The Geography problem on 4-manifolds: $\frac{10}{8} + 4$

Zhouli Xu

(Joint with Michael Hopkins, Jianfeng Lin, and XiaoLin Danny Shi)

Massachusetts Institute of Technology

March 3, 2020

How to classify closed simply connected topological 4-manifolds?

► *N*: closed simply connected topological 4-manifold.

- ► *N*: closed simply connected topological 4-manifold.
- Two important invariants of *N*:

- ► *N*: closed simply connected topological 4-manifold.
- Two important invariants of *N*:
 - 1. The intersection form Q_N : symmetric unimodular bilinear form over \mathbb{Z} ,

- ► *N*: closed simply connected topological 4-manifold.
- Two important invariants of N:
 - 1. The intersection form Q_N : symmetric unimodular bilinear form over \mathbb{Z} , given by

$$egin{aligned} Q_{\mathcal{N}} &: H^2(\mathcal{N};\mathbb{Z}) imes H^2(\mathcal{N};\mathbb{Z}) & \longrightarrow & \mathbb{Z}, \ & (a,b) & \longmapsto & \langle a \cup b, [\mathcal{N}]
angle. \end{aligned}$$

How to classify closed simply connected topological 4-manifolds?

- ► *N*: closed simply connected topological 4-manifold.
- Two important invariants of N:
 - 1. The intersection form Q_N : symmetric unimodular bilinear form over \mathbb{Z} , given by

$$egin{aligned} Q_N &: H^2(N;\mathbb{Z}) imes H^2(N;\mathbb{Z}) & \longrightarrow & \mathbb{Z}, \ & (a,b) & \longmapsto & \langle a \cup b, [N]
angle. \end{aligned}$$

2. The Kirby–Siebenmann invariant $ks(N) \in H^4(N; \mathbb{Z}/2) = \mathbb{Z}/2$.

M, N: closed simply connected topological 4-manifolds

M, N: closed simply connected topological 4-manifolds

1. *M* is homeomorphic to *N* $\iff Q_M \cong Q_N \text{ and } ks(M) = ks(N)$

M, N: closed simply connected topological 4-manifolds

- 1. *M* is homeomorphic to *N* $\iff Q_M \cong Q_N$ and ks(M) = ks(N)
- 2. Bilinear form Q: not even \implies any (Q, $\mathbb{Z}/2$) can be realized

M, N: closed simply connected topological 4-manifolds

- 1. *M* is homeomorphic to *N* $\iff Q_M \cong Q_N$ and ks(M) = ks(N)
- 2. Bilinear form Q: not even \implies any (Q, $\mathbb{Z}/2$) can be realized
- 3. Bilinear form Q: even \implies only $\left(Q, \frac{\text{sign}(Q)}{8} \mod 2\right)$ can be realized

Smooth category

Question

How to classify closed simply connected smooth 4-manifolds?

Smooth category

Question

How to classify closed simply connected smooth 4-manifolds?

Whitehead, Munkres, Hirsch, Kirby–Siebenmann: M smooth ⇒ ks(M) = 0

Smooth category

Question

How to classify closed simply connected smooth 4-manifolds?

- ► Whitehead, Munkres, Hirsch, Kirby–Siebenmann: M smooth ⇒ ks(M) = 0
- Freedman's theorem:

Theorem

Two closed simply connected smooth 4-manifolds are homeomorphic if and only if they have isomorphic intersection forms.

Q: symmetric unimodular bilinear form

Q: symmetric unimodular bilinear form

Question (Geography Problem)

Q: symmetric unimodular bilinear form

Question (Geography Problem)

Can Q be realized as the intersection form of a closed simply connected smooth 4-manifold?

Suppose that the answer to the Geography Problem is yes

Q: symmetric unimodular bilinear form

Question (Geography Problem)

Can Q be realized as the intersection form of a closed simply connected smooth 4-manifold?

Suppose that the answer to the Geography Problem is yes

Question (Botany Problem)

How many non-diffeomorphic 4-manifolds can realize Q?

The Geography Problem

Q: symmetric unimodular bilinear form

Question (Geography Problem)

The Geography Problem

Q: symmetric unimodular bilinear form

Question (Geography Problem)

The Geography Problem

Q: symmetric unimodular bilinear form

Question (Geography Problem)

Donaldson's Diagonalizability Theorem

Theorem (Donaldson)

Q: definite

Donaldson's Diagonalizability Theorem

Theorem (Donaldson)

Q: definite

Q can be realized $\Longleftrightarrow Q \cong \pm I$

Donaldson's Diagonalizability Theorem

Theorem (Donaldson)

Q: definite

Q can be realized $\iff Q \cong \pm I$

Completely answers the Geography Problem when Q is definite

Indefinite forms

Indefinite forms

Theorem (Hasse–Minkowski)

1. Q: not even $Q \cong$ diagonal form with entries ±1.

Indefinite forms

Theorem (Hasse–Minkowski)

1. Q: not even $Q \cong$ diagonal form with entries ± 1 . 2. Q: even $Q \cong kE_8 \oplus q \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ for some $k \in \mathbb{Z}$ and $q \in \mathbb{N}$.

Fact

Q: not even Q can be realized by a connected sum of copies of $\mathbb{C}P^2$ and $\overline{\mathbb{C}P^2}$

$$\blacktriangleright \ Q \cong k E_8 \oplus q \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ k \in \mathbb{Z}, \ q \in \mathbb{N}$$

$$\blacktriangleright \ Q \cong k E_8 \oplus q \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ k \in \mathbb{Z}, \ q \in \mathbb{N}$$

► Wu's formula: the closed simply connected 4-manifold M realizing Q must be spin

$$\blacktriangleright \ Q \cong k E_8 \oplus q \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ k \in \mathbb{Z}, \ q \in \mathbb{N}$$

- Wu's formula: the closed simply connected 4-manifold M realizing Q must be spin
- Rokhlin's theorem: k = 2p

$$\blacktriangleright \ Q \cong k E_8 \oplus q \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ k \in \mathbb{Z}, \ q \in \mathbb{N}$$

- Wu's formula: the closed simply connected 4-manifold M realizing Q must be spin
- Rokhlin's theorem: k = 2p
- By reversing the orientation of M, may assume $k \ge 0$

The $\frac{11}{8}$ -Conjecture

Conjecture (version 1)

The form

$$2pE_8 \oplus q \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

can be realized as the intersection form of a closed smooth spin 4-manifold if and only if $q \ge 3p$.

The $\frac{11}{8}$ -Conjecture

Conjecture (version 1)

The form

$$2pE_8 \oplus q \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

can be realized as the intersection form of a closed smooth spin 4-manifold if and only if $q \ge 3p$.

The "if" part is straightforward
The $\frac{11}{8}$ -Conjecture

Conjecture (version 1)

The form

$$2pE_8 \oplus q \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

can be realized as the intersection form of a closed smooth spin 4-manifold if and only if $q \ge 3p$.

- The "if" part is straightforward
- If $q \ge 3p$, the form can be realized by

$$\# K3 \#_{q-3p}(S^2 \times S^2)$$

The $\frac{11}{8}$ -Conjecture

Conjecture (version 1)

The form

$$2pE_8 \oplus q \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

can be realized as the intersection form of a closed smooth spin 4-manifold if and only if $q \ge 3p$.

- The "if" part is straightforward
- If $q \ge 3p$, the form can be realized by

$$\# K3 \#_{p} (S^{2} \times S^{2})$$

$$K_{3}: 2E_{8} \oplus 3 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S^{2} \times S^{2}: \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

The $\frac{11}{8}$ -Conjecture

The "only if" part can be reformulated as follows:

Conjecture (version 2)

Any closed smooth spin 4-manifold M must satisfy the inequality

$$b_2(M) \geq rac{11}{8}|\operatorname{sign}(M)|,$$

where $b_2(M)$ and sign(M) are the second Betti number and the signature of M, respectively.

