The Geography problem on 4 -manifolds: $\frac{10}{8}+4$

Zhouli Xu

(Joint with Michael Hopkins, Jianfeng Lin, and XiaoLin Danny Shi)

Massachusetts Institute of Technology
March 3, 2020

Question
How to classify closed simply connected topological 4-manifolds?

Question

How to classify closed simply connected topological 4-manifolds?

- N : closed simply connected topological 4-manifold.

Question

How to classify closed simply connected topological 4-manifolds?

- N : closed simply connected topological 4-manifold.
- Two important invariants of N :

Question

How to classify closed simply connected topological 4-manifolds?

- N : closed simply connected topological 4-manifold.
- Two important invariants of N :

1. The intersection form Q_{N} : symmetric unimodular bilinear form over \mathbb{Z},

Question

How to classify closed simply connected topological 4-manifolds?

- N : closed simply connected topological 4-manifold.
- Two important invariants of N :

1. The intersection form Q_{N} : symmetric unimodular bilinear form over \mathbb{Z}, given by

$$
\begin{aligned}
Q_{N}: H^{2}(N ; \mathbb{Z}) \times H^{2}(N ; \mathbb{Z}) & \longrightarrow \mathbb{Z}, \\
(a, b) & \longmapsto\langle a \cup b,[N]\rangle .
\end{aligned}
$$

Question

How to classify closed simply connected topological 4-manifolds?

- N : closed simply connected topological 4-manifold.
- Two important invariants of N :

1. The intersection form Q_{N} : symmetric unimodular bilinear form over \mathbb{Z}, given by

$$
\begin{aligned}
Q_{N}: H^{2}(N ; \mathbb{Z}) \times H^{2}(N ; \mathbb{Z}) & \longrightarrow \mathbb{Z}, \\
(a, b) & \longmapsto\langle a \cup b,[N]\rangle .
\end{aligned}
$$

2. The Kirby-Siebenmann invariant $k s(N) \in H^{4}(N ; \mathbb{Z} / 2)=\mathbb{Z} / 2$.

Theorem (Freedman)

M, N: closed simply connected topological 4-manifolds

Theorem (Freedman)

M, N: closed simply connected topological 4-manifolds

1. M is homeomorphic to N
$\Longleftrightarrow Q_{M} \cong Q_{N}$ and $k s(M)=k s(N)$

Theorem (Freedman)

M, N: closed simply connected topological 4-manifolds

1. M is homeomorphic to N
$\Longleftrightarrow Q_{M} \cong Q_{N}$ and $k s(M)=k s(N)$
2. Bilinear form Q : not even \Longrightarrow any $(Q, \mathbb{Z} / 2)$ can be realized

Theorem (Freedman)

M, N: closed simply connected topological 4-manifolds

1. M is homeomorphic to N
$\Longleftrightarrow Q_{M} \cong Q_{N}$ and $k s(M)=k s(N)$
2. Bilinear form Q : not even \Longrightarrow any $(Q, \mathbb{Z} / 2)$ can be realized
3. Bilinear form Q : even \Longrightarrow only $\left(Q, \frac{\operatorname{sign}(Q)}{8} \bmod 2\right)$ can be realized

Smooth category

Question

How to classify closed simply connected smooth 4-manifolds?

Smooth category

Question

How to classify closed simply connected smooth 4-manifolds?

- Whitehead, Munkres, Hirsch, Kirby-Siebenmann: M smooth $\Longrightarrow k s(M)=0$

Smooth category

Question

How to classify closed simply connected smooth 4-manifolds?

- Whitehead, Munkres, Hirsch, Kirby-Siebenmann: M smooth $\Longrightarrow k s(M)=0$
- + Freedman's theorem:

Theorem

Two closed simply connected smooth 4-manifolds are homeomorphic if and only if they have isomorphic intersection forms.

Two questions

Q : symmetric unimodular bilinear form

Two questions

Q : symmetric unimodular bilinear form
Question (Geography Problem)
Can Q be realized as the intersection form of a closed simply connected smooth 4-manifold?

Two questions

Q: symmetric unimodular bilinear form

Question (Geography Problem)

Can Q be realized as the intersection form of a closed simply connected smooth 4-manifold?

Suppose that the answer to the Geography Problem is yes

Two questions

Q : symmetric unimodular bilinear form

Question (Geography Problem)

Can Q be realized as the intersection form of a closed simply connected smooth 4-manifold?

Suppose that the answer to the Geography Problem is yes

Question (Botany Problem)

How many non-diffeomorphic 4-manifolds can realize Q ?

The Geography Problem

Q : symmetric unimodular bilinear form
Question (Geography Problem)
Can Q be realized as the intersection form of a closed simply connected smooth 4-manifold?

The Geography Problem

Q : symmetric unimodular bilinear form

Question (Geography Problem)

Can Q be realized as the intersection form of a closed simply connected smooth 4-manifold?

The Geography Problem

Q : symmetric unimodular bilinear form
Question (Geography Problem)
Can Q be realized as the intersection form of a closed simply connected smooth 4-manifold?

Donaldson's Diagonalizability Theorem

Theorem (Donaldson)
Q : definite

Donaldson's Diagonalizability Theorem

Theorem (Donaldson)
Q : definite
Q can be realized $\Longleftrightarrow Q \cong \pm 1$

Donaldson's Diagonalizability Theorem

Theorem (Donaldson)
Q : definite
Q can be realized $\Longleftrightarrow Q \cong \pm 1$
Completely answers the Geography Problem when Q is definite

Indefinite forms

Indefinite forms

Theorem (Hasse-Minkowski)

1. Q : not even
$Q \cong$ diagonal form with entries ± 1.

Indefinite forms

Theorem (Hasse-Minkowski)

1. Q : not even
$Q \cong$ diagonal form with entries ± 1.
2. Q : even

$$
Q \cong k E_{8} \oplus q\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { for some } k \in \mathbb{Z} \text { and } q \in \mathbb{N} .
$$

Fact

Q : not even
Q can be realized by a connected sum of copies of $\mathbb{C} P^{2}$ and $\overline{\mathbb{C} P^{2}}$

- $Q \cong k E_{8} \oplus q\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), k \in \mathbb{Z}, q \in \mathbb{N}$

- $Q \cong k E_{8} \oplus q\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), k \in \mathbb{Z}, q \in \mathbb{N}$
- Wu's formula: the closed simply connected 4-manifold M realizing Q must be spin

- $Q \cong k E_{8} \oplus q\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), k \in \mathbb{Z}, q \in \mathbb{N}$
- Wu's formula: the closed simply connected 4-manifold M realizing Q must be spin
- Rokhlin's theorem: $k=2 p$

- $Q \cong k E_{8} \oplus q\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), k \in \mathbb{Z}, q \in \mathbb{N}$
- Wu's formula: the closed simply connected 4-manifold M realizing Q must be spin
- Rokhlin's theorem: $k=2 p$
- By reversing the orientation of M, may assume $k \geq 0$

The $\frac{11}{8}$-Conjecture

Conjecture (version 1)

The form

$$
2 p E_{8} \oplus q\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

can be realized as the intersection form of a closed smooth spin 4-manifold if and only if $q \geq 3 p$.

The $\frac{11}{8}$-Conjecture

Conjecture (version 1)

The form

$$
2 p E_{8} \oplus q\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

can be realized as the intersection form of a closed smooth spin 4-manifold if and only if $q \geq 3 p$.

- The "if" part is straightforward

The $\frac{11}{8}$-Conjecture

Conjecture (version 1)

The form

$$
2 p E_{8} \oplus q\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

can be realized as the intersection form of a closed smooth spin 4-manifold if and only if $q \geq 3 p$.

- The "if" part is straightforward
- If $q \geq 3 p$, the form can be realized by

$$
\underset{p}{\#} K 3 \underset{q-3 p}{\#}\left(S^{2} \times S^{2}\right)
$$

The $\frac{11}{8}$-Conjecture

Conjecture (version 1)

The form

$$
2 p E_{8} \oplus q\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

can be realized as the intersection form of a closed smooth spin 4-manifold if and only if $q \geq 3 p$.

- The "if" part is straightforward
- If $q \geq 3 p$, the form can be realized by

$$
\underset{p}{\#} K 3 \underset{q-3 p}{\#}\left(S^{2} \times S^{2}\right)
$$

- $K_{3}: 2 E_{8} \oplus 3\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- $S^{2} \times S^{2}:\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

The $\frac{11}{8}$-Conjecture

The "only if" part can be reformulated as follows:

Conjecture (version 2)

Any closed smooth spin 4-manifold M must satisfy the inequality

$$
b_{2}(M) \geq \frac{11}{8}|\operatorname{sign}(M)|
$$

where $b_{2}(M)$ and $\operatorname{sign}(M)$ are the second Betti number and the signature of M, respectively.

