
The Geography problem on 4-manifolds: 10
8 + 4

Zhouli Xu

(Joint with Michael Hopkins, Jianfeng Lin,
and XiaoLin Danny Shi)

Massachusetts Institute of Technology

March 3, 2020



Question

How to classify closed simply connected topological 4-manifolds?

I N: closed simply connected topological 4-manifold.
I Two important invariants of N:

1. The intersection form QN : symmetric unimodular bilinear form
over Z, given by

QN : H2(N;Z)× H2(N;Z) −→ Z,
(a, b) 7−→ 〈a ∪ b, [N]〉.

2. The Kirby–Siebenmann invariant ks(N) ∈ H4(N;Z/2) = Z/2.
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Theorem (Freedman)

M, N: closed simply connected topological 4-manifolds

1. M is homeomorphic to N
⇐⇒ QM

∼= QN and ks(M) = ks(N)

2. Bilinear form Q: not even
=⇒ any (Q, Z/2) can be realized

3. Bilinear form Q: even

=⇒ only
(
Q, sign(Q)

8 mod 2
)

can be realized
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Smooth category

Question

How to classify closed simply connected smooth 4-manifolds?

I Whitehead, Munkres, Hirsch, Kirby–Siebenmann:
M smooth =⇒ ks(M) = 0

I + Freedman’s theorem:

Theorem

Two closed simply connected smooth 4-manifolds are
homeomorphic if and only if they have isomorphic intersection
forms.
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Two questions

Q: symmetric unimodular bilinear form

Question (Geography Problem)

Can Q be realized as the intersection form of a closed simply
connected smooth 4-manifold?

Suppose that the answer to the Geography Problem is yes

Question (Botany Problem)

How many non-diffeomorphic 4-manifolds can realize Q?
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Q: definite

Q can be realized ⇐⇒ Q ∼= ±I

Completely answers the Geography Problem when Q is definite
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Indefinite forms

indefinite

not even even

Theorem (Hasse–Minkowski)

1. Q: not even
Q ∼= diagonal form with entries ±1.

2. Q: even

Q ∼= kE8 ⊕ q

(
0 1
1 0

)
for some k ∈ Z and q ∈ N.
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Fact

Q: not even
Q can be realized by a connected sum of copies of CP2 and CP2
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Q

definite indefinite

not even even

I Q ∼= kE8 ⊕ q

(
0 1
1 0

)
, k ∈ Z, q ∈ N

I Wu’s formula: the closed simply connected 4-manifold M
realizing Q must be spin

I Rokhlin’s theorem: k = 2p

I By reversing the orientation of M, may assume k ≥ 0



Q

definite indefinite

not even even

I Q ∼= kE8 ⊕ q

(
0 1
1 0

)
, k ∈ Z, q ∈ N

I Wu’s formula: the closed simply connected 4-manifold M
realizing Q must be spin

I Rokhlin’s theorem: k = 2p

I By reversing the orientation of M, may assume k ≥ 0



Q

definite indefinite

not even even

I Q ∼= kE8 ⊕ q

(
0 1
1 0

)
, k ∈ Z, q ∈ N

I Wu’s formula: the closed simply connected 4-manifold M
realizing Q must be spin

I Rokhlin’s theorem: k = 2p

I By reversing the orientation of M, may assume k ≥ 0



Q

definite indefinite

not even even

I Q ∼= kE8 ⊕ q

(
0 1
1 0

)
, k ∈ Z, q ∈ N

I Wu’s formula: the closed simply connected 4-manifold M
realizing Q must be spin

I Rokhlin’s theorem: k = 2p

I By reversing the orientation of M, may assume k ≥ 0



Q

definite indefinite

not even even

I Q ∼= kE8 ⊕ q

(
0 1
1 0

)
, k ∈ Z, q ∈ N

I Wu’s formula: the closed simply connected 4-manifold M
realizing Q must be spin

I Rokhlin’s theorem: k = 2p

I By reversing the orientation of M, may assume k ≥ 0



The 11
8 -Conjecture

Conjecture (version 1)

The form

2pE8 ⊕ q

(
0 1
1 0

)
can be realized as the intersection form of a closed smooth spin
4-manifold if and only if q ≥ 3p.

I The “if” part is straightforward

I If q ≥ 3p, the form can be realized by

#
p
K3 #

q−3p
(S2 × S2)

I K3: 2E8 ⊕ 3

(
0 1
1 0

)
I S2 × S2:

(
0 1
1 0

)
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The 11
8 -Conjecture

The “only if” part can be reformulated as follows:

Conjecture (version 2)

Any closed smooth spin 4-manifold M must satisfy the inequality

b2(M) ≥ 11

8
| sign(M)|,

where b2(M) and sign(M) are the second Betti number and the
signature of M, respectively.