▶ p = 1, assuming H₁(M; Z) has no 2-torsions: Donaldson (anti-self-dual Yang-Mills equations)

- ▶ p = 1, assuming H₁(M; Z) has no 2-torsions: Donaldson (anti-self-dual Yang-Mills equations)
- ▶ p = 1, assuming H₁(M; Z) has no 2-torsions: Kronheimer (Pin(2)-symmetries in Seiberg–Witten theory)

- ▶ p = 1, assuming H₁(M; Z) has no 2-torsions: Donaldson (anti-self-dual Yang-Mills equations)
- ▶ p = 1, assuming H₁(M; Z) has no 2-torsions: Kronheimer (Pin(2)-symmetries in Seiberg–Witten theory)
- Furuta's idea: combined Kronheimer's approach with "finite dimensional approximation"

- ▶ p = 1, assuming H₁(M; Z) has no 2-torsions: Donaldson (anti-self-dual Yang-Mills equations)
- ▶ p = 1, assuming H₁(M; Z) has no 2-torsions: Kronheimer (Pin(2)-symmetries in Seiberg-Witten theory)
- Furuta's idea: combined Kronheimer's approach with "finite dimensional approximation"
 - Attacked the conjecture by using Pin(2)-equivariant stable homotopy theory

Definition

Q: even

Definition

Q: even

Q is spin realizable if it can be realized by a closed smooth spin 4-manifold.

Definition

Q: even

Q is **spin realizable** if it can be realized by a closed smooth spin 4-manifold.

Theorem (Furuta)

For $p \ge 1$, the bilinear form

$$2pE_8 \oplus q \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

is spin realizable only if $q \ge 2p + 1$.

Corollary (Furuta)

Any closed simply connected smooth spin 4-manifold M that is not homeomorphic to S^4 must satisfy the inequality

$$b_2(M) \geq \frac{10}{8}|\operatorname{sign}(M)| + 2.$$

Corollary (Furuta)

Any closed simply connected smooth spin 4-manifold M that is not homeomorphic to S^4 must satisfy the inequality

$$b_2(M) \geq \frac{10}{8}|\operatorname{sign}(M)| + 2.$$

The inequality of manifolds with boundaries are proved by Manolescu, and Furuta-Li.

 Furuta proved his theorem by studying a problem in Pin(2)-equivariant stable homotopy theory

- Furuta proved his theorem by studying a problem in Pin(2)-equivariant stable homotopy theory
- We give a complete answer to Furuta's problem

- Furuta proved his theorem by studying a problem in Pin(2)-equivariant stable homotopy theory
- We give a complete answer to Furuta's problem
- Here is a consequence of our main theorem:

- Furuta proved his theorem by studying a problem in Pin(2)-equivariant stable homotopy theory
- We give a complete answer to Furuta's problem
- Here is a consequence of our main theorem:

The limit is $\frac{10}{8} + 4$

Corollary (Hopkins–Lin–Shi–X.)

Any closed simply connected smooth spin 4-manifold M that is not homeomorphic to S^4 , $S^2 \times S^2$, or K3 must satisfy the inequality

$$b_2(M) \geq \frac{10}{8}|\operatorname{sign}(M)| + 4.$$

The limit is $\frac{10}{8} + 4$

Corollary (Hopkins–Lin–Shi–X.)

Any closed simply connected smooth spin 4-manifold M that is not homeomorphic to S^4 , $S^2 \times S^2$, or K3 must satisfy the inequality

$$b_2(M) \geq \frac{10}{8}|\operatorname{sign}(M)| + 4.$$

Furthermore, we show this is the **limit** of the current known approaches to the $\frac{11}{8}$ -Conjecture

• *M*: smooth spin 4-manifold with $b_1(M) = 0$

- *M*: smooth spin 4-manifold with $b_1(M) = 0$
- Seiberg–Witten equations: a set of first order, nonlinear, elliptic PDEs

$$\begin{cases} D\phi + \rho(a)\phi &= 0\\ d^+a - \rho^{-1}(\phi\phi^*)_0 &= 0\\ d^*a &= 0 \end{cases}$$

- *M*: smooth spin 4-manifold with $b_1(M) = 0$
- Seiberg–Witten equations: a set of first order, nonlinear, elliptic PDEs

$$\left\{ egin{array}{ccc} D\phi+
ho({\sf a})\phi&=&0\ d^+{\sf a}-
ho^{-1}(\phi\phi^*)_0&=&0\ d^*{\sf a}&=&0 \end{array}
ight.$$

 $\blacktriangleright \ \widetilde{SW}: \Gamma(S^+) \oplus i\Omega^1(M) \longrightarrow \Gamma(S^-) \oplus i\Omega^2_+(M) \oplus i\Omega^0(M) / \mathbb{R}$

- *M*: smooth spin 4-manifold with $b_1(M) = 0$
- Seiberg–Witten equations: a set of first order, nonlinear, elliptic PDEs

$$\left\{ egin{array}{ccc} D\phi+
ho(a)\phi&=&0\ d^+a-
ho^{-1}(\phi\phi^*)_0&=&0\ d^*a&=&0 \end{array}
ight.$$

- $\blacktriangleright \ \widetilde{SW}: \Gamma(S^+) \oplus i\Omega^1(M) \longrightarrow \Gamma(S^-) \oplus i\Omega^2_+(M) \oplus i\Omega^0(M)/\mathbb{R}$
- Sobolev completion $\implies \widetilde{SW} : H_1 \longrightarrow H_2$ (Seiberg–Witten map)

• $\widetilde{SW}: H_1 \longrightarrow H_2$ satisfies three properties:

•
$$\widetilde{SW}$$
 : $H_1 \longrightarrow H_2$ satisfies three properties:
1. $\widetilde{SW}(0) = 0$

•
$$\widetilde{SW}: H_1 \longrightarrow H_2$$
 satisfies three properties:

1.
$$\widetilde{SW}(0) = 0$$

2.
$$\overline{SW}$$
 is a Pin(2)-equivariant map
Pin(2) := $\{e^{i\theta}\} \cup \{je^{i\theta}\} \subset \mathbb{H}$

• $\widetilde{SW}: H_1 \longrightarrow H_2$ satisfies three properties:

1.
$$\widetilde{SW}(0) = 0$$

- 2. \widetilde{SW} is a Pin(2)-equivariant map Pin(2) := $\{e^{i\theta}\} \cup \{je^{i\theta}\} \subset \mathbb{H}$
- 3. \widetilde{SW} maps $H_1 \setminus \mathring{B}(H_1, R)$ to $H_2 \setminus \mathring{B}(H_2, \varepsilon)$

•
$$\widetilde{SW}: H_1 \longrightarrow H_2$$
 satisfies three properties:

1.
$$\widetilde{SW}(0) = 0$$

- 2. \overline{SW} is a Pin(2)-equivariant map Pin(2) := $\{e^{i\theta}\} \cup \{je^{i\theta}\} \subset \mathbb{H}$
- 3. \widetilde{SW} maps $H_1 \setminus \mathring{B}(H_1, R)$ to $H_2 \setminus \mathring{B}(H_2, \varepsilon)$

►
$$S^{H_1} = H_1/(H_1 \setminus \mathring{B}(H_1, R))$$

► $S^{H_2} = H_2/(H_2 \setminus \mathring{B}(H_2, \varepsilon))$

• $\widetilde{SW}: H_1 \longrightarrow H_2$ satisfies three properties:

1.
$$\widetilde{SW}(0) = 0$$

- 2. \widetilde{SW} is a Pin(2)-equivariant map Pin(2) := $\{e^{i\theta}\} \cup \{je^{i\theta}\} \subset \mathbb{H}$
- 3. \widetilde{SW} maps $H_1 \setminus \mathring{B}(H_1, R)$ to $H_2 \setminus \mathring{B}(H_2, \varepsilon)$

- $S^{H_1} = H_1/(H_1 \setminus \mathring{B}(H_1, R))$ $S^{H_2} = H_2/(H_2 \setminus \mathring{B}(H_2, \varepsilon))$
- \widetilde{SW} induces a Pin(2)-equivariant map between spheres

$$\widetilde{SW}^+:S^{H_1}\longrightarrow S^{H_2}$$

$$\widetilde{SW}^+: S^{H_1} \longrightarrow S^{H_2}$$

$$\widetilde{SW}^+: S^{H_1} \longrightarrow S^{H_2}$$

• Problem: S^{H_1} and S^{H_2} are both infinite dimensional

$\widetilde{SW}^+: S^{H_1} \longrightarrow S^{H_2}$

- Problem: S^{H_1} and S^{H_2} are both infinite dimensional
- In order to use homotopy theory, we want maps between finite dimensional spheres