Progress on the $\frac{11}{8}$-Conjecture

- $p=1$, assuming $H_{1}(M ; \mathbb{Z})$ has no 2-torsions: Donaldson (anti-self-dual Yang-Mills equations)

Progress on the $\frac{11}{8}$-Conjecture

- $p=1$, assuming $H_{1}(M ; \mathbb{Z})$ has no 2-torsions: Donaldson (anti-self-dual Yang-Mills equations)
- $p=1$, assuming $H_{1}(M ; \mathbb{Z})$ has no 2 torsions: Kronheimer (Pin(2)-symmetries in Seiberg-Witten theory)

Progress on the $\frac{11}{8}$-Conjecture

- $p=1$, assuming $H_{1}(M ; \mathbb{Z})$ has no 2-torsions: Donaldson (anti-self-dual Yang-Mills equations)
- $p=1$, assuming $H_{1}(M ; \mathbb{Z})$ has no 2 torsions: Kronheimer (Pin(2)-symmetries in Seiberg-Witten theory)
- Furuta's idea: combined Kronheimer's approach with "finite dimensional approximation"

Progress on the $\frac{11}{8}$-Conjecture

- $p=1$, assuming $H_{1}(M ; \mathbb{Z})$ has no 2-torsions: Donaldson (anti-self-dual Yang-Mills equations)
- $p=1$, assuming $H_{1}(M ; \mathbb{Z})$ has no 2 torsions: Kronheimer (Pin(2)-symmetries in Seiberg-Witten theory)
- Furuta's idea: combined Kronheimer's approach with "finite dimensional approximation"
- Attacked the conjecture by using Pin(2)-equivariant stable homotopy theory

Furuta's $\frac{10}{8}$-Theorem

Definition

Q : even

Furuta's $\frac{10}{8}$-Theorem

Definition

Q : even
Q is spin realizable if it can be realized by a closed smooth spin 4-manifold.

Furuta's $\frac{10}{8}$-Theorem

Definition

Q : even
Q is spin realizable if it can be realized by a closed smooth spin 4-manifold.

Theorem (Furuta)
For $p \geq 1$, the bilinear form

$$
2 p E_{8} \oplus q\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

is spin realizable only if $q \geq 2 p+1$.

Furuta's $\frac{10}{8}$-Theorem

Corollary (Furuta)

Any closed simply connected smooth spin 4-manifold M that is not homeomorphic to S^{4} must satisfy the inequality

$$
b_{2}(M) \geq \frac{10}{8}|\operatorname{sign}(M)|+2 .
$$

Furuta's $\frac{10}{8}$-Theorem

Corollary (Furuta)

Any closed simply connected smooth spin 4-manifold M that is not homeomorphic to S^{4} must satisfy the inequality

$$
b_{2}(M) \geq \frac{10}{8}|\operatorname{sign}(M)|+2
$$

The inequality of manifolds with boundaries are proved by Manolescu, and Furuta-Li.

- Furuta proved his theorem by studying a problem in Pin(2)-equivariant stable homotopy theory
- Furuta proved his theorem by studying a problem in Pin(2)-equivariant stable homotopy theory
- We give a complete answer to Furuta's problem
- Furuta proved his theorem by studying a problem in Pin(2)-equivariant stable homotopy theory
- We give a complete answer to Furuta's problem
- Here is a consequence of our main theorem:
- Furuta proved his theorem by studying a problem in Pin(2)-equivariant stable homotopy theory
- We give a complete answer to Furuta's problem
- Here is a consequence of our main theorem:

Theorem (Hopkins-Lin-Shi-X.)

For $p \geq 2$, if the bilinear form $2 p E_{8} \oplus q\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is spin realizable, then

$$
q \geq\left\{\begin{array}{lll}
2 p+2 & p \equiv 1,2,5,6 & (\bmod 8) \\
2 p+3 & p \equiv 3,4,7 & (\bmod 8) \\
2 p+4 & p \equiv 0 & (\bmod 8)
\end{array}\right.
$$

The limit is $\frac{10}{8}+4$

Corollary (Hopkins-Lin-Shi-X.)

Any closed simply connected smooth spin 4-manifold M that is not homeomorphic to $S^{4}, S^{2} \times S^{2}$, or K3 must satisfy the inequality

$$
b_{2}(M) \geq \frac{10}{8}|\operatorname{sign}(M)|+4
$$

The limit is $\frac{10}{8}+4$

Corollary (Hopkins-Lin-Shi-X.)

Any closed simply connected smooth spin 4-manifold M that is not homeomorphic to $S^{4}, S^{2} \times S^{2}$, or K3 must satisfy the inequality

$$
b_{2}(M) \geq \frac{10}{8}|\operatorname{sign}(M)|+4
$$

Furthermore, we show this is the limit of the current known approaches to the $\frac{11}{8}$-Conjecture

Seiberg-Witten theory

- M : smooth spin 4-manifold with $b_{1}(M)=0$

Seiberg-Witten theory

- M : smooth spin 4-manifold with $b_{1}(M)=0$
- Seiberg-Witten equations: a set of first order, nonlinear, elliptic PDEs

$$
\left\{\begin{aligned}
D \phi+\rho(a) \phi & =0 \\
d^{+} a-\rho^{-1}\left(\phi \phi^{*}\right)_{0} & =0 \\
d^{*} a & =0
\end{aligned}\right.
$$

Seiberg-Witten theory

- M : smooth spin 4-manifold with $b_{1}(M)=0$
- Seiberg-Witten equations: a set of first order, nonlinear, elliptic PDEs

$$
\left\{\begin{aligned}
D \phi+\rho(a) \phi & =0 \\
d^{+} a-\rho^{-1}\left(\phi \phi^{*}\right)_{0} & =0 \\
d^{*} a & =0
\end{aligned}\right.
$$

- $\widetilde{S W}: \Gamma\left(S^{+}\right) \oplus i \Omega^{1}(M) \longrightarrow \Gamma\left(S^{-}\right) \oplus i \Omega_{+}^{2}(M) \oplus i \Omega^{0}(M) / \mathbb{R}$

Seiberg-Witten theory

- M : smooth spin 4-manifold with $b_{1}(M)=0$
- Seiberg-Witten equations: a set of first order, nonlinear, elliptic PDEs

$$
\left\{\begin{aligned}
D \phi+\rho(a) \phi & =0 \\
d^{+} a-\rho^{-1}\left(\phi \phi^{*}\right)_{0} & =0 \\
d^{*} a & =0
\end{aligned}\right.
$$

- $\widetilde{S W}: \Gamma\left(S^{+}\right) \oplus i \Omega^{1}(M) \longrightarrow \Gamma\left(S^{-}\right) \oplus i \Omega_{+}^{2}(M) \oplus i \Omega^{0}(M) / \mathbb{R}$
- Sobolev completion $\Longrightarrow \widetilde{S W}: H_{1} \longrightarrow H_{2}$ (Seiberg-Witten map)

Furuta's idea

- SW: $H_{1} \longrightarrow H_{2}$ satisfies three properties:

Furuta's idea

- $\widetilde{S W}: H_{1} \longrightarrow H_{2}$ satisfies three properties:

1. $\widetilde{S W}(0)=0$

Furuta's idea

- $\widetilde{S W}: H_{1} \longrightarrow H_{2}$ satisfies three properties:

1. $\widetilde{S W}(0)=0$
2. $\widetilde{S W}$ is a $\operatorname{Pin}(2)$-equivariant map
$\operatorname{Pin}(2):=\left\{e^{i \theta}\right\} \cup\left\{j e^{i \theta}\right\} \subset \mathbb{H}$

Furuta's idea

- $\widetilde{S W}: H_{1} \longrightarrow H_{2}$ satisfies three properties:

1. $\widetilde{S W}(0)=0$
2. $S W$ is a $\operatorname{Pin}(2)$-equivariant map
$\operatorname{Pin}(2):=\left\{e^{i \theta}\right\} \cup\left\{j e^{i \theta}\right\} \subset \mathbb{H}$
3. $\widetilde{S W}$ maps $H_{1} \backslash \dot{B}\left(H_{1}, R\right)$ to $H_{2} \backslash \dot{B}\left(H_{2}, \varepsilon\right)$

Furuta's idea

- $\widetilde{S W}: H_{1} \longrightarrow H_{2}$ satisfies three properties:

1. $\widetilde{S W}(0)=0$
2. $S W$ is a $\operatorname{Pin}(2)$-equivariant map
$\operatorname{Pin}(2):=\left\{e^{i \theta}\right\} \cup\left\{j e^{i \theta}\right\} \subset \mathbb{H}$
3. $\widetilde{S W}$ maps $H_{1} \backslash \dot{B}\left(H_{1}, R\right)$ to $H_{2} \backslash \dot{B}\left(H_{2}, \varepsilon\right)$

- $S^{H_{1}}=H_{1} /\left(H_{1} \backslash \stackrel{\circ}{B}\left(H_{1}, R\right)\right)$
- $S^{H_{2}}=H_{2} /\left(H_{2} \backslash \stackrel{\circ}{B}\left(H_{2}, \varepsilon\right)\right)$

Furuta's idea

- $\widetilde{S W}: H_{1} \longrightarrow H_{2}$ satisfies three properties:

$$
\text { 1. } \widetilde{S W}(0)=0
$$

2. $S W$ is a $\operatorname{Pin}(2)$-equivariant map
$\operatorname{Pin}(2):=\left\{e^{i \theta}\right\} \cup\left\{j e^{i \theta}\right\} \subset \mathbb{H}$
3. $\widetilde{S W}$ maps $H_{1} \backslash \dot{B}\left(H_{1}, R\right)$ to $H_{2} \backslash \dot{B}\left(H_{2}, \varepsilon\right)$

- $S^{H_{1}}=H_{1} /\left(H_{1} \backslash B^{\circ}\left(H_{1}, R\right)\right)$
- $S^{H_{2}}=H_{2} /\left(H_{2} \backslash \stackrel{\circ}{B}\left(H_{2}, \varepsilon\right)\right)$
- $\widetilde{S W}$ induces a Pin(2)-equivariant map between spheres

$$
\widetilde{S W}^{+}: S^{H_{1}} \longrightarrow S^{H_{2}}
$$

$$
\widetilde{S W}^{+}: S^{H_{1}} \longrightarrow S^{H_{2}}
$$

$$
\widetilde{S W}^{+}: S^{H_{1}} \longrightarrow S^{H_{2}}
$$

- Problem: $S^{H_{1}}$ and $S^{H_{2}}$ are both infinite dimensional

$$
\widetilde{S W}^{+}: S^{H_{1}} \longrightarrow S^{H_{2}}
$$

- Problem: $S^{H_{1}}$ and $S^{H_{2}}$ are both infinite dimensional
- In order to use homotopy theory, we want maps between finite dimensional spheres

