP°°:
(z1,22,23, 24, ..., Z2n—1, Z2n) —
(_ZZa 21, _24; 237 ey _22na 22n71)

v

B Pin(2) = BS!/C,-action
A: line bundle associated to the principal bundle
G — BS' — BPin(2)
X(m) := Thom(B Pin(2), —m\)
» inclusion of bundles mA < (m+ 1)\

= X(m+1) — X(m)

= X(m+1) — X(m) — XL-"CP>
fiber bundle RP? < BPin(2) — HP>
gives cell structures on B Pin(2) and X(m).

v

v

v
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SPH
INE
aﬁT ~Z
q >y _

Consider the diagram S0 °r GaR

> g is zero <=

Sk A S(pH)+ — S(pH)+ 1 5% is zero
> S—9& A S(pH),: Pin(2)-free
» SO: Pin(2) acts trivially



Mahowald line

SpH
aﬁT \\\\El
Consider the diagram S0 % SaR
fT g=0
S(pH)+

> g is zero <

Sk A S(pH)+ — S(pH)+ 1 5% is zero
SR A S(pH),: Pin(2)-free

SO: Pin(2) acts trivially

> g is zero <= the nonequivariant map is zero

v

v

(S A S(pH) 1 ) pin(2) — (S(PH)1)hpin2) — S°
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» Short exact sequence
1—S'—Pin(2) — G —1

(5_qu AS(PH)+)ppin) = <(5_qIE A 5(pH)+)h51)hc2
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» Short exact sequence
1—S'—Pin(2) — G —1
(S AS(PH) Dnpny = (S~ A S(PH) st ),

- (5“’" A (CPi”‘l)hC2
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= (4p — 2 — g)-skeleton of X(q)



Mahowald line

» Short exact sequence
1—S'—Pin(2) — G —1

(S AS(PH) Dnpny = (S~ A S(PH) st ),
_ —qo 2p—1
o G )hQ
= (4p — 2 — g)-skeleton of X(q)

gaR = X(q)*=279 — SO is zero
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Lower bound



Classical Adams spectral sequence




Some relations in 7, S°

> 7T4—0

> 5 =

» 112 =0
> 7T13:0
» -7 =0

> 71'3-77220
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Now we start the induction
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71'8'2
7"12*0
T3 =
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Induction finished!




Intuition for a technical step









Another mini-movie
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Thank you!