Progress on the 11
8 -Conjecture

I p = 1, assuming H1(M;Z) has no 2-torsions: Donaldson
(anti-self-dual Yang–Mills equations)

I p = 1, assuming H1(M;Z) has no 2-torsions: Kronheimer
(Pin(2)-symmetries in Seiberg–Witten theory)

I Furuta’s idea: combined Kronheimer’s approach with “finite
dimensional approximation”

I Attacked the conjecture by using Pin(2)-equivariant stable
homotopy theory
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Furuta’s 10
8 -Theorem

Definition

Q: even

Q is spin realizable if it can be realized by a closed smooth spin
4-manifold.

Theorem (Furuta)

For p ≥ 1, the bilinear form

2pE8 ⊕ q

(
0 1
1 0

)
is spin realizable only if q ≥ 2p + 1.
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Furuta’s 10
8 -Theorem

Corollary (Furuta)

Any closed simply connected smooth spin 4-manifold M that is not
homeomorphic to S4 must satisfy the inequality

b2(M) ≥ 10

8
| sign(M)|+ 2.

The inequality of manifolds with boundaries are proved by
Manolescu, and Furuta–Li.
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I Furuta proved his theorem by studying a problem in
Pin(2)-equivariant stable homotopy theory

I We give a complete answer to Furuta’s problem

I Here is a consequence of our main theorem:

Theorem (Hopkins–Lin–Shi–X.)

For p ≥ 2, if the bilinear form 2pE8 ⊕ q

(
0 1
1 0

)
is spin realizable,

then

q ≥


2p + 2 p ≡ 1, 2, 5, 6 (mod 8)

2p + 3 p ≡ 3, 4, 7 (mod 8)

2p + 4 p ≡ 0 (mod 8).
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The limit is 10
8 + 4

Corollary (Hopkins–Lin–Shi–X.)

Any closed simply connected smooth spin 4-manifold M that is not
homeomorphic to S4, S2 × S2, or K3 must satisfy the inequality

b2(M) ≥ 10

8
| sign(M)|+ 4.

Furthermore, we show this is the limit of the current known
approaches to the 11

8 -Conjecture
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Seiberg–Witten theory

I M: smooth spin 4-manifold with b1(M) = 0

I Seiberg–Witten equations: a set of first order, nonlinear,
elliptic PDEs 

Dφ+ ρ(a)φ = 0
d+a− ρ−1(φφ∗)0 = 0

d∗a = 0

I S̃W : Γ(S+)⊕ iΩ1(M) −→ Γ(S−)⊕ iΩ2
+(M)⊕ iΩ0(M)/R

I Sobolev completion =⇒ S̃W : H1 −→ H2 (Seiberg–Witten
map)
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Furuta’s idea

I S̃W : H1 −→ H2 satisfies three properties:

1. S̃W (0) = 0

2. S̃W is a Pin(2)-equivariant map
Pin(2) := {e iθ} ∪ {je iθ} ⊂ H

3. S̃W maps H1 \ B̊(H1,R) to H2 \ B̊(H2, ε)

S̃W

H1 H2

R

ε

I SH1 = H1/(H1 \ B̊(H1,R))

I SH2 = H2/(H2 \ B̊(H2, ε))

I S̃W induces a Pin(2)-equivariant map between spheres

S̃W
+

: SH1 −→ SH2
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I Problem: SH1 and SH2 are both infinite dimensional

I In order to use homotopy theory, we want maps between finite
dimensional spheres
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Finite dimensional approximation

I S̃W = L + C

I L: linear Fredholm operator
I C : nonlinear operator

bounded sets 7−→ compact sets

I V2: finite dimensional subspace of H2 with V2 t Im(L)

I V1 = L−1(V2)

I S̃W apr := L + PrV2 ◦ C : V1 −→ V2
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I SV1 = B(V1,R + 1)/S(V1,R + 1)
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I SV1 and SV2 are finite dimensional representation spheres
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Proposition (Furuta)

If the intersection form of the manifold M is 2pE8 ⊕ q
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,

then
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∼= pH− qR̃

as virtual Pin(2)-representations.

The stable homotopy class of S̃W
+

apr is called the Bauer–Furuta
invariant BF (M)
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Furuta–Mahowald class

Definition

For p ≥ 1, a Furuta–Mahowald class of level-(p, q) is a stable map

γ : SpH −→ SqR̃

that fits into the diagram

SpH

S0 SqR̃

γ

aq
R̃

apH

I aH : S0 −→ SH

I aR̃ : S0 −→ S R̃



Theorem (Furuta)

If the bilinear form 2pE8 ⊕ q

(
0 1
1 0

)
is spin realizable, then there

exists a level-(p, q) Furuta–Mahowald class.