Finite dimensional approximation

- $\widetilde{S W}=L+C$

Finite dimensional approximation

- $\widetilde{S W}=L+C$
- L: linear Fredholm operator

Finite dimensional approximation

- $\widetilde{S W}=L+C$
- L: linear Fredholm operator
- C: nonlinear operator bounded sets \longmapsto compact sets

Finite dimensional approximation

- $\widetilde{S W}=L+C$
- L: linear Fredholm operator
- C: nonlinear operator bounded sets \longmapsto compact sets
- V_{2} : finite dimensional subspace of H_{2} with $V_{2} \pitchfork \operatorname{Im}(L)$

Finite dimensional approximation

- $\widetilde{S W}=L+C$
- L: linear Fredholm operator
- C: nonlinear operator bounded sets \longmapsto compact sets
- V_{2} : finite dimensional subspace of H_{2} with $V_{2} \pitchfork \operatorname{Im}(L)$
- $V_{1}=L^{-1}\left(V_{2}\right)$

Finite dimensional approximation

- $\widetilde{S W}=L+C$
- L: linear Fredholm operator
- C: nonlinear operator bounded sets \longmapsto compact sets
- V_{2} : finite dimensional subspace of H_{2} with $V_{2} \pitchfork \operatorname{Im}(L)$
- $V_{1}=L^{-1}\left(V_{2}\right)$
- $\widetilde{S W}_{\text {apr }}:=L+\operatorname{Pr}_{V_{2}} \circ C: V_{1} \longrightarrow V_{2}$
- $\widetilde{S W}_{\text {apr }}$ satisfies three properties:
- $\widetilde{S W}_{\text {apr }}$ satisfies three properties:

1. $\widetilde{S W}_{\mathrm{apr}}(0)=0$

- $\widetilde{S W}_{\text {apr }}$ satisfies three properties:

1. $\widetilde{S W}_{\text {apr }}(0)=0$
2. $\widetilde{S W}_{\text {apr }}$ is a $\operatorname{Pin}(2)$-equivariant map

- $\widetilde{S W}_{\text {apr }}$ satisfies three properties:

1. $\widetilde{S W}_{\text {apr }}(0)=0$
2. $\widetilde{S W}_{\text {apr }}$ is a $\operatorname{Pin}(2)$-equivariant map
3.

- $\widetilde{S W}_{\text {apr }}$ satisfies three properties:

1. $\widetilde{S W}_{\text {apr }}(0)=0$
2. $\widetilde{S W}_{\text {apr }}$ is a $\operatorname{Pin}(2)$-equivariant map
3. When V_{2} is large enough,
$\widetilde{S W}_{\text {apr }}$ maps $S\left(V_{1}, R+1\right)$ to $V_{2} \backslash \dot{B}\left(V_{2}, \varepsilon\right)$

- $S^{V_{1}}=B\left(V_{1}, R+1\right) / S\left(V_{1}, R+1\right)$
- $S^{V_{2}}=V_{2} /\left(V_{2} \backslash \stackrel{\circ}{B}\left(V_{2}, \varepsilon\right)\right)$

- $S^{V_{1}}=B\left(V_{1}, R+1\right) / S\left(V_{1}, R+1\right)$
- $S^{V_{2}}=V_{2} /\left(V_{2} \backslash \dot{B}\left(V_{2}, \varepsilon\right)\right)$
- $S^{V_{1}}$ and $S^{V_{2}}$ are finite dimensional representation spheres

- $S^{V_{1}}=B\left(V_{1}, R+1\right) / S\left(V_{1}, R+1\right)$
- $S^{V_{2}}=V_{2} /\left(V_{2} \backslash \dot{B}\left(V_{2}, \varepsilon\right)\right)$
- $S^{V_{1}}$ and $S^{V_{2}}$ are finite dimensional representation spheres
- $\widetilde{S W}_{\text {apr }}$ induces a $\operatorname{Pin}(2)$-equivariant map

$$
\widetilde{S W}_{\mathrm{apr}}^{+}: S^{V_{1}} \longrightarrow S^{V_{2}}
$$

- V_{1} and V_{2} are direct sums of two types of Pin(2)-representations

- V_{1} and V_{2} are direct sums of two types of Pin(2)-representations
- \mathbb{H} : 4-dimensional, Pin(2) acts via left multiplication

- V_{1} and V_{2} are direct sums of two types of Pin(2)-representations
- \mathbb{H} : 4-dimensional, Pin(2) acts via left multiplication
- $\widetilde{\mathbb{R}}$: 1-dimensional, pull back of the sign representation via $\operatorname{Pin}(2) \rightarrow \mathbb{Z} / 2$

- V_{1} and V_{2} are direct sums of two types of Pin(2)-representations
- \mathbb{H} : 4-dimensional, Pin(2) acts via left multiplication
- $\widetilde{\mathbb{R}}:$ 1-dimensional, pull back of the sign representation via $\operatorname{Pin}(2) \rightarrow \mathbb{Z} / 2$
- Pin(2)-fixed points of $S^{V_{1}}$ and $S^{V_{2}}$ are both $S^{0}=\{0\} \cup\{\infty\}$

- V_{1} and V_{2} are direct sums of two types of Pin(2)-representations
- \mathbb{H} : 4-dimensional, Pin(2) acts via left multiplication
- $\widetilde{\mathbb{R}}$: 1-dimensional, pull back of the sign representation via $\operatorname{Pin}(2) \rightarrow \mathbb{Z} / 2$
- Pin(2)-fixed points of $S^{V_{1}}$ and $S^{V_{2}}$ are both $S^{0}=\{0\} \cup\{\infty\}$
- $\widetilde{S W}_{\mathrm{apr}}^{+}(0)=0, \widetilde{S W}_{\mathrm{apr}}^{+}(\infty)=\infty$

- V_{1} and V_{2} are direct sums of two types of Pin(2)-representations
- \mathbb{H} : 4-dimensional, Pin(2) acts via left multiplication
- $\widetilde{\mathbb{R}}$: 1-dimensional, pull back of the sign representation via $\operatorname{Pin}(2) \rightarrow \mathbb{Z} / 2$
- Pin(2)-fixed points of $S^{V_{1}}$ and $S^{V_{2}}$ are both $S^{0}=\{0\} \cup\{\infty\}$
- $\widetilde{S W}_{\mathrm{apr}}^{+}(0)=0, \widetilde{S W}_{\mathrm{apr}}^{+}(\infty)=\infty$

Proposition (Furuta)

If the intersection form of the manifold M is $2 p E_{8} \oplus q\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, then

$$
V_{1}-V_{2} \cong p \mathbb{H}-q \widetilde{\mathbb{R}}
$$

as virtual Pin(2)-representations.

Proposition (Furuta)

If the intersection form of the manifold M is $2 p E_{8} \oplus q\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, then

$$
V_{1}-V_{2} \cong p \mathbb{H}-q \widetilde{\mathbb{R}}
$$

as virtual Pin(2)-representations.
The stable homotopy class of $\widetilde{S W}_{\text {apr }}^{+}$is called the Bauer-Furuta invariant $B F(M)$

Proposition (Furuta)

If the intersection form of the manifold M is $2 p E_{8} \oplus q\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, then

$$
V_{1}-V_{2} \cong p \mathbb{H}-q \widetilde{\mathbb{R}}
$$

as virtual Pin(2)-representations.
The stable homotopy class of $\widetilde{S W}_{\text {apr }}^{+}$is called the Bauer-Furuta invariant $B F(M)$

Furuta-Mahowald class

Definition

For $p \geq 1$, a Furuta-Mahowald class of level- (p, q) is a stable map

$$
\gamma: S^{p \mathbb{H}} \longrightarrow S^{q \widetilde{\mathbb{R}}}
$$

that fits into the diagram

$$
\underset{S^{0} \xrightarrow[a_{\mathbb{R}}^{q}]{\substack{S^{p \mathbb{H}}}} S^{q \widetilde{\mathbb{R}}} . \substack{a_{\mathbb{R}}^{p}}}{\substack{\gamma}}
$$

- $a_{\mathbb{H}}: S^{0} \longrightarrow S^{\mathbb{H}}$
- $a_{\widetilde{\mathbb{R}}}: S^{0} \longrightarrow S^{\widetilde{\mathbb{R}}}$

Theorem (Furuta)
If the bilinear form $2 p E_{8} \oplus q\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is spin realizable, then there exists a level- (p, q) Furuta-Mahowald class.

Theorem (Furuta)
If the bilinear form $2 p E_{8} \oplus q\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is spin realizable, then there exists a level-(p, q) Furuta-Mahowald class.

Theorem (Furuta)
A level- (p, q) Furuta-Mahowald class exists only if $q \geq 2 p+1$.

Question

What is the necessary and sufficient condition for the existence of a level-(p, q) Furuta-Mahowald class?

Question

What is the necessary and sufficient condition for the existence of a level- (p, q) Furuta-Mahowald class?

- The dream would be $q \geq 3 p$ (this would directly imply the $\frac{11}{8}$-conjecture)

Question

What is the necessary and sufficient condition for the existence of a level- (p, q) Furuta-Mahowald class?