•
$$\widetilde{SW} = L + C$$

L: linear Fredholm operator

• $\widetilde{SW} = L + C$

- L: linear Fredholm operator
- ► C: nonlinear operator bounded sets → compact sets

• $\widetilde{SW} = L + C$

- L: linear Fredholm operator
- ► C: nonlinear operator bounded sets → compact sets
- ▶ V_2 : finite dimensional subspace of H_2 with $V_2 \pitchfork Im(L)$

• $\widetilde{SW} = L + C$

- L: linear Fredholm operator
- ► C: nonlinear operator bounded sets → compact sets
- ▶ V_2 : finite dimensional subspace of H_2 with $V_2 \pitchfork Im(L)$

►
$$V_1 = L^{-1}(V_2)$$
Finite dimensional approximation

• $\widetilde{SW} = L + C$

- L: linear Fredholm operator
- ► C: nonlinear operator bounded sets → compact sets
- ▶ V_2 : finite dimensional subspace of H_2 with $V_2 \pitchfork Im(L)$

►
$$V_1 = L^{-1}(V_2)$$

$$\bullet \ \widetilde{SW}_{\mathsf{apr}} := L + \mathsf{Pr}_{V_2} \circ C : V_1 \longrightarrow V_2$$

1.
$$SW_{apr}(0) = 0$$

1.
$$\widetilde{SW}_{apr}(0) = 0$$

2.
$$SW_{apr}$$
 is a Pin(2)-equivariant map

1.
$$\widetilde{SW}_{apr}(0) = 0$$

2. \widetilde{SW}_{apr} is a Pin(2)-equivariant map
3.

1.
$$\widetilde{SW}_{apr}(0) = 0$$

- 2. \widetilde{SW}_{apr} is a Pin(2)-equivariant map
- 3. When V_2 is large enough,

 $\widetilde{\mathit{SW}}_{\mathsf{apr}}$ maps $\mathit{S}(\mathit{V}_1, \mathit{R}+1)$ to $\mathit{V}_2 \setminus \mathring{\mathcal{B}}(\mathit{V}_2, arepsilon)$

►
$$S^{V_1} = B(V_1, R+1)/S(V_1, R+1)$$

► $S^{V_2} = V_2/(V_2 \setminus \mathring{B}(V_2, \varepsilon))$

•
$$S^{V_1} = B(V_1, R+1)/S(V_1, R+1)$$

- $S^{V_2} = V_2/(V_2 \setminus \mathring{B}(V_2, \varepsilon))$
- S^{V_1} and S^{V_2} are **finite** dimensional representation spheres

•
$$S^{V_1} = B(V_1, R+1)/S(V_1, R+1)$$

- $\bullet S^{V_2} = V_2/(V_2 \setminus \mathring{B}(V_2, \varepsilon))$
- S^{V1} and S^{V2} are finite dimensional representation spheres
 SW_{apr} induces a Pin(2)-equivariant map
 - Siv apr models a r m(2)-equivariant map

$$\widetilde{SW}^+_{\mathsf{apr}}:S^{V_1}\longrightarrow S^{V_2}$$

 V₁ and V₂ are direct sums of two types of Pin(2)-representations

- V₁ and V₂ are direct sums of two types of Pin(2)-representations
 - ▶ III: 4-dimensional, Pin(2) acts via left multiplication

- V₁ and V₂ are direct sums of two types of Pin(2)-representations
 - ▶ \mathbb{H} : 4-dimensional, Pin(2) acts via left multiplication
 - \blacktriangleright $\mathbb{R}:$ 1-dimensional, pull back of the sign representation via $\text{Pin}(2)\twoheadrightarrow \mathbb{Z}/2$

- V₁ and V₂ are direct sums of two types of Pin(2)-representations
 - \mathbb{H} : 4-dimensional, Pin(2) acts via left multiplication
 - ▶ \mathbb{R} : 1-dimensional, pull back of the sign representation via $Pin(2) \twoheadrightarrow \mathbb{Z}/2$
- Pin(2)-fixed points of S^{V_1} and S^{V_2} are both $S^0 = \{0\} \cup \{\infty\}$

- V₁ and V₂ are direct sums of two types of Pin(2)-representations
 - \mathbb{H} : 4-dimensional, Pin(2) acts via left multiplication
 - \blacktriangleright $\widetilde{\mathbb{R}}:$ 1-dimensional, pull back of the sign representation via $\text{Pin}(2)\twoheadrightarrow \mathbb{Z}/2$
- ▶ Pin(2)-fixed points of S^{V1} and S^{V2} are both S⁰ = {0} ∪ {∞}
 ▶ SW⁺_{apr}(0) = 0, SW⁺_{apr}(∞) = ∞

- V₁ and V₂ are direct sums of two types of Pin(2)-representations
 - ▶ III: 4-dimensional, Pin(2) acts via left multiplication
 - \blacktriangleright $\widetilde{\mathbb{R}}:$ 1-dimensional, pull back of the sign representation via $\text{Pin}(2)\twoheadrightarrow \mathbb{Z}/2$
- Pin(2)-fixed points of S^{V1} and S^{V2} are both S⁰ = {0} ∪ {∞}
 SW⁺_{apr}(0) = 0, SW⁺_{apr}(∞) = ∞

Proposition (Furuta)

If the intersection form of the manifold M is $2pE_8 \oplus q \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then

$$V_1-V_2\cong p\mathbb{H}-q\widetilde{\mathbb{R}}$$

as virtual Pin(2)-representations.

Proposition (Furuta)

If the intersection form of the manifold M is $2pE_8 \oplus q \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then

$$V_1-V_2\cong p\mathbb{H}-q\widetilde{\mathbb{R}}$$

as virtual Pin(2)-representations.

The stable homotopy class of \widetilde{SW}^+_{apr} is called the Bauer–Furuta invariant BF(M)

Proposition (Furuta)

If the intersection form of the manifold M is $2pE_8 \oplus q \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then

$$V_1-V_2\cong p\mathbb{H}-q\widetilde{\mathbb{R}}$$

as virtual Pin(2)-representations.

The stable homotopy class of \widetilde{SW}_{apr}^+ is called the Bauer–Furuta invariant BF(M)

Furuta-Mahowald class

Definition

For $p \ge 1$, a Furuta–Mahowald class of level-(p, q) is a stable map

$$\gamma: S^{p\mathbb{H}} \longrightarrow S^{q\widetilde{\mathbb{R}}}$$

that fits into the diagram

$$\bullet \ a_{\mathbb{H}} : S^0 \longrightarrow S^{\mathbb{H}}$$
$$\bullet \ a_{\widetilde{\mathbb{R}}} : S^0 \longrightarrow S^{\widetilde{\mathbb{R}}}$$

Theorem (Furuta)

If the bilinear form $2pE_8 \oplus q\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$ is spin realizable, then there exists a level-(p, q) Furuta–Mahowald class.

Theorem (Furuta)

If the bilinear form $2pE_8 \oplus q\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$ is spin realizable, then there exists a level-(p, q) Furuta–Mahowald class.

Theorem (Furuta)

A level-(p, q) Furuta–Mahowald class exists only if $q \ge 2p + 1$.

What is the necessary and sufficient condition for the existence of a level-(p, q) Furuta–Mahowald class?