Theorem (Furuta)

A level-(p, q) Furuta–Mahowald class exists only if q ≥ 2p + 1.
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What is the necessary and sufficient condition for the existence of
a level-(p, q) Furuta–Mahowald class?

I The dream would be q ≥ 3p (this would directly imply the
11
8 -conjecture)

I However, Jones found a counter-example at p = 5

I Subsequently, he made a conjecture
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Jones’ conjecture

Conjecture (Jones)

For p ≥ 2, a level-(p, q) Furuta–Mahowald class exists if and only
if

q ≥


2p + 2 p ≡ 1 (mod 4)

2p + 2 p ≡ 2 (mod 4)

2p + 3 p ≡ 3 (mod 4)

2p + 4 p ≡ 0 (mod 4).

I Necessary condition: various progress has been made by Stolz,
Schmidt and Minami

I Before our current work, the best result is given by
Furuta–Kamitani
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Theorem (Furuta–Kamitani)

For p ≥ 2, a level-(p, q) Furuta–Mahowald class exists only if

q ≥


2p + 1 p ≡ 1 (mod 4)

2p + 2 p ≡ 2 (mod 4)

2p + 3 p ≡ 3 (mod 4).

2p + 3 p ≡ 0 (mod 4).



Question

What is the necessary and sufficient condition for the existence of
a level-(p, q) Furuta–Mahowald class?

I Much less is known about the sufficient condition

I So far, the best result is by Schmidt: constructed a
Furuta–Mahowald class of level-(5, 12)

I We completely resolve this question
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Main Theorem

Theorem (Hopkins–Lin–Shi–X.)

For p ≥ 2, a level-(p, q) Furuta–Mahowald class exists if and only
if

q ≥


2p + 2 p ≡ 1, 2, 5, 6 (mod 8)

2p + 3 p ≡ 3, 4, 7 (mod 8)

2p + 4 p ≡ 0 (mod 8).



Comparison of known results

Minimal q such that a level-(p, q) Furuta–Mahowald class exists:

Jones’ conjecture Our theorem Furuta–Kamitani
2p + 2 2p + 2 ≥ 2p + 1 p ≡ 1 (mod 8)
2p + 2 2p + 2 ≥ 2p + 2 p ≡ 2 (mod 8)
2p + 3 2p + 3 ≥ 2p + 3 p ≡ 3 (mod 8)
2p + 4 2p + 3 ≥ 2p + 3 p ≡ 4 (mod 8)
2p + 2 2p + 2 ≥ 2p + 1 p ≡ 5 (mod 8)
2p + 2 2p + 2 ≥ 2p + 2 p ≡ 6 (mod 8)
2p + 3 2p + 3 ≥ 2p + 3 p ≡ 7 (mod 8)
2p + 4 2p + 4 ≥ 2p + 3 p ≡ 8 (mod 8)
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The limit is 10
8 + 4

Corollary (Hopkins–Lin–Shi–X.)

Any closed simply connected smooth spin 4-manifold M that is not
homeomorphic to S4, S2 × S2, or K3 must satisfy the inequality

b2(M) ≥ 10

8
| sign(M)|+ 4.

In the sense of classifying all Furuta–Mahowald classes of
level-(p, q), this is the limit
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RO(G )-graded homotopy groups

I G : finite group or compact Lie group

I RO(G ): real representation ring

I Classically, πnS
0 = [Sn,S0]

I Equivariantly, πGn S
0 = [Sn,S0]G

I Equivariantly, there are more spheres!
V : G -representation, πGV S

0 = [SV , S0]G

I πGFS
0: RO(G )-graded stable homotopy groups of spheres
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Non-nilpotent elements in πG
FS

0

There are many non-nilpotent elements in πGFS
0!

1. p : S0 −→ S0

2. ΦG : πG0 S0 = [S0, S0]G −→ [S0,S0] = Z
I ΦG : geometric fixed point functor
I Any preimage of p : S0 −→ S0 is non-nilpotent

3. Euler class aV : S0 −→ SV

I V : real nontrivial irreducible representation
I stable class in πG

−VS
0
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Equivariant Mahowald invariant

I α, β ∈ πGFS0

Definition

The G -equivariant Mahowald invariant of α with respect to β
is the following set of elements in πGFS

0:

MG
β (α) = {γ |α = γβk , α is not divisible by βk+1}.