- The dream would be $q \geq 3 p$ (this would directly imply the $\frac{11}{8}$-conjecture)
- However, Jones found a counter-example at $p=5$

Question

What is the necessary and sufficient condition for the existence of a level- (p, q) Furuta-Mahowald class?

- The dream would be $q \geq 3 p$ (this would directly imply the $\frac{11}{8}$-conjecture)
- However, Jones found a counter-example at $p=5$
- Subsequently, he made a conjecture

Jones' conjecture

Conjecture (Jones)

For $p \geq 2$, a level- (p, q) Furuta-Mahowald class exists if and only if

$$
q \geq\left\{\begin{array}{lll}
2 p+2 & p \equiv 1 & (\bmod 4) \\
2 p+2 & p \equiv 2 & (\bmod 4) \\
2 p+3 & p \equiv 3 & (\bmod 4) \\
2 p+4 & p \equiv 0 & (\bmod 4)
\end{array}\right.
$$

Jones' conjecture

Conjecture (Jones)

For $p \geq 2$, a level- (p, q) Furuta-Mahowald class exists if and only if

$$
q \geq\left\{\begin{array}{lll}
2 p+2 & p \equiv 1 & (\bmod 4) \\
2 p+2 & p \equiv 2 & (\bmod 4) \\
2 p+3 & p \equiv 3 & (\bmod 4) \\
2 p+4 & p \equiv 0 & (\bmod 4)
\end{array}\right.
$$

- Necessary condition: various progress has been made by Stolz, Schmidt and Minami

Jones' conjecture

Conjecture (Jones)

For $p \geq 2$, a level- (p, q) Furuta-Mahowald class exists if and only if

$$
q \geq\left\{\begin{array}{lll}
2 p+2 & p \equiv 1 & (\bmod 4) \\
2 p+2 & p \equiv 2 & (\bmod 4) \\
2 p+3 & p \equiv 3 & (\bmod 4) \\
2 p+4 & p \equiv 0 & (\bmod 4)
\end{array}\right.
$$

- Necessary condition: various progress has been made by Stolz, Schmidt and Minami
- Before our current work, the best result is given by Furuta-Kamitani

Theorem (Furuta-Kamitani)

For $p \geq 2$, a level- (p, q) Furuta-Mahowald class exists only if

$$
q \geq\left\{\begin{array}{lll}
2 p+1 & p \equiv 1 & (\bmod 4) \\
2 p+2 & p \equiv 2 & (\bmod 4) \\
2 p+3 & p \equiv 3 & (\bmod 4) \\
2 p+3 & p \equiv 0 & (\bmod 4)
\end{array}\right.
$$

Question

What is the necessary and sufficient condition for the existence of a level-(p, q) Furuta-Mahowald class?

Question

What is the necessary and sufficient condition for the existence of a level- (p, q) Furuta-Mahowald class?

- Much less is known about the sufficient condition

Question

What is the necessary and sufficient condition for the existence of a level- (p, q) Furuta-Mahowald class?

- Much less is known about the sufficient condition
- So far, the best result is by Schmidt: constructed a Furuta-Mahowald class of level- $(5,12)$

Question

What is the necessary and sufficient condition for the existence of a level- (p, q) Furuta-Mahowald class?

- Much less is known about the sufficient condition
- So far, the best result is by Schmidt: constructed a Furuta-Mahowald class of level- $(5,12)$
- We completely resolve this question

Main Theorem

Theorem (Hopkins-Lin-Shi-X.)
For $p \geq 2$, a level-(p, q) Furuta-Mahowald class exists if and only if

$$
q \geq\left\{\begin{array}{lll}
2 p+2 & p \equiv 1,2,5,6 & (\bmod 8) \\
2 p+3 & p \equiv 3,4,7 & (\bmod 8) \\
2 p+4 & p \equiv 0 & (\bmod 8) .
\end{array}\right.
$$

Comparison of known results

Minimal q such that a level- (p, q) Furuta-Mahowald class exists:

Jones' conjecture	Our theorem	Furuta-Kamitani		
$2 p+2$	$2 p+2$	$\geq 2 p+1$	$p \equiv 1$	$(\bmod 8)$
$2 p+2$	$2 p+2$	$\geq 2 p+2$	$p \equiv 2 \quad(\bmod 8)$	
$2 p+3$	$2 p+3$	$\geq 2 p+3$	$p \equiv 3 \quad(\bmod 8)$	
$2 p+4$	$2 p+3$	$\geq 2 p+3$	$p \equiv 4$	$(\bmod 8)$
$2 p+2$	$2 p+2$	$\geq 2 p+1$	$p \equiv 5$	$(\bmod 8)$
$2 p+2$	$2 p+2$	$\geq 2 p+2$	$p \equiv 6$	$(\bmod 8)$
$2 p+3$	$2 p+3$	$\geq 2 p+3$	$p \equiv 7$	$(\bmod 8)$
$2 p+4$	$2 p+4$	$\geq 2 p+3$	$p \equiv 8$	$(\bmod 8)$

Comparison of known results

Minimal q such that a level- (p, q) Furuta-Mahowald class exists:

Jones' conjecture	Our theorem	Furuta-Kamitani		
$2 p+2$	$2 p+2$	$\geq 2 p+1$	$p \equiv 1$	$(\bmod 8)$
$2 p+2$	$2 p+2$	$\geq 2 p+2$	$p \equiv 2 \quad(\bmod 8)$	
$2 p+3$	$2 p+3$	$\geq 2 p+3$	$p \equiv 3 \quad(\bmod 8)$	
$2 p+4$	$2 p+3$	$\geq 2 p+3$	$p \equiv 4$	$(\bmod 8)$
$2 p+2$	$2 p+2$	$\geq 2 p+1$	$p \equiv 5$	$(\bmod 8)$
$2 p+2$	$2 p+2$	$\geq 2 p+2$	$p \equiv 6$	$(\bmod 8)$
$2 p+3$	$2 p+3$	$\geq 2 p+3$	$p \equiv 7$	$(\bmod 8)$
$2 p+4$	$2 p+4$	$\geq 2 p+3$	$p \equiv 8$	$(\bmod 8)$

The limit is $\frac{10}{8}+4$

Corollary (Hopkins-Lin-Shi-X.)

Any closed simply connected smooth spin 4-manifold M that is not homeomorphic to $S^{4}, S^{2} \times S^{2}$, or $K 3$ must satisfy the inequality

$$
b_{2}(M) \geq \frac{10}{8}|\operatorname{sign}(M)|+4
$$

The limit is $\frac{10}{8}+4$

Corollary (Hopkins-Lin-Shi-X.)

Any closed simply connected smooth spin 4-manifold M that is not homeomorphic to $S^{4}, S^{2} \times S^{2}$, or K3 must satisfy the inequality

$$
b_{2}(M) \geq \frac{10}{8}|\operatorname{sign}(M)|+4
$$

In the sense of classifying all Furuta-Mahowald classes of level- (p, q), this is the limit

Furuta-Mahowald classes

$R O(G)$-graded homotopy groups

- G: finite group or compact Lie group

$R O(G)$-graded homotopy groups

- G: finite group or compact Lie group
- $R O(G)$: real representation ring

$R O(G)$-graded homotopy groups

- G: finite group or compact Lie group
- $R O(G)$: real representation ring
- Classically, $\pi_{n} S^{0}=\left[S^{n}, S^{0}\right]$

$R O(G)$-graded homotopy groups

- G: finite group or compact Lie group
- $R O(G)$: real representation ring
- Classically, $\pi_{n} S^{0}=\left[S^{n}, S^{0}\right]$
- Equivariantly, $\pi_{n}^{G} S^{0}=\left[S^{n}, S^{0}\right]^{G}$

$R O(G)$-graded homotopy groups

- G: finite group or compact Lie group
- $R O(G)$: real representation ring
- Classically, $\pi_{n} S^{0}=\left[S^{n}, S^{0}\right]$
- Equivariantly, $\pi_{n}^{G} S^{0}=\left[S^{n}, S^{0}\right]^{G}$
- Equivariantly, there are more spheres!

$R O(G)$-graded homotopy groups

- G: finite group or compact Lie group
- $R O(G)$: real representation ring
- Classically, $\pi_{n} S^{0}=\left[S^{n}, S^{0}\right]$
- Equivariantly, $\pi_{n}^{G} S^{0}=\left[S^{n}, S^{0}\right]^{G}$
- Equivariantly, there are more spheres! $V: G$-representation, $\pi_{V}^{G} S^{0}=\left[S^{V}, S^{0}\right]^{G}$

$R O(G)$-graded homotopy groups

- G: finite group or compact Lie group
- $R O(G)$: real representation ring
- Classically, $\pi_{n} S^{0}=\left[S^{n}, S^{0}\right]$
- Equivariantly, $\pi_{n}^{G} S^{0}=\left[S^{n}, S^{0}\right]^{G}$
- Equivariantly, there are more spheres! $V: G$-representation, $\pi_{V}^{G} S^{0}=\left[S^{V}, S^{0}\right]^{G}$
- $\pi_{\star}^{G} S^{0}: R O(G)$-graded stable homotopy groups of spheres

Non-nilpotent elements in $\pi_{\star}^{G} S^{0}$

There are many non-nilpotent elements in $\pi_{\star}^{G} S^{0}$!

Non-nilpotent elements in $\pi_{\star}^{G} S^{0}$

There are many non-nilpotent elements in $\pi_{\star}^{G} S^{0}$!