• The dream would be $q \ge 3p$ (this would directly imply the $\frac{11}{8}$ -conjecture)

- The dream would be $q \ge 3p$ (this would directly imply the $\frac{11}{8}$ -conjecture)
- However, Jones found a counter-example at p = 5

- The dream would be $q \ge 3p$ (this would directly imply the $\frac{11}{8}$ -conjecture)
- However, Jones found a counter-example at p = 5
- Subsequently, he made a conjecture

Jones' conjecture

Conjecture (Jones)

For $p \ge 2$, a level-(p, q) Furuta–Mahowald class exists if and only if

$$q \geq \begin{cases} 2p+2 \quad p \equiv 1 \pmod{4} \\ 2p+2 \quad p \equiv 2 \pmod{4} \\ 2p+3 \quad p \equiv 3 \pmod{4} \\ 2p+4 \quad p \equiv 0 \pmod{4}. \end{cases}$$

Jones' conjecture

Conjecture (Jones)

For $p \ge 2$, a level-(p, q) Furuta–Mahowald class exists if and only if

$$q \geq \begin{cases} 2p+2 \quad p \equiv 1 \pmod{4} \\ 2p+2 \quad p \equiv 2 \pmod{4} \\ 2p+3 \quad p \equiv 3 \pmod{4} \\ 2p+4 \quad p \equiv 0 \pmod{4}. \end{cases}$$

 Necessary condition: various progress has been made by Stolz, Schmidt and Minami

Jones' conjecture

Conjecture (Jones)

For $p \ge 2$, a level-(p, q) Furuta–Mahowald class exists if and only if

$$q \geq \begin{cases} 2p+2 \quad p \equiv 1 \pmod{4} \\ 2p+2 \quad p \equiv 2 \pmod{4} \\ 2p+3 \quad p \equiv 3 \pmod{4} \\ 2p+4 \quad p \equiv 0 \pmod{4}. \end{cases}$$

- Necessary condition: various progress has been made by Stolz, Schmidt and Minami
- Before our current work, the best result is given by Furuta–Kamitani

Theorem (Furuta-Kamitani)

For $p \ge 2$, a level-(p, q) Furuta–Mahowald class exists only if

$$q \geq \begin{cases} 2p+1 \quad p \equiv 1 \pmod{4} \\ 2p+2 \quad p \equiv 2 \pmod{4} \\ 2p+3 \quad p \equiv 3 \pmod{4} \\ 2p+3 \quad p \equiv 0 \pmod{4}. \end{cases}$$

What is the necessary and sufficient condition for the existence of a level-(p, q) Furuta–Mahowald class?

Much less is known about the sufficient condition

- Much less is known about the sufficient condition
- So far, the best result is by Schmidt: constructed a Furuta–Mahowald class of level-(5, 12)

- Much less is known about the sufficient condition
- So far, the best result is by Schmidt: constructed a Furuta–Mahowald class of level-(5, 12)
- We completely resolve this question
Main Theorem

Theorem (Hopkins-Lin-Shi-X.)

For $p \ge 2$, a level-(p, q) Furuta–Mahowald class exists if and only if

$$q \geq egin{cases} 2p+2 & p \equiv 1,2,5,6 \ 2p+3 & p \equiv 3,4,7 \ 2p+4 & p \equiv 0 \ \end{array} \pmod{8}.$$

Comparison of known results

Minimal q such that a level-(p, q) Furuta-Mahowald class exists:

Jones' conjecture	Our theorem	Furuta–Kamitani		
2p + 2	2p + 2	$\geq 2p+1$	$p \equiv 1$	(mod 8)
2p + 2	2p + 2	$\geq 2p+2$	$p \equiv 2$	(mod 8)
2p + 3	2 <i>p</i> + 3	$\geq 2p+3$	$p \equiv 3$	(mod 8)
2p + 4	2 <i>p</i> + 3	$\geq 2p+3$	$p \equiv 4$	(mod 8)
2p + 2	2p + 2	$\geq 2p+1$	$p \equiv 5$	(mod 8)
2p + 2	2p + 2	$\geq 2p+2$	$p \equiv 6$	(mod 8)
2p + 3	2p + 3	$\geq 2p+3$	$p \equiv 7$	(mod 8)
2 <i>p</i> + 4	2 <i>p</i> + 4	$\geq 2p+3$	$p \equiv 8$	(mod 8)

Comparison of known results

Minimal q such that a level-(p, q) Furuta-Mahowald class exists:

Jones' conjecture	Our theorem	Furuta–Kamitani		
2p + 2	2 <i>p</i> + 2	$\geq 2p+1$	$p\equiv 1$	(mod 8)
2p + 2	2 <i>p</i> + 2	$\geq 2p+2$	$p \equiv 2$	(mod 8)
2p + 3	2 <i>p</i> + 3	$\geq 2p+3$	$p \equiv 3$	(mod 8)
2 <i>p</i> + 4	2 <i>p</i> + 3	$\geq 2p+3$	$p \equiv 4$	(mod 8)
2p + 2	2p + 2	$\geq 2p+1$	$p \equiv 5$	(mod 8)
2p + 2	2p + 2	$\geq 2p+2$	$p \equiv 6$	(mod 8)
2p + 3	2 <i>p</i> + 3	$\geq 2p+3$	$p \equiv 7$	(mod 8)
2p + 4	2 <i>p</i> +4	$\geq 2p+3$	$p \equiv 8$	(mod 8)

The limit is $\frac{10}{8} + 4$

Corollary (Hopkins–Lin–Shi–X.)

Any closed simply connected smooth spin 4-manifold M that is not homeomorphic to S^4 , $S^2 \times S^2$, or K3 must satisfy the inequality

$$b_2(M) \geq \frac{10}{8}|\operatorname{sign}(M)| + 4.$$

The limit is $\frac{10}{8} + 4$

Corollary (Hopkins–Lin–Shi–X.)

Any closed simply connected smooth spin 4-manifold M that is not homeomorphic to S^4 , $S^2 \times S^2$, or K3 must satisfy the inequality

$$b_2(M) \geq \frac{10}{8}|\operatorname{sign}(M)| + 4.$$

In the sense of classifying all Furuta–Mahowald classes of level-(p, q), this is the **limit**

Furuta–Mahowald classes

► G: finite group or compact Lie group

- ► G: finite group or compact Lie group
- RO(G): real representation ring

- ► G: finite group or compact Lie group
- RO(G): real representation ring
- Classically, $\pi_n S^0 = [S^n, S^0]$

- ► G: finite group or compact Lie group
- RO(G): real representation ring
- Classically, $\pi_n S^0 = [S^n, S^0]$
- Equivariantly, $\pi_n^G S^0 = [S^n, S^0]^G$

- ► G: finite group or compact Lie group
- RO(G): real representation ring
- Classically, $\pi_n S^0 = [S^n, S^0]$
- Equivariantly, $\pi_n^G S^0 = [S^n, S^0]^G$
- Equivariantly, there are more spheres!

- G: finite group or compact Lie group
- RO(G): real representation ring
- Classically, $\pi_n S^0 = [S^n, S^0]$
- Equivariantly, $\pi_n^G S^0 = [S^n, S^0]^G$
- Equivariantly, there are more spheres!
 V: G-representation, π^G_VS⁰ = [S^V, S⁰]^G

- G: finite group or compact Lie group
- RO(G): real representation ring
- Classically, $\pi_n S^0 = [S^n, S^0]$
- Equivariantly, $\pi_n^G S^0 = [S^n, S^0]^G$
- Equivariantly, there are more spheres!
 V: G-representation, π^G_VS⁰ = [S^V, S⁰]^G
- ▶ $\pi_{\bigstar}^{G}S^{0}$: RO(G)-graded stable homotopy groups of spheres

There are many non-nilpotent elements in $\pi_{\bigstar}^{G}S^{0}!$

There are many non-nilpotent elements in $\pi^G_{\bigstar}S^0$!

1. $p: S^0 \longrightarrow S^0$

There are many non-nilpotent elements in $\pi_{\bigstar}^{G}S^{0}$!

1.
$$p: S^0 \longrightarrow S^0$$

2. $\Phi^G: \pi_0^G S^0 = [S^0, S^0]^G \longrightarrow [S^0, S^0] = \mathbb{Z}$

There are many non-nilpotent elements in $\pi^G_{\bigstar}S^0$!

1.
$$p: S^0 \longrightarrow S^0$$

2. $\Phi^G: \pi_0^G S^0 = [S^0, S^0]^G \longrightarrow [S^0, S^0] = \mathbb{Z}$
• Φ^G : geometric fixed point functor

There are many non-nilpotent elements in $\pi_{\bigstar}^{G}S^{0}$!