1. $p: S^{0} \longrightarrow S^{0}$

Non-nilpotent elements in $\pi_{\star}^{G} S^{0}$

There are many non-nilpotent elements in $\pi_{\star}^{G} S^{0}$!

1. $p: S^{0} \longrightarrow S^{0}$
2. $\Phi^{G}: \pi_{0}^{G} S^{0}=\left[S^{0}, S^{0}\right]^{G} \longrightarrow\left[S^{0}, S^{0}\right]=\mathbb{Z}$

Non-nilpotent elements in $\pi_{\star}^{G} S^{0}$

There are many non-nilpotent elements in $\pi_{\star}^{G} S^{0}$!

1. $p: S^{0} \longrightarrow S^{0}$
2. $\Phi^{G}: \pi_{0}^{G} S^{0}=\left[S^{0}, S^{0}\right]^{G} \longrightarrow\left[S^{0}, S^{0}\right]=\mathbb{Z}$

- Φ^{G} : geometric fixed point functor

Non-nilpotent elements in $\pi_{\star}^{G} S^{0}$

There are many non-nilpotent elements in $\pi_{\star}^{G} S^{0}$!

1. $p: S^{0} \longrightarrow S^{0}$
2. $\Phi^{G}: \pi_{0}^{G} S^{0}=\left[S^{0}, S^{0}\right]^{G} \longrightarrow\left[S^{0}, S^{0}\right]=\mathbb{Z}$

- Φ^{G} : geometric fixed point functor
- Any preimage of $p: S^{0} \longrightarrow S^{0}$ is non-nilpotent

Non-nilpotent elements in $\pi_{\star}^{G} S^{0}$

There are many non-nilpotent elements in $\pi_{\star}^{G} S^{0}$!

1. $p: S^{0} \longrightarrow S^{0}$
2. $\Phi^{G}: \pi_{0}^{G} S^{0}=\left[S^{0}, S^{0}\right]^{G} \longrightarrow\left[S^{0}, S^{0}\right]=\mathbb{Z}$

- Φ^{G} : geometric fixed point functor
- Any preimage of $p: S^{0} \longrightarrow S^{0}$ is non-nilpotent

3. Euler class $a_{V}: S^{0} \longrightarrow S^{V}$

Non-nilpotent elements in $\pi_{\star}^{G} S^{0}$

There are many non-nilpotent elements in $\pi_{\star}^{G} S^{0}$!

1. $p: S^{0} \longrightarrow S^{0}$
2. $\Phi^{G}: \pi_{0}^{G} S^{0}=\left[S^{0}, S^{0}\right]^{G} \longrightarrow\left[S^{0}, S^{0}\right]=\mathbb{Z}$

- Φ^{G} : geometric fixed point functor
- Any preimage of $p: S^{0} \longrightarrow S^{0}$ is non-nilpotent

3. Euler class $a_{V}: S^{0} \longrightarrow S^{V}$

- V : real nontrivial irreducible representation

Non-nilpotent elements in $\pi_{\star}^{G} S^{0}$

There are many non-nilpotent elements in $\pi_{\star}^{G} S^{0}$!

1. $p: S^{0} \longrightarrow S^{0}$
2. $\Phi^{G}: \pi_{0}^{G} S^{0}=\left[S^{0}, S^{0}\right]^{G} \longrightarrow\left[S^{0}, S^{0}\right]=\mathbb{Z}$

- Φ^{G} : geometric fixed point functor
- Any preimage of $p: S^{0} \longrightarrow S^{0}$ is non-nilpotent

3. Euler class $a_{V}: S^{0} \longrightarrow S^{V}$

- V : real nontrivial irreducible representation
- stable class in $\pi_{-V}^{G} S^{0}$

Equivariant Mahowald invariant

- $\alpha, \beta \in \pi_{\star}^{G} S^{0}$

Equivariant Mahowald invariant

- $\alpha, \beta \in \pi_{\star}^{G} S^{0}$

Definition

The G-equivariant Mahowald invariant of α with respect to β is the following set of elements in $\pi_{\star}^{G} S^{0}$:

$$
M_{\beta}^{G}(\alpha)=\left\{\gamma \mid \alpha=\gamma \beta^{k}, \alpha \text { is not divisible by } \beta^{k+1}\right\}
$$

Equivariant Mahowald invariant

- $\alpha, \beta \in \pi_{\star}^{G} S^{0}$

Definition

The G-equivariant Mahowald invariant of α with respect to β is the following set of elements in $\pi_{\star}^{G} S^{0}$:

$$
M_{\beta}^{G}(\alpha)=\left\{\gamma \mid \alpha=\gamma \beta^{k}, \alpha \text { is not divisible by } \beta^{k+1}\right\}
$$

- We are interested in the case when α, β are non-nilpotent

Equivariant Mahowald invariant

- $\alpha, \beta \in \pi_{\star}^{G} S^{0}$

Definition

The G-equivariant Mahowald invariant of α with respect to β is the following set of elements in $\pi_{\star}^{G} S^{0}$:

$$
M_{\beta}^{G}(\alpha)=\left\{\gamma \mid \alpha=\gamma \beta^{k}, \alpha \text { is not divisible by } \beta^{k+1}\right\}
$$

- We are interested in the case when α, β are non-nilpotent
- $\left|M_{\beta}^{G}(\alpha)\right|=|\gamma|=|\alpha|-k|\beta|$

Equivariant Mahowald invariant

- $\alpha, \beta \in \pi_{\star}^{G} S^{0}$

Definition

The G-equivariant Mahowald invariant of α with respect to β is the following set of elements in $\pi_{\star}^{G} S^{0}$:

$$
M_{\beta}^{G}(\alpha)=\left\{\gamma \mid \alpha=\gamma \beta^{k}, \alpha \text { is not divisible by } \beta^{k+1}\right\}
$$

- We are interested in the case when α, β are non-nilpotent
- $\left|M_{\beta}^{G}(\alpha)\right|=|\gamma|=|\alpha|-k|\beta|$

$$
S^{-k|\beta|}
$$

$S^{0} \xrightarrow{\alpha} S^{-|\alpha|}$

Equivariant Mahowald invariant

- $\alpha, \beta \in \pi_{\star}^{G} S^{0}$

Definition

The G-equivariant Mahowald invariant of α with respect to β is the following set of elements in $\pi_{\star}^{G} S^{0}$:

$$
M_{\beta}^{G}(\alpha)=\left\{\gamma \mid \alpha=\gamma \beta^{k}, \alpha \text { is not divisible by } \beta^{k+1}\right\}
$$

- We are interested in the case when α, β are non-nilpotent
- $\left|M_{\beta}^{G}(\alpha)\right|=|\gamma|=|\alpha|-k|\beta|$

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$,

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- 1: trivial representation

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- 1: trivial representation
- σ : sign representation

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- 1: trivial representation
- σ : sign representation
- The classical Borsuk-Ulam theorem follows from the following stable statement:

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- 1: trivial representation
- σ : sign representation
- The classical Borsuk-Ulam theorem follows from the following stable statement:

Theorem (Borsuk-Ulam)

For all $q \geq 0$, the $R O\left(C_{2}\right)$-degree of $M_{a_{\sigma}}^{C_{2}}\left(a_{\sigma}^{q}\right)$ is zero.

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- 1: trivial representation
- σ : sign representation
- The classical Borsuk-Ulam theorem follows from the following stable statement:

Theorem (Borsuk-Ulam)

For all $q \geq 0$, the $R O\left(C_{2}\right)$-degree of $M_{a_{\sigma}}^{C_{2}}\left(a_{\sigma}^{q}\right)$ is zero.

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- 1: trivial representation
- σ : sign representation
- The classical Borsuk-Ulam theorem follows from the following stable statement:

Theorem (Borsuk-Ulam)

For all $q \geq 0$, the $R O\left(C_{2}\right)$-degree of $M_{a_{\sigma}}^{C_{2}}\left(a_{\sigma}^{q}\right)$ is zero.

Classical Mahowald invariant - Bruner-Greenlees

Classical Mahowald invariant - Bruner-Greenlees

- $\alpha \in \pi_{n} S^{0}$

Classical Mahowald invariant - Bruner-Greenlees

- $\alpha \in \pi_{n} S^{0}$
- consider the preimages of α

Classical Mahowald invariant - Bruner-Greenlees

- $\alpha \in \pi_{n} S^{0}$
- consider the preimages of α
- Among all the elements in $M_{a_{\sigma}}^{C_{2}}\left(\left(\Phi^{C_{2}}\right)^{-1} \alpha\right)$, pick the one that has the highest degree in its σ-component

Classical Mahowald invariant - Bruner-Greenlees

- $\alpha \in \pi_{n} S^{0}$
- consider the preimages of α
- Among all the elements in $M_{a_{\sigma}}^{C_{2}}\left(\left(\Phi^{C_{2}}\right)^{-1} \alpha\right)$, pick the one that has the highest degree in its σ-component
- Forget to the non-equivariant world \Longrightarrow classical Mahowald invariant $M(\alpha)$

Theorem (Landweber, Mahowald-Ravenel, Bruner-Greenlees)
For $q \geq 1$, the set $M\left(2^{q}\right)$ contains the first nonzero element of Adams filtration q in positive degree.