1.
$$p: S^0 \longrightarrow S^0$$

2. $\Phi^G: \pi_0^G S^0 = [S^0, S^0]^G \longrightarrow [S^0, S^0] = \mathbb{Z}$
• Φ^G : geometric fixed point functor
• Any preimage of $p: S^0 \longrightarrow S^0$ is non-nilpotent

There are many non-nilpotent elements in $\pi_{\bigstar}^{G}S^{0}$!

1.
$$p: S^0 \longrightarrow S^0$$

2. $\Phi^G: \pi_0^G S^0 = [S^0, S^0]^G \longrightarrow [S^0, S^0] = \mathbb{Z}$
• Φ^G : geometric fixed point functor
• Any preimage of $p: S^0 \longrightarrow S^0$ is non-nilpotent
3. Euler class $a_V: S^0 \longrightarrow S^V$

There are many non-nilpotent elements in $\pi^G_{\bigstar}S^0$!

- 1. $p: S^0 \longrightarrow S^0$ 2. $\Phi^G: \pi_0^G S^0 = [S^0, S^0]^G \longrightarrow [S^0, S^0] = \mathbb{Z}$ • Φ^G : geometric fixed point functor • Any preimage of $p: S^0 \longrightarrow S^0$ is non-nilpotent 3. Euler class $a_V: S^0 \longrightarrow S^V$
 - V: real nontrivial irreducible representation

There are many non-nilpotent elements in $\pi^G_{\bigstar}S^0$!

- 1. $p: S^0 \longrightarrow S^0$ 2. $\Phi^G: \pi_0^G S^0 = [S^0, S^0]^G \longrightarrow [S^0, S^0] = \mathbb{Z}$ $\bullet \Phi^G$: geometric fixed point functor \bullet Any preimage of $p: S^0 \longrightarrow S^0$ is non-nilpotent 3. Euler class $a_V: S^0 \longrightarrow S^V$ $\bullet V$: real nontrivial irreducible representation
 - stable class in $\pi^{G}_{-V}S^{0}$

►
$$\alpha, \beta \in \pi^{\mathsf{G}}_{\bigstar} S^{\mathsf{O}}$$

►
$$\alpha, \beta \in \pi^{\mathsf{G}}_{\bigstar} S^{\mathsf{O}}$$

Definition

The G-equivariant Mahowald invariant of α with respect to β is the following set of elements in $\pi^{G}_{\bigstar}S^{0}$:

$$M^{\mathcal{G}}_{\beta}(\alpha) = \{\gamma \, | \, \alpha = \gamma \beta^k, \ \alpha \text{ is not divisible by } \beta^{k+1} \}.$$

►
$$\alpha, \beta \in \pi^{\mathsf{G}}_{\bigstar} S^{\mathsf{O}}$$

Definition

The G-equivariant Mahowald invariant of α with respect to β is the following set of elements in $\pi_{\bigstar}^{G}S^{0}$:

$$M^{\mathcal{G}}_{\beta}(\alpha) = \{\gamma \, | \, \alpha = \gamma \beta^k, \ \alpha \text{ is not divisible by } \beta^{k+1} \}.$$

 \blacktriangleright We are interested in the case when $\alpha,\ \beta$ are non-nilpotent

►
$$\alpha, \beta \in \pi^{\mathsf{G}}_{\bigstar} S^{\mathsf{O}}$$

Definition

The G-equivariant Mahowald invariant of α with respect to β is the following set of elements in $\pi^{G}_{\bigstar}S^{0}$:

$$M^{\mathcal{G}}_{\beta}(\alpha) = \{\gamma \, | \, \alpha = \gamma \beta^k, \ \alpha \text{ is not divisible by } \beta^{k+1} \}.$$

- \blacktriangleright We are interested in the case when $\alpha,\ \beta$ are non-nilpotent
- $\blacktriangleright |M_{\beta}^{G}(\alpha)| = |\gamma| = |\alpha| k|\beta|$

►
$$\alpha, \beta \in \pi^{\mathsf{G}}_{\bigstar} S^{\mathsf{O}}$$

Definition

The G-equivariant Mahowald invariant of α with respect to β is the following set of elements in $\pi^{G}_{\bigstar}S^{0}$:

$$M^{\mathcal{G}}_{\beta}(\alpha) = \{\gamma \, | \, \alpha = \gamma \beta^k, \ \alpha \text{ is not divisible by } \beta^{k+1} \}.$$

 \blacktriangleright We are interested in the case when $\alpha,\ \beta$ are non-nilpotent

$$\blacktriangleright |M_{\beta}^{G}(\alpha)| = |\gamma| = |\alpha| - k|\beta|$$

►
$$\alpha, \beta \in \pi^{\mathsf{G}}_{\bigstar} S^{\mathsf{O}}$$

Definition

The G-equivariant Mahowald invariant of α with respect to β is the following set of elements in $\pi^{G}_{\bigstar}S^{0}$:

$$M^{\sf G}_{\beta}(\alpha) = \{\gamma \, | \, \alpha = \gamma \beta^k, \ \alpha \text{ is not divisible by } \beta^{k+1} \}.$$

We are interested in the case when α, β are non-nilpotent
 |M^G_β(α)| = |γ| = |α| − k|β|

$$\implies |M_{\beta}^{G}(\alpha)| - |\alpha| = -k|\beta|$$

• $G = C_2$, cyclic group of order 2

- $G = C_2$, cyclic group of order 2
- $RO(C_2) = \mathbb{Z} \oplus \mathbb{Z}$,

- $G = C_2$, cyclic group of order 2
- $RO(C_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
- $G = C_2$, cyclic group of order 2
- $RO(\mathcal{C}_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
 - ▶ 1: trivial representation

- $G = C_2$, cyclic group of order 2
- $RO(\mathcal{C}_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
 - ▶ 1: trivial representation
 - σ : sign representation

- $G = C_2$, cyclic group of order 2
- $RO(\mathcal{C}_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
 - ▶ 1: trivial representation
 - σ : sign representation
- The classical Borsuk–Ulam theorem follows from the following stable statement:

- $G = C_2$, cyclic group of order 2
- $RO(\mathcal{C}_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
 - 1: trivial representation
 - σ : sign representation
- The classical Borsuk–Ulam theorem follows from the following stable statement:

Theorem (Borsuk–Ulam)

For all $q \ge 0$, the $RO(C_2)$ -degree of $M_{a_{\sigma}}^{C_2}(a_{\sigma}^q)$ is zero.

- $G = C_2$, cyclic group of order 2
- $RO(\mathcal{C}_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
 - 1: trivial representation
 - σ: sign representation
- The classical Borsuk–Ulam theorem follows from the following stable statement:

Theorem (Borsuk-Ulam)

For all $q \ge 0$, the $RO(C_2)$ -degree of $M_{a_\sigma}^{C_2}(a_\sigma^q)$ is zero.

- $G = C_2$, cyclic group of order 2
- $RO(\mathcal{C}_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
 - 1: trivial representation
 - σ: sign representation
- The classical Borsuk–Ulam theorem follows from the following stable statement:

Theorem (Borsuk–Ulam)

For all $q \ge 0$, the $RO(C_2)$ -degree of $M_{a_{\sigma}}^{C_2}(a_{\sigma}^q)$ is zero.

•
$$\alpha \in \pi_n S^0$$

 \bullet consider the preimages of α

• $\alpha \in \pi_n S^0$

- \bullet consider the preimages of α
- Among all the elements in $M_{a_{\sigma}}^{C_2}((\Phi^{C_2})^{-1}\alpha)$, pick the one that has the highest degree in its σ -component

• $\alpha \in \pi_n S^0$

- \bullet consider the preimages of α
- Among all the elements in $M_{a_{\sigma}}^{C_2}((\Phi^{C_2})^{-1}\alpha)$, pick the one that has the highest degree in its σ -component
- Forget to the non-equivariant world \Longrightarrow classical Mahowald invariant ${\it M}(\alpha)$

Theorem (Landweber, Mahowald–Ravenel, Bruner–Greenlees)

For $q \ge 1$, the set $M(2^q)$ contains the first nonzero element of Adams filtration q in positive degree.