Theorem (Landweber, Mahowald-Ravenel, Bruner-Greenlees)

For $q \geq 1$, the set $M\left(2^{q}\right)$ contains the first nonzero element of Adams filtration q in positive degree. Moreover, the following 4-periodic result holds:

$$
\left|M_{a_{\sigma}}^{C_{2}}\left(\left(\Phi^{C_{2}}\right)^{-1} 2^{q}\right)\right|= \begin{cases}(8 k+1) \sigma & \text { if } q=4 k+1 \\ (8 k+2) \sigma & \text { if } q=4 k+2 \\ (8 k+3) \sigma & \text { if } q=4 k+3 \\ (8 k+7) \sigma & \text { if } q=4 k+4\end{cases}
$$

C_{4}-equivariant Mahowald invariant

- $G=C_{4}$, cyclic group of order 4

C_{4}-equivariant Mahowald invariant

- $G=C_{4}$, cyclic group of order 4
- $R O\left(C_{4}\right)=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$,

C_{4}-equivariant Mahowald invariant

- $G=C_{4}$, cyclic group of order 4
- $R O\left(C_{4}\right)=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 , σ and λ

C_{4}-equivariant Mahowald invariant

- $G=C_{4}$, cyclic group of order 4
- $R O\left(C_{4}\right)=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 , σ and λ
- 1: trivial representation

C_{4}-equivariant Mahowald invariant

- $G=C_{4}$, cyclic group of order 4
- $R O\left(C_{4}\right)=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 , σ and λ
- 1: trivial representation
- σ : sign representation

C_{4}-equivariant Mahowald invariant

- $G=C_{4}$, cyclic group of order 4
- $R O\left(C_{4}\right)=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 , σ and λ
- 1: trivial representation
- σ : sign representation
- λ : 2-dimensional, rotation by 90°

C_{4}-equivariant Mahowald invariant

- $G=C_{4}$, cyclic group of order 4
- $R O\left(C_{4}\right)=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 , σ and λ
- 1: trivial representation
- σ : sign representation
- $\lambda: 2$-dimensional, rotation by 90°
- Crabb, Schmidt, and Stolz studied the C_{4}-equivariant Mahowald invariant of powers of a_{σ} with respect to $a_{2 \lambda}$

Theorem (Crabb, Schmidt, Stolz)

For $q \geq 1$, the following 8-periodic result holds:

$$
\left|M_{\mathrm{a}_{2 \lambda}}^{C_{4}}\left(a_{\sigma}^{q}\right)\right|+q \sigma= \begin{cases}8 k \lambda & \text { if } q=8 k+1 \\ 8 k \lambda & \text { if } q=8 k+2 \\ (8 k+2) \lambda & \text { if } q=8 k+3 \\ (8 k+2) \lambda & \text { if } q=8 k+4 \\ (8 k+2) \lambda & \text { if } q=8 k+5 \\ (8 k+4) \lambda & \text { if } q=8 k+6 \\ (8 k+4) \lambda & \text { if } q=8 k+7 \\ (8 k+4) \lambda & \text { if } q=8 k+8 .\end{cases}
$$

Theorem (Crabb, Schmidt, Stolz)

For $q \geq 1$, the following 8-periodic result holds:

$$
\left|M_{a_{2 \lambda}}^{C_{4}}\left(a_{\sigma}^{q}\right)\right|+q \sigma= \begin{cases}8 k \lambda & \text { if } q=8 k+1 \\ 8 k \lambda & \text { if } q=8 k+2 \\ (8 k+2) \lambda & \text { if } q=8 k+3 \\ (8 k+2) \lambda & \text { if } q=8 k+4 \\ (8 k+2) \lambda & \text { if } q=8 k+5 \\ (8 k+4) \lambda & \text { if } q=8 k+6 \\ (8 k+4) \lambda & \text { if } q=8 k+7 \\ (8 k+4) \lambda & \text { if } q=8 k+8\end{cases}
$$

- C_{4} is a subgroup of $\operatorname{Pin}(2)$

Theorem (Crabb, Schmidt, Stolz)

For $q \geq 1$, the following 8-periodic result holds:

$$
\left|M_{\mathrm{a}_{2 \lambda}}^{C_{4}}\left(a_{\sigma}^{q}\right)\right|+q \sigma= \begin{cases}8 k \lambda & \text { if } q=8 k+1 \\ 8 k \lambda & \text { if } q=8 k+2 \\ (8 k+2) \lambda & \text { if } q=8 k+3 \\ (8 k+2) \lambda & \text { if } q=8 k+4 \\ (8 k+2) \lambda & \text { if } q=8 k+5 \\ (8 k+4) \lambda & \text { if } q=8 k+6 \\ (8 k+4) \lambda & \text { if } q=8 k+7 \\ (8 k+4) \lambda & \text { if } q=8 k+8\end{cases}
$$

- C_{4} is a subgroup of $\operatorname{Pin}(2)$
- Minami and Schmidt used this theorem to deduce the nonexistence of certain Furuta-Mahowald classes

Pin(2)-equivariant Mahowald invariant

- $G=\operatorname{Pin}(2)$

Pin(2)-equivariant Mahowald invariant

- $G=\operatorname{Pin}(2)$
- Irreducible representations \mathbb{H} and $\widetilde{\mathbb{R}}$

Pin(2)-equivariant Mahowald invariant

- $G=\operatorname{Pin}(2)$
- Irreducible representations \mathbb{H} and $\widetilde{\mathbb{R}}$
- By definition, a level- (p, q) Furuta-Mahowald class exists if and only if the \mathbb{H}-degree of $\left|M_{a_{\mathbb{H}}}^{P \text { Pin }(2)}\left(a_{\widetilde{\mathbb{R}}}^{q}\right)\right|+q \widetilde{\mathbb{R}}$ is $\geq p$

Pin(2)-equivariant Mahowald invariant

- $G=\operatorname{Pin}(2)$
- Irreducible representations \mathbb{H} and $\widetilde{\mathbb{R}}$
- By definition, a level- (p, q) Furuta-Mahowald class exists if and only if the \mathbb{H}-degree of $\left|M_{a_{\mathbb{H}}}^{P \text { in }(2)}\left(a_{\widetilde{\mathbb{R}}}^{q}\right)\right|+q \widetilde{\mathbb{R}}$ is $\geq p$
- To prove our main theorem, we analyze the $\operatorname{Pin}(2)$-equivariant Mahowald invariants of powers of $a_{\widetilde{\mathbb{R}}}$ with respect to $a_{\mathbb{H}}$

Main Theorem

Theorem (Hopkins-Lin-Shi-X.)

For $q \geq 4$, the following 16-periodic result holds:

$$
\begin{aligned}
& \left|M_{a_{\mathbb{H}}}^{\operatorname{Pin}(2)}\left(a_{\widetilde{\mathbb{R}}}^{q}\right)\right|+q \widetilde{\mathbb{R}} \\
& =\left\{\begin{array}{ll|ll}
(8 k-1) \mathbb{H} & \text { if } q=16 k+1 & (8 k+3) \mathbb{H} & \text { if } q=16 k+9 \\
(8 k-1) \mathbb{H} & \text { if } q=16 k+2 & (8 k+3) \mathbb{H} & \text { if } q=16 k+10 \\
(8 k-1) \mathbb{H} & \text { if } q=16 k+3 & (8 k+4) \mathbb{H} & \text { if } q=16 k+11 \\
(8 k+1) \mathbb{H} & \text { if } q=16 k+4 & (8 k+5) \mathbb{H} & \text { if } q=16 k+12 \\
(8 k+1) \mathbb{H} & \text { if } q=16 k+5 & (8 k+5) \mathbb{H} & \text { if } q=16 k+13 \\
(8 k+2) \mathbb{H} & \text { if } q=16 k+6 & (8 k+6) \mathbb{H} & \text { if } q=16 k+14 \\
(8 k+2) \mathbb{H} & \text { if } q=16 k+7 & (8 k+6) \mathbb{H} & \text { if } q=16 k+15 \\
(8 k+2) \mathbb{H} & \text { if } q=16 k+8 & (8 k+6) \mathbb{H} & \text { if } q=16 k+16 .
\end{array}\right.
\end{aligned}
$$

Main Theorem

Theorem (Hopkins-Lin-Shi-X.)

For $q \geq 4$, the following 16-periodic result holds:

$$
\begin{aligned}
& \left|M_{a_{\mathbb{H}}}^{\operatorname{Pin}(2)}\left(a_{\widetilde{\mathbb{R}}}^{q}\right)\right|+q \widetilde{\mathbb{R}} \\
& =\left\{\begin{array}{ll|ll}
(8 k-1) \mathbb{H} & \text { if } q=16 k+1 & (8 k+3) \mathbb{H} & \text { if } q=16 k+9 \\
(8 k-1) \mathbb{H} & \text { if } q=16 k+2 & (8 k+3) \mathbb{H} & \text { if } q=16 k+10 \\
(8 k-1) \mathbb{H} & \text { if } q=16 k+3 & (8 k+4) \mathbb{H} & \text { if } q=16 k+11 \\
(8 k+1) \mathbb{H} & \text { if } q=16 k+4 & (8 k+5) \mathbb{H} & \text { if } q=16 k+12 \\
(8 k+1) \mathbb{H} & \text { if } q=16 k+5 & (8 k+5) \mathbb{H} & \text { if } q=16 k+13 \\
(8 k+2) \mathbb{H} & \text { if } q=16 k+6 & (8 k+6) \mathbb{H} & \text { if } q=16 k+14 \\
(8 k+2) \mathbb{H} & \text { if } q=16 k+7 & (8 k+6) \mathbb{H} & \text { if } q=16 k+15 \\
(8 k+2) \mathbb{H} & \text { if } q=16 k+8 & (8 k+6) \mathbb{H} & \text { if } q=16 k+16 .
\end{array}\right.
\end{aligned}
$$

Main Theorem

Theorem (Hopkins-Lin-Shi-X.)

For $q \geq 4$, the following 16 -periodic result holds:

$$
\begin{aligned}
& \left|M_{a_{\mathbb{H}}}^{\operatorname{Pin}(2)}\left(a_{\widetilde{\mathbb{R}}}^{q}\right)\right|+q \widetilde{\mathbb{R}} \\
& =\left\{\begin{array}{ll|ll}
(8 k-1) \mathbb{H} & \text { if } q=16 k+1 & (8 k+3) \mathbb{H} & \text { if } q=16 k+9 \\
(8 k-1) \mathbb{H} & \text { if } q=16 k+2 & (8 k+3) \mathbb{H} & \text { if } q=16 k+10 \\
(8 k-1) \mathbb{H} & \text { if } q=16 k+3 & (8 k+4) \mathbb{H} & \text { if } q=16 k+11 \\
(8 k+1) \mathbb{H} & \text { if } q=16 k+4 & (8 k+5) \mathbb{H} & \text { if } q=16 k+12 \\
(8 k+1) \mathbb{H} & \text { if } q=16 k+5 & (8 k+5) \mathbb{H} & \text { if } q=16 k+13 \\
(8 k+2) \mathbb{H} & \text { if } q=16 k+6 & (8 k+6) \mathbb{H} & \text { if } q=16 k+14 \\
(8 k+2) \mathbb{H} & \text { if } q=16 k+7 & (8 k+6) \mathbb{H} & \text { if } q=16 k+15 \\
(8 k+2) \mathbb{H} & \text { if } q=16 k+8 & (8 k+6) \mathbb{H} & \text { if } q=16 k+16 .
\end{array}\right.
\end{aligned}
$$

- Had it been $(8 k+3) \mathbb{H}$ instead, our result would be 8 -periodic

Main Theorem

Theorem (Hopkins-Lin-Shi-X.)

For $q \geq 4$, the following 16 -periodic result holds:

$$
\begin{aligned}
& \left|M_{a_{\mathbb{H}}}^{\operatorname{Pin}(2)}\left(a_{\widetilde{\mathbb{R}}}^{q}\right)\right|+q \widetilde{\mathbb{R}} \\
& =\left\{\begin{array}{ll|ll}
(8 k-1) \mathbb{H} & \text { if } q=16 k+1 & (8 k+3) \mathbb{H} & \text { if } q=16 k+9 \\
(8 k-1) \mathbb{H} & \text { if } q=16 k+2 & (8 k+3) \mathbb{H} & \text { if } q=16 k+10 \\
(8 k-1) \mathbb{H} & \text { if } q=16 k+3 & (8 k+4) \mathbb{H} & \text { if } q=16 k+11 \\
(8 k+1) \mathbb{H} & \text { if } q=16 k+4 & (8 k+5) \mathbb{H} & \text { if } q=16 k+12 \\
(8 k+1) \mathbb{H} & \text { if } q=16 k+5 & (8 k+5) \mathbb{H} & \text { if } q=16 k+13 \\
(8 k+2) \mathbb{H} & \text { if } q=16 k+6 & (8 k+6) \mathbb{H} & \text { if } q=16 k+14 \\
(8 k+2) \mathbb{H} & \text { if } q=16 k+7 & (8 k+6) \mathbb{H} & \text { if } q=16 k+15 \\
(8 k+2) \mathbb{H} & \text { if } q=16 k+8 & (8 k+6) \mathbb{H} & \text { if } q=16 k+16 .
\end{array}\right.
\end{aligned}
$$

- Had it been $(8 k+3) H$ instead, our result would be 8 -periodic
- Jone's conjecture would be true

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$,

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- 1: trivial representation

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- 1: trivial representation
- σ : sign representation

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- 1: trivial representation
- σ : sign representation
- Reflection $\chi: S^{\sigma} \longrightarrow S^{\sigma}$

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- 1: trivial representation
- σ : sign representation
- Reflection $\chi: S^{\sigma} \longrightarrow S^{\sigma}$

- C_{2}-equivariant map

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- 1: trivial representation
- σ : sign representation
- Reflection $\chi: S^{\sigma} \longrightarrow S^{\sigma}$

- C_{2}-equivariant map
- $\left[S^{0}, S^{0}\right]^{C_{2}}=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and χ

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- 1: trivial representation
- σ : sign representation
- Reflection $\chi: S^{\sigma} \longrightarrow S^{\sigma}$

- C_{2}-equivariant map
- $\left[S^{0}, S^{0}\right]^{C_{2}}=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and χ
- $\Phi^{C_{2}}(1+\chi)=2$

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- 1: trivial representation
- σ : sign representation
- Reflection $\chi: S^{\sigma} \longrightarrow S^{\sigma}$

- C_{2}-equivariant map
- $\left[S^{0}, S^{0}\right]^{C_{2}}=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and χ
- $\Phi^{C_{2}}(1+\chi)=2$
- $1+\chi$ is non-nilpotent

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- 1: trivial representation
- σ : sign representation
- Reflection $\chi: S^{\sigma} \longrightarrow S^{\sigma}$

- C_{2}-equivariant map
- $\left[S^{0}, S^{0}\right]^{C_{2}}=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and χ
- $\Phi^{C_{2}}(1+\chi)=2$
- $1+\chi$ is non-nilpotent
- Question: $\left|M_{a_{\sigma}}^{C_{2}}\left((1+\chi)^{q}\right)\right|=$?

C_{2}-equivariant Mahowald invariant

- $G=C_{2}$, cyclic group of order 2
- $R O\left(C_{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- 1: trivial representation
- σ : sign representation
- Reflection $\chi: S^{\sigma} \longrightarrow S^{\sigma}$

- C_{2}-equivariant map
- $\left[S^{0}, S^{0}\right]^{C_{2}}=\mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and χ
- $\Phi^{C_{2}}(1+\chi)=2$
- $1+\chi$ is non-nilpotent
- Question: $\left|M_{a_{\sigma}}^{C_{2}}\left((1+\chi)^{q}\right)\right|=$?
- Bruner-Greenlees: It is $\left|M\left(2^{q}\right)\right| \sigma$. $M(-)$: classical Mahowald invariant

Pin(2)-equivariant to non-equivariant

- C_{2}-action on $B S^{1}=\mathbb{C} P^{\infty}$:
$\left(z_{1}, z_{2}, z_{3}, z_{4}, \ldots, z_{2 n-1}, z_{2 n}\right) \longmapsto$ $\left(-\bar{z}_{2}, \bar{z}_{1},-\bar{z}_{4}, \bar{z}_{3}, \ldots,-\bar{z}_{2 n}, \bar{z}_{2 n-1}\right)$

Pin(2)-equivariant to non-equivariant

- C_{2}-action on $B S^{1}=\mathbb{C} P^{\infty}$:
$\left(z_{1}, z_{2}, z_{3}, z_{4}, \ldots, z_{2 n-1}, z_{2 n}\right) \longmapsto$
$\left(-\bar{z}_{2}, \bar{z}_{1},-\bar{z}_{4}, \bar{z}_{3}, \ldots,-\bar{z}_{2 n}, \bar{z}_{2 n-1}\right)$
- $B \operatorname{Pin}(2)=B S^{1} / C_{2}$-action

Pin(2)-equivariant to non-equivariant

- C_{2}-action on $B S^{1}=\mathbb{C} P^{\infty}$:
$\left(z_{1}, z_{2}, z_{3}, z_{4}, \ldots, z_{2 n-1}, z_{2 n}\right) \longmapsto$
$\left(-\bar{z}_{2}, \bar{z}_{1},-\bar{z}_{4}, \bar{z}_{3}, \ldots,-\bar{z}_{2 n}, \bar{z}_{2 n-1}\right)$
- $B \operatorname{Pin}(2)=B S^{1} / C_{2}$-action
- λ : line bundle associated to the principal bundle $C_{2} \hookrightarrow B S^{1} \longrightarrow B \operatorname{Pin}(2)$

Pin(2)-equivariant to non-equivariant

- C_{2}-action on $B S^{1}=\mathbb{C} P^{\infty}$:
$\left(z_{1}, z_{2}, z_{3}, z_{4}, \ldots, z_{2 n-1}, z_{2 n}\right) \longmapsto$
$\left(-\bar{z}_{2}, \bar{z}_{1},-\bar{z}_{4}, \bar{z}_{3}, \ldots,-\bar{z}_{2 n}, \bar{z}_{2 n-1}\right)$
- $B \operatorname{Pin}(2)=B S^{1} / C_{2}$-action
- λ : line bundle associated to the principal bundle $C_{2} \hookrightarrow B S^{1} \longrightarrow B \operatorname{Pin}(2)$
- $X(m):=\operatorname{Thom}(B \operatorname{Pin}(2),-m \lambda)$