Theorem (Landweber, Mahowald-Ravenel, Bruner-Greenlees)

For $q \ge 1$, the set $M(2^q)$ contains the first nonzero element of Adams filtration q in positive degree. Moreover, the following 4-periodic result holds:

$$|M_{a_{\sigma}}^{C_{2}}((\Phi^{C_{2}})^{-1}2^{q})| = \begin{cases} (8k+1)\sigma & \text{if } q = 4k+1\\ (8k+2)\sigma & \text{if } q = 4k+2\\ (8k+3)\sigma & \text{if } q = 4k+3\\ (8k+7)\sigma & \text{if } q = 4k+4. \end{cases}$$

•
$$G = C_4$$
, cyclic group of order 4

- $G = C_4$, cyclic group of order 4
- $RO(C_4) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$,

- $G = C_4$, cyclic group of order 4
- $RO(C_4) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by 1, σ and λ

- $G = C_4$, cyclic group of order 4
- $RO(C_4) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by 1, σ and λ
 - ▶ 1: trivial representation

- $G = C_4$, cyclic group of order 4
- $RO(C_4) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by 1, σ and λ
 - 1: trivial representation
 - σ : sign representation

- $G = C_4$, cyclic group of order 4
- $RO(C_4) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by 1, σ and λ
 - 1: trivial representation
 - σ : sign representation
 - λ : 2-dimensional, rotation by 90°

- $G = C_4$, cyclic group of order 4
- $RO(C_4) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by 1, σ and λ
 - 1: trivial representation
 - σ : sign representation
 - λ : 2-dimensional, rotation by 90°
- Crabb, Schmidt, and Stolz studied the C₄-equivariant Mahowald invariant of powers of a_σ with respect to a_{2λ}

Theorem (Crabb, Schmidt, Stolz)

For $q \ge 1$, the following 8-periodic result holds:

$$|M_{a_{2\lambda}}^{C_4}(a_{\sigma}^q)| + q\sigma = \begin{cases} 8k\lambda & \text{if } q = 8k+1\\ 8k\lambda & \text{if } q = 8k+2\\ (8k+2)\lambda & \text{if } q = 8k+3\\ (8k+2)\lambda & \text{if } q = 8k+4\\ (8k+2)\lambda & \text{if } q = 8k+5\\ (8k+4)\lambda & \text{if } q = 8k+6\\ (8k+4)\lambda & \text{if } q = 8k+7\\ (8k+4)\lambda & \text{if } q = 8k+8. \end{cases}$$

Theorem (Crabb, Schmidt, Stolz)

For $q \ge 1$, the following 8-periodic result holds:

$$|M_{a_{2\lambda}}^{C_4}(a_{\sigma}^q)| + q\sigma = \begin{cases} 8k\lambda & \text{if } q = 8k+1\\ 8k\lambda & \text{if } q = 8k+2\\ (8k+2)\lambda & \text{if } q = 8k+3\\ (8k+2)\lambda & \text{if } q = 8k+4\\ (8k+2)\lambda & \text{if } q = 8k+5\\ (8k+4)\lambda & \text{if } q = 8k+6\\ (8k+4)\lambda & \text{if } q = 8k+7\\ (8k+4)\lambda & \text{if } q = 8k+8. \end{cases}$$

C₄ is a subgroup of Pin(2)

Theorem (Crabb, Schmidt, Stolz)

For $q \ge 1$, the following 8-periodic result holds:

$$|M_{a_{2\lambda}}^{C_4}(a_{\sigma}^q)| + q\sigma = \begin{cases} 8k\lambda & \text{if } q = 8k+1\\ 8k\lambda & \text{if } q = 8k+2\\ (8k+2)\lambda & \text{if } q = 8k+3\\ (8k+2)\lambda & \text{if } q = 8k+4\\ (8k+2)\lambda & \text{if } q = 8k+5\\ (8k+4)\lambda & \text{if } q = 8k+6\\ (8k+4)\lambda & \text{if } q = 8k+7\\ (8k+4)\lambda & \text{if } q = 8k+8. \end{cases}$$

- C₄ is a subgroup of Pin(2)
- Minami and Schmidt used this theorem to deduce the nonexistence of certain Furuta–Mahowald classes

 \blacktriangleright Irreducible representations $\mathbb H$ and $\widetilde{\mathbb R}$

•
$$G = Pin(2)$$

- \blacktriangleright Irreducible representations $\mathbb H$ and $\mathbb R$
- ▶ By definition, a level-(p, q) Furuta-Mahowald class exists if and only if the \mathbb{H} -degree of $|M_{a_{\mathbb{H}}}^{\mathsf{Pin}(2)}(a_{\widetilde{\mathbb{D}}}^{q})| + q\widetilde{\mathbb{R}}$ is $\geq p$

• G = Pin(2)

- \blacktriangleright Irreducible representations $\mathbb H$ and $\mathbb R$
- By definition, a level-(p, q) Furuta-Mahowald class exists if and only if the ℍ-degree of |M^{Pin(2)}_{a_ℍ}(a^q_D)| + q ℝ̃ is ≥ p
- ► To prove our main theorem, we analyze the Pin(2)-equivariant Mahowald invariants of powers of a_R with respect to a_H

Theorem (Hopkins-Lin-Shi-X.)

For $q \ge 4$, the following 16-periodic result holds:

$$\begin{split} |\mathcal{M}_{a_{\mathbb{H}}}^{\mathsf{Pin}(2)}(a_{\widetilde{\mathbb{R}}}^{q})| + q\widetilde{\mathbb{R}} \\ = \begin{cases} (8k-1)\mathbb{H} & \text{if } q = 16k+1 \\ (8k-1)\mathbb{H} & \text{if } q = 16k+2 \\ (8k-1)\mathbb{H} & \text{if } q = 16k+3 \\ (8k+1)\mathbb{H} & \text{if } q = 16k+4 \\ (8k+1)\mathbb{H} & \text{if } q = 16k+4 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+5 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+6 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+7 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+8 \\ \end{cases} \begin{pmatrix} 8k+6)\mathbb{H} & \text{if } q = 16k+15 \\ (8k+6)\mathbb{H} & \text{if } q = 16k+16. \end{cases} \end{split}$$

Theorem (Hopkins-Lin-Shi-X.)

For $q \ge 4$, the following 16-periodic result holds:

$$\begin{split} |\mathcal{M}_{a_{\mathbb{H}}}^{\mathsf{Pin}(2)}(a_{\mathbb{R}}^{q})| + q\widetilde{\mathbb{R}} \\ = \begin{cases} (8k-1)\mathbb{H} & \text{if } q = 16k+1 \\ (8k-1)\mathbb{H} & \text{if } q = 16k+2 \\ (8k-1)\mathbb{H} & \text{if } q = 16k+3 \\ (8k+1)\mathbb{H} & \text{if } q = 16k+4 \\ (8k+1)\mathbb{H} & \text{if } q = 16k+4 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+5 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+6 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+7 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+8 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+8 \\ \end{cases} \begin{pmatrix} 8k+6)\mathbb{H} & \text{if } q = 16k+15 \\ (8k+6)\mathbb{H} & \text{if } q = 16k+16. \\ \end{split}$$

Theorem (Hopkins-Lin-Shi-X.)

For $q \ge 4$, the following 16-periodic result holds:

$$|M_{a_{\mathbb{H}}}^{\operatorname{Pin}(2)}(a_{\widetilde{\mathbb{R}}}^{q})| + q\widetilde{\mathbb{R}}$$

$$= \begin{cases} (8k-1)\mathbb{H} & \text{if } q = 16k+1 \\ (8k-1)\mathbb{H} & \text{if } q = 16k+2 \\ (8k-1)\mathbb{H} & \text{if } q = 16k+3 \\ (8k+1)\mathbb{H} & \text{if } q = 16k+3 \\ (8k+1)\mathbb{H} & \text{if } q = 16k+4 \\ (8k+1)\mathbb{H} & \text{if } q = 16k+5 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+6 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+7 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+8 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+8 \\ (8k+6)\mathbb{H} & \text{if } q = 16k+15 \\ (8k+6)\mathbb{H} & \text{if } q = 16k+16. \end{cases}$$

▶ Had it been (8k + 3) III instead, our result would be 8-periodic

Theorem (Hopkins-Lin-Shi-X.)

For $q \ge 4$, the following 16-periodic result holds:

$$\begin{split} |M_{a_{\mathbb{H}}}^{\mathsf{Pin}(2)}(a_{\widetilde{\mathbb{R}}}^{q})| + q\widetilde{\mathbb{R}} \\ = \begin{cases} (8k-1)\mathbb{H} & \text{if } q = 16k+1 \\ (8k-1)\mathbb{H} & \text{if } q = 16k+2 \\ (8k-1)\mathbb{H} & \text{if } q = 16k+3 \\ (8k+1)\mathbb{H} & \text{if } q = 16k+3 \\ (8k+1)\mathbb{H} & \text{if } q = 16k+4 \\ (8k+1)\mathbb{H} & \text{if } q = 16k+5 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+6 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+7 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+8 \\ (8k+2)\mathbb{H} & \text{if } q = 16k+8 \\ \end{cases} \begin{pmatrix} 8k+6)\mathbb{H} & \text{if } q = 16k+15 \\ (8k+6)\mathbb{H} & \text{if } q = 16k+16. \end{cases}$$

▶ Had it been (8k + 3) III instead, our result would be 8-periodic

Jone's conjecture would be true

•
$$G = C_2$$
, cyclic group of order 2

- $G = C_2$, cyclic group of order 2
- $RO(C_2) = \mathbb{Z} \oplus \mathbb{Z}$,

- $G = C_2$, cyclic group of order 2
- $RO(C_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ

- $G = C_2$, cyclic group of order 2
- $RO(\mathcal{C}_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
 - ▶ 1: trivial representation
- $G = C_2$, cyclic group of order 2
- $RO(\mathcal{C}_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
 - ▶ 1: trivial representation
 - σ : sign representation

- $G = C_2$, cyclic group of order 2
- $RO(\mathcal{C}_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
 - 1: trivial representation
 - σ : sign representation

- $G = C_2$, cyclic group of order 2
- $RO(\mathcal{C}_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
 - 1: trivial representation
 - σ : sign representation

C₂-equivariant map

- $G = C_2$, cyclic group of order 2
- $RO(\mathcal{C}_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
 - 1: trivial representation
 - σ : sign representation

► C₂-equivariant map

▶ $[S^0, S^0]^{C_2} = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and χ

- $G = C_2$, cyclic group of order 2
- $RO(\mathcal{C}_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
 - 1: trivial representation
 - σ : sign representation

- ► C₂-equivariant map
- $[S^0,S^0]^{\mathcal{C}_2}=\mathbb{Z}\oplus\mathbb{Z}$, generated by 1 and χ

•
$$\Phi^{C_2}(1+\chi)=2$$

- $G = C_2$, cyclic group of order 2
- $RO(\mathcal{C}_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
 - 1: trivial representation
 - σ : sign representation

- ► C₂-equivariant map
- $[S^0,S^0]^{\mathcal{C}_2}=\mathbb{Z}\oplus\mathbb{Z}$, generated by 1 and χ

$$\bullet \Phi^{C_2}(1+\chi) = 2$$

▶ $1 + \chi$ is non-nilpotent

- $G = C_2$, cyclic group of order 2
- $RO(\mathcal{C}_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
 - 1: trivial representation
 - σ : sign representation

- ► C₂-equivariant map
- $[S^0,S^0]^{\mathcal{C}_2}=\mathbb{Z}\oplus\mathbb{Z}$, generated by 1 and χ

$$\bullet \Phi^{C_2}(1+\chi) = 2$$

▶ $1 + \chi$ is non-nilpotent

• Question:
$$|M_{a_{\sigma}}^{C_2}((1+\chi)^q)| = ?$$

- $G = C_2$, cyclic group of order 2
- $RO(\mathcal{C}_2) = \mathbb{Z} \oplus \mathbb{Z}$, generated by 1 and σ
 - 1: trivial representation
 - σ : sign representation

- C₂-equivariant map
- $[S^0,S^0]^{\mathcal{C}_2}=\mathbb{Z}\oplus\mathbb{Z}$, generated by 1 and χ

•
$$\Phi^{C_2}(1+\chi) = 2$$

- ▶ $1 + \chi$ is non-nilpotent
- Question: $|M_{a_{\sigma}}^{C_2}((1+\chi)^q)| = ?$

► C_2 -action on $BS^1 = \mathbb{C}P^\infty$: $(z_1, z_2, z_3, z_4, \dots, z_{2n-1}, z_{2n}) \mapsto$ $(-\bar{z}_2, \bar{z}_1, -\bar{z}_4, \bar{z}_3, \dots, -\bar{z}_{2n}, \bar{z}_{2n-1})$

•
$$C_2$$
-action on $BS^1 = \mathbb{C}P^{\infty}$:
 $(z_1, z_2, z_3, z_4, \dots, z_{2n-1}, z_{2n}) \mapsto$
 $(-\overline{z}_2, \overline{z}_1, -\overline{z}_4, \overline{z}_3, \dots, -\overline{z}_{2n}, \overline{z}_{2n-1})$

• $B \operatorname{Pin}(2) = BS^1/C_2$ -action

•
$$C_2$$
-action on $BS^1 = \mathbb{C}P^{\infty}$:
 $(z_1, z_2, z_3, z_4, \dots, z_{2n-1}, z_{2n}) \mapsto$
 $(-\bar{z}_2, \bar{z}_1, -\bar{z}_4, \bar{z}_3, \dots, -\bar{z}_{2n}, \bar{z}_{2n-1})$

• $B \operatorname{Pin}(2) = BS^1/C_2$ -action

► λ : line bundle associated to the principal bundle $C_2 \hookrightarrow BS^1 \longrightarrow B \operatorname{Pin}(2)$

- ► C_2 -action on $BS^1 = \mathbb{C}P^\infty$: $(z_1, z_2, z_3, z_4, \dots, z_{2n-1}, z_{2n}) \mapsto$ $(-\bar{z}_2, \bar{z}_1, -\bar{z}_4, \bar{z}_3, \dots, -\bar{z}_{2n}, \bar{z}_{2n-1})$
- $B \operatorname{Pin}(2) = BS^1/C_2$ -action
- ► λ : line bundle associated to the principal bundle $C_2 \hookrightarrow BS^1 \longrightarrow B \operatorname{Pin}(2)$

•
$$X(m) := \text{Thom}(B \operatorname{Pin}(2), -m\lambda)$$

- ► C_2 -action on $BS^1 = \mathbb{C}P^\infty$: $(z_1, z_2, z_3, z_4, \dots, z_{2n-1}, z_{2n}) \mapsto$ $(-\overline{z}_2, \overline{z}_1, -\overline{z}_4, \overline{z}_3, \dots, -\overline{z}_{2n}, \overline{z}_{2n-1})$
- $B \operatorname{Pin}(2) = BS^1/C_2$ -action
- ► λ : line bundle associated to the principal bundle $C_2 \hookrightarrow BS^1 \longrightarrow B \operatorname{Pin}(2)$
- $X(m) := \text{Thom}(B \operatorname{Pin}(2), -m\lambda)$
 - inclusion of bundles $m\lambda \hookrightarrow (m+1)\lambda$ $\Longrightarrow X(m+1) \longrightarrow X(m)$

•
$$C_2$$
-action on $BS^1 = \mathbb{C}P^{\infty}$:
 $(z_1, z_2, z_3, z_4, \dots, z_{2n-1}, z_{2n}) \mapsto$
 $(-\bar{z}_2, \bar{z}_1, -\bar{z}_4, \bar{z}_3, \dots, -\bar{z}_{2n}, \bar{z}_{2n-1})$

• $B \operatorname{Pin}(2) = BS^1/C_2$ -action

► λ : line bundle associated to the principal bundle $C_2 \hookrightarrow BS^1 \longrightarrow B \operatorname{Pin}(2)$

•
$$X(m) := \text{Thom}(B \operatorname{Pin}(2), -m\lambda)$$

• inclusion of bundles
$$m\lambda \hookrightarrow (m+1)\lambda$$

 $\Longrightarrow X(m+1) \longrightarrow X(m)$
 $\Longrightarrow X(m+1) \longrightarrow X(m) \longrightarrow \Sigma^{-m} \mathbb{C}P^{\infty}$