Pin(2)-equivariant to non-equivariant

- C_{2}-action on $B S^{1}=\mathbb{C} P^{\infty}$:
$\left(z_{1}, z_{2}, z_{3}, z_{4}, \ldots, z_{2 n-1}, z_{2 n}\right) \longmapsto$
$\left(-\bar{z}_{2}, \bar{z}_{1},-\bar{z}_{4}, \bar{z}_{3}, \ldots,-\bar{z}_{2 n}, \bar{z}_{2 n-1}\right)$
- $B \operatorname{Pin}(2)=B S^{1} / C_{2}$-action
- λ : line bundle associated to the principal bundle
$C_{2} \hookrightarrow B S^{1} \longrightarrow B \operatorname{Pin}(2)$
- $X(m):=\operatorname{Thom}(B \operatorname{Pin}(2),-m \lambda)$
- inclusion of bundles $m \lambda \hookrightarrow(m+1) \lambda$

$$
\Longrightarrow X(m+1) \longrightarrow X(m)
$$

Pin(2)-equivariant to non-equivariant

- C_{2}-action on $B S^{1}=\mathbb{C} P^{\infty}$:
$\left(z_{1}, z_{2}, z_{3}, z_{4}, \ldots, z_{2 n-1}, z_{2 n}\right) \longmapsto$
$\left(-\bar{z}_{2}, \bar{z}_{1},-\bar{z}_{4}, \bar{z}_{3}, \ldots,-\bar{z}_{2 n}, \bar{z}_{2 n-1}\right)$
- $B \operatorname{Pin}(2)=B S^{1} / C_{2}$-action
- λ : line bundle associated to the principal bundle
$C_{2} \hookrightarrow B S^{1} \longrightarrow B \operatorname{Pin}(2)$
- $X(m):=\operatorname{Thom}(B \operatorname{Pin}(2),-m \lambda)$
- inclusion of bundles $m \lambda \hookrightarrow(m+1) \lambda$

$$
\begin{aligned}
& \Longrightarrow X(m+1) \longrightarrow X(m) \\
& \Longrightarrow X(m+1) \longrightarrow X(m) \longrightarrow \Sigma^{-m} \mathbb{C} P^{\infty}
\end{aligned}
$$

Pin(2)-equivariant to non-equivariant

- C_{2}-action on $B S^{1}=\mathbb{C} P^{\infty}$:
$\left(z_{1}, z_{2}, z_{3}, z_{4}, \ldots, z_{2 n-1}, z_{2 n}\right) \longmapsto$
$\left(-\bar{z}_{2}, \bar{z}_{1},-\bar{z}_{4}, \bar{z}_{3}, \ldots,-\bar{z}_{2 n}, \bar{z}_{2 n-1}\right)$
- $B \operatorname{Pin}(2)=B S^{1} / C_{2}$-action
- λ : line bundle associated to the principal bundle
$C_{2} \hookrightarrow B S^{1} \longrightarrow B \operatorname{Pin}(2)$
- $X(m):=\operatorname{Thom}(B \operatorname{Pin}(2),-m \lambda)$
- inclusion of bundles $m \lambda \hookrightarrow(m+1) \lambda$

$$
\begin{aligned}
& \Longrightarrow X(m+1) \longrightarrow X(m) \\
& \Longrightarrow X(m+1) \longrightarrow X(m) \longrightarrow \Sigma^{-m} \mathbb{C} P^{\infty}
\end{aligned}
$$

- fiber bundle $\mathbb{R} P^{2} \hookrightarrow B \operatorname{Pin}(2) \longrightarrow \mathbb{H} P^{\infty}$

Pin(2)-equivariant to non-equivariant

- C_{2}-action on $B S^{1}=\mathbb{C} P^{\infty}$:
$\left(z_{1}, z_{2}, z_{3}, z_{4}, \ldots, z_{2 n-1}, z_{2 n}\right) \longmapsto$
$\left(-\bar{z}_{2}, \bar{z}_{1},-\bar{z}_{4}, \bar{z}_{3}, \ldots,-\bar{z}_{2 n}, \bar{z}_{2 n-1}\right)$
- $B \operatorname{Pin}(2)=B S^{1} / C_{2}$-action
- λ : line bundle associated to the principal bundle
$C_{2} \hookrightarrow B S^{1} \longrightarrow B \operatorname{Pin}(2)$
- $X(m):=\operatorname{Thom}(B \operatorname{Pin}(2),-m \lambda)$
- inclusion of bundles $m \lambda \hookrightarrow(m+1) \lambda$

$$
\begin{aligned}
& \Longrightarrow X(m+1) \longrightarrow X(m) \\
& \Longrightarrow X(m+1) \longrightarrow X(m) \longrightarrow \Sigma^{-m} \mathbb{C} P^{\infty}
\end{aligned}
$$

- fiber bundle $\mathbb{R} P^{2} \hookrightarrow B \operatorname{Pin}(2) \longrightarrow \mathbb{H} P^{\infty}$ gives cell structures on $B \operatorname{Pin}(2)$ and $X(m)$.

Mahowald line

Consider the diagram

Mahowald line

Consider the diagram

Mahowald line

Consider the diagram

- g is zero \Longleftrightarrow

Mahowald line

Consider the diagram

- g is zero \Longleftrightarrow

$$
S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+} \rightarrow S(p \mathbb{H})_{+} \xrightarrow{f} S^{0} \text { is zero }
$$

Mahowald line

Consider the diagram

- g is zero \Longleftrightarrow

$$
S^{-q \tilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+} \rightarrow S(p \mathbb{H})_{+} \xrightarrow{f} S^{0} \text { is zero }
$$

- $S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+}: \operatorname{Pin}(2)$-free

Mahowald line

Consider the diagram

- g is zero \Longleftrightarrow

$$
S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+} \rightarrow S(p \mathbb{H})_{+} \xrightarrow{f} S^{0} \text { is zero }
$$

- $S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+}: \operatorname{Pin}(2)$-free
- $S^{0}: \operatorname{Pin}(2)$ acts trivially

Mahowald line

Consider the diagram

- g is zero \Longleftrightarrow

$$
S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+} \rightarrow S(p \mathbb{H})_{+} \xrightarrow{f} S^{0} \text { is zero }
$$

- $S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+}: \operatorname{Pin}(2)$-free
- $S^{0}: \operatorname{Pin}(2)$ acts trivially
- g is zero \Longleftrightarrow the nonequivariant map is zero

$$
\left(S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+}\right)_{h \operatorname{Pin}(2)} \longrightarrow\left(S(p \mathbb{H})_{+}\right)_{h \operatorname{Pin}(2)} \longrightarrow S^{0}
$$

Mahowald line

- Short exact sequence $1 \longrightarrow S^{1} \longrightarrow \operatorname{Pin}(2) \longrightarrow C_{2} \longrightarrow 1$

Mahowald line

- Short exact sequence
$1 \longrightarrow S^{1} \longrightarrow \operatorname{Pin}(2) \longrightarrow C_{2} \longrightarrow 1$
$\left(S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+}\right)_{h \operatorname{Pin}(2)}=$

Mahowald line

- Short exact sequence
$1 \longrightarrow S^{1} \longrightarrow \operatorname{Pin}(2) \longrightarrow C_{2} \longrightarrow 1$
$\left(S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+}\right)_{h \operatorname{Pin}(2)}=\left(\left(S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+}\right)_{h S^{1}}\right)_{h C_{2}}$

Mahowald line

- Short exact sequence
$1 \longrightarrow S^{1} \longrightarrow \operatorname{Pin}(2) \longrightarrow C_{2} \longrightarrow 1$

$$
\begin{aligned}
\left(S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+}\right)_{h \operatorname{Pin}(2)} & =\left(\left(S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+}\right)_{h S^{1}}\right)_{h C_{2}} \\
& =\left(S^{-q \sigma} \wedge \mathbb{C} P_{+}^{2 p-1}\right)_{h C_{2}}
\end{aligned}
$$

Mahowald line

- Short exact sequence
$1 \longrightarrow S^{1} \longrightarrow \operatorname{Pin}(2) \longrightarrow C_{2} \longrightarrow 1$

$$
\begin{aligned}
\left(S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+}\right)_{h \operatorname{Pin}(2)} & =\left(\left(S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+}\right)_{h S^{1}}\right)_{h C_{2}} \\
& =\left(S^{-q \sigma} \wedge \mathbb{C} P_{+}^{2 p-1}\right)_{h C_{2}} \\
& =(4 p-2-q) \text {-skeleton of } X(q)
\end{aligned}
$$

Mahowald line

- Short exact sequence

$$
1 \longrightarrow S^{1} \longrightarrow \operatorname{Pin}(2) \longrightarrow C_{2} \longrightarrow 1
$$

$$
\begin{aligned}
\left(S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+}\right)_{h \operatorname{Pin}(2)} & =\left(\left(S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+}\right)_{h S^{1}}\right)_{h C_{2}} \\
& =\left(S^{-q \sigma} \wedge \mathbb{C} P_{+}^{2 p-1}\right)_{h C_{2}} \\
& =(4 p-2-q) \text {-skeleton of } X(q)
\end{aligned}
$$

Mahowald line

- Short exact sequence

$$
1 \longrightarrow S^{1} \longrightarrow \operatorname{Pin}(2) \longrightarrow C_{2} \longrightarrow 1
$$

$$
\begin{aligned}
\left(S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+}\right)_{h \operatorname{Pin}(2)} & =\left(\left(S^{-q \widetilde{\mathbb{R}}} \wedge S(p \mathbb{H})_{+}\right)_{h S^{1}}\right)_{h C_{2}} \\
& =\left(S^{-q \sigma} \wedge \mathbb{C} P_{+}^{2 p-1}\right)_{h C_{2}} \\
& =(4 p-2-q) \text {-skeleton of } X(q)
\end{aligned}
$$

Lower bound

Classical Adams spectral sequence

Some relations in $\pi_{*} S^{0}$

- $\pi_{4}=0$
- $\pi_{5}=0$
- $\pi_{12}=0$
- $\pi_{13}=0$
- $\eta \cdot \pi_{6}=0$
- $\pi_{8} \cdot \eta^{2}=0$

Now we start the induction

$$
H
$$

Intuition for a technical step

Another mini-movie

Thank you!