•
$$C_2$$
-action on $BS^1 = \mathbb{C}P^{\infty}$:
 $(z_1, z_2, z_3, z_4, \dots, z_{2n-1}, z_{2n}) \mapsto$
 $(-\bar{z}_2, \bar{z}_1, -\bar{z}_4, \bar{z}_3, \dots, -\bar{z}_{2n}, \bar{z}_{2n-1})$

• $B \operatorname{Pin}(2) = BS^1/C_2$ -action

► λ : line bundle associated to the principal bundle $C_2 \hookrightarrow BS^1 \longrightarrow B \operatorname{Pin}(2)$

•
$$X(m) := \text{Thom}(B \operatorname{Pin}(2), -m\lambda)$$

• inclusion of bundles
$$m\lambda \hookrightarrow (m+1)\lambda$$

 $\Longrightarrow X(m+1) \longrightarrow X(m)$
 $\Longrightarrow X(m+1) \longrightarrow X(m) \longrightarrow \Sigma^{-m} \mathbb{C}P^{\infty}$

• fiber bundle $\mathbb{R}P^2 \hookrightarrow B \operatorname{Pin}(2) \longrightarrow \mathbb{H}P^{\infty}$

•
$$C_2$$
-action on $BS^1 = \mathbb{C}P^{\infty}$:
 $(z_1, z_2, z_3, z_4, \dots, z_{2n-1}, z_{2n}) \mapsto$
 $(-\bar{z}_2, \bar{z}_1, -\bar{z}_4, \bar{z}_3, \dots, -\bar{z}_{2n}, \bar{z}_{2n-1})$

• $B \operatorname{Pin}(2) = BS^1/C_2$ -action

► λ : line bundle associated to the principal bundle $C_2 \hookrightarrow BS^1 \longrightarrow B \operatorname{Pin}(2)$

•
$$X(m) := \text{Thom}(B \operatorname{Pin}(2), -m\lambda)$$

• inclusion of bundles
$$m\lambda \hookrightarrow (m+1)\lambda$$

 $\Longrightarrow X(m+1) \longrightarrow X(m)$
 $\Longrightarrow X(m+1) \longrightarrow X(m) \longrightarrow \Sigma^{-m} \mathbb{C}P^{\infty}$

 Fiber bundle ℝP² → B Pin(2) → ℍP[∞] gives cell structures on B Pin(2) and X(m).

Consider the diagram

Consider the diagram

Consider the diagram

•
$$g$$
 is zero \iff

▶ g is zero
$$\iff$$

 $S^{-q\widetilde{\mathbb{R}}} \land S(p\mathbb{H})_+ \to S(p\mathbb{H})_+ \stackrel{f}{\longrightarrow} S^0$ is zero

g is zero ⇐⇒

$$S^{-q\widetilde{\mathbb{R}}} \land S(p\mathbb{H})_+ \to S(p\mathbb{H})_+ \xrightarrow{f} S^0$$
 is zero
 $S^{-q\widetilde{\mathbb{R}}} \land S(p\mathbb{H})_+$: Pin(2)-free

► S⁰: Pin(2) acts trivially

▶ g is zero
$$\iff$$

 $S^{-q\widetilde{\mathbb{R}}} \land S(p\mathbb{H})_+ \to S(p\mathbb{H})_+ \xrightarrow{f} S^0$ is zero
 $S^{-q\widetilde{\mathbb{R}}} \land S(p\mathbb{H})_+ \xrightarrow{F} S^0$ is zero

•
$$S^{-q\mathbb{R}} \wedge S(p\mathbb{H})_+$$
: Pin(2)-free

- S⁰: Pin(2) acts trivially
- g is zero \iff the nonequivariant map is zero

$$(S^{-q\mathbb{\widetilde{R}}} \wedge S(p\mathbb{H})_+)_{h\operatorname{Pin}(2)} \longrightarrow (S(p\mathbb{H})_+)_{h\operatorname{Pin}(2)} \longrightarrow S^0$$

▶ Short exact sequence $1 \longrightarrow S^1 \longrightarrow Pin(2) \longrightarrow C_2 \longrightarrow 1$

• Short exact sequence

$$1 \longrightarrow S^1 \longrightarrow Pin(2) \longrightarrow C_2 \longrightarrow 1$$

$$(S^{-q\widetilde{\mathbb{R}}} \wedge S(p\mathbb{H})_+)_{h \operatorname{Pin}(2)} =$$

• Short exact sequence $1 \longrightarrow S^1 \longrightarrow Pin(2) \longrightarrow C_2 \longrightarrow 1$

$$(S^{-q\widetilde{\mathbb{R}}} \wedge S(p\mathbb{H})_{+})_{h \operatorname{Pin}(2)} = \left((S^{-q\widetilde{\mathbb{R}}} \wedge S(p\mathbb{H})_{+})_{hS^{1}} \right)_{hC_{2}}$$

• Short exact sequence $1 \longrightarrow S^1 \longrightarrow Pin(2) \longrightarrow C_2 \longrightarrow 1$

$$\begin{aligned} (S^{-q\widetilde{\mathbb{R}}} \wedge S(p\mathbb{H})_{+})_{h \operatorname{Pin}(2)} &= \left((S^{-q\widetilde{\mathbb{R}}} \wedge S(p\mathbb{H})_{+})_{hS^{1}} \right)_{hC_{2}} \\ &= \left(S^{-q\sigma} \wedge \mathbb{C}P^{2p-1}_{+} \right)_{hC_{2}} \end{aligned}$$
Mahowald line

• Short exact sequence $1 \longrightarrow S^1 \longrightarrow Pin(2) \longrightarrow C_2 \longrightarrow 1$

$$(S^{-q\widetilde{\mathbb{R}}} \wedge S(p\mathbb{H})_{+})_{h \operatorname{Pin}(2)} = \left((S^{-q\widetilde{\mathbb{R}}} \wedge S(p\mathbb{H})_{+})_{hS^{1}} \right)_{hC_{2}}$$
$$= \left(S^{-q\sigma} \wedge \mathbb{C}P^{2p-1}_{+} \right)_{hC_{2}}$$
$$= (4p-2-q) \text{-skeleton of } X(q)$$

Mahowald line

(

• Short exact sequence $1 \longrightarrow S^1 \longrightarrow Pin(2) \longrightarrow C_2 \longrightarrow 1$

$$S^{-q\widetilde{\mathbb{R}}} \wedge S(p\mathbb{H})_{+})_{h \operatorname{Pin}(2)} = \left((S^{-q\widetilde{\mathbb{R}}} \wedge S(p\mathbb{H})_{+})_{hS^{1}} \right)_{hC_{2}}$$
$$= \left(S^{-q\sigma} \wedge \mathbb{C}P^{2p-1}_{+} \right)_{hC_{2}}$$
$$= (4p - 2 - q) \text{-skeleton of } X(q)$$

Mahowald line

• Short exact sequence $1 \longrightarrow S^1 \longrightarrow Pin(2) \longrightarrow C_2 \longrightarrow 1$

$$(S^{-q\widetilde{\mathbb{R}}} \wedge S(p\mathbb{H})_{+})_{h \operatorname{Pin}(2)} = \left((S^{-q\widetilde{\mathbb{R}}} \wedge S(p\mathbb{H})_{+})_{hS^{1}} \right)_{hC_{2}}$$
$$= \left(S^{-q\sigma} \wedge \mathbb{C}P^{2p-1}_{+} \right)_{hC_{2}}$$
$$= (4p - 2 - q) \text{-skeleton of } X(q)$$

Lower bound

Classical Adams spectral sequence

Some relations in π_*S^0

- ► π₄ = 0
- ► $\pi_5 = 0$
- ► $\pi_{12} = 0$
- ► $\pi_{13} = 0$
- ▶ $\eta \cdot \pi_6 = 0$
- ► $\pi_8 \cdot \eta^2 = 0$

Now we start the induction

Intuition for a technical step

Another mini-movie

Thank you!