I We are interested in the case when α, β are non-nilpotent

I |MG
β (α)| = |γ| = |α| − k|β|

S−k|β|

S0 S−|α|

∃γ

α

βk

S−(k+1)|β|

S0 S−|α|

@γ′

α

βk+1
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C2-equivariant Mahowald invariant

I G = C2, cyclic group of order 2

I RO(C2) = Z⊕ Z, generated by 1 and σ
I 1: trivial representation
I σ: sign representation

I The classical Borsuk–Ulam theorem follows from the following
stable statement:

Theorem (Borsuk–Ulam)

For all q ≥ 0, the RO(C2)-degree of MC2
aσ (aqσ) is zero.
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Classical Mahowald invariant – Bruner-Greenlees
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• α ∈ πnS0
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• Among all the elements in MC2

aσ ((ΦC2)−1α), pick the one that has
the highest degree in its σ-component
• Forget to the non-equivariant world =⇒ classical Mahowald in-
variant M(α)
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Theorem (Landweber, Mahowald–Ravenel, Bruner–Greenlees)

For q ≥ 1, the set M(2q) contains the first nonzero element of
Adams filtration q in positive degree.

Moreover, the following 4-periodic result holds:

|MC2
aσ

(
(ΦC2)−12q

)
| =


(8k + 1)σ if q = 4k + 1

(8k + 2)σ if q = 4k + 2

(8k + 3)σ if q = 4k + 3

(8k + 7)σ if q = 4k + 4.
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C4-equivariant Mahowald invariant

I G = C4, cyclic group of order 4

I RO(C4) = Z⊕ Z⊕ Z, generated by 1, σ and λ
I 1: trivial representation
I σ: sign representation
I λ: 2-dimensional, rotation by 90◦

I Crabb, Schmidt, and Stolz studied the C4-equivariant
Mahowald invariant of powers of aσ with respect to a2λ
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Theorem (Crabb, Schmidt, Stolz)

For q ≥ 1, the following 8-periodic result holds:

|MC4
a2λ

(aqσ)|+ qσ =



8kλ if q = 8k + 1

8kλ if q = 8k + 2

(8k + 2)λ if q = 8k + 3

(8k + 2)λ if q = 8k + 4

(8k + 2)λ if q = 8k + 5

(8k + 4)λ if q = 8k + 6

(8k + 4)λ if q = 8k + 7

(8k + 4)λ if q = 8k + 8.

I C4 is a subgroup of Pin(2)

I Minami and Schmidt used this theorem to deduce the
nonexistence of certain Furuta–Mahowald classes
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Pin(2)-equivariant Mahowald invariant

I G = Pin(2)

I Irreducible representations H and R̃
I By definition, a level-(p, q) Furuta–Mahowald class exists

if and only if the H-degree of |MPin(2)
aH (aq

R̃
)|+ qR̃ is ≥ p

I To prove our main theorem, we analyze the Pin(2)-equivariant
Mahowald invariants of powers of aR̃ with respect to aH
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Main Theorem

Theorem (Hopkins–Lin–Shi–X.)

For q ≥ 4, the following 16-periodic result holds:

|MPin(2)
aH (aq

R̃
)|+ qR̃

=



(8k − 1)H if q = 16k + 1 (8k + 3)H if q = 16k + 9
(8k − 1)H if q = 16k + 2 (8k + 3)H if q = 16k + 10
(8k − 1)H if q = 16k + 3 (8k + 4)H if q = 16k + 11
(8k + 1)H if q = 16k + 4 (8k + 5)H if q = 16k + 12
(8k + 1)H if q = 16k + 5 (8k + 5)H if q = 16k + 13
(8k + 2)H if q = 16k + 6 (8k + 6)H if q = 16k + 14
(8k + 2)H if q = 16k + 7 (8k + 6)H if q = 16k + 15
(8k + 2)H if q = 16k + 8 (8k + 6)H if q = 16k + 16.
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I Jone’s conjecture would be true
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C2-equivariant Mahowald invariant

I G = C2, cyclic group of order 2

I RO(C2) = Z⊕ Z, generated by 1 and σ
I 1: trivial representation
I σ: sign representation

I Reflection χ : Sσ −→ Sσ

χ

I C2-equivariant map
I [S0,S0]C2 = Z⊕ Z, generated by 1 and χ
I ΦC2 (1 + χ) = 2
I 1 + χ is non-nilpotent

I Question: |MC2
aσ ((1 + χ)q)| =?

I Bruner–Greenlees: It is |M(2q)|σ.
M(−): classical Mahowald invariant
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Pin(2)-equivariant to non-equivariant

I C2-action on BS1 = CP∞:
(z1, z2, z3, z4, . . . , z2n−1, z2n) 7−→
(−z̄2, z̄1,−z̄4, z̄3, . . . ,−z̄2n, z̄2n−1)

I B Pin(2) = BS1/C2-action

I λ: line bundle associated to the principal bundle
C2 ↪→ BS1 −→ B Pin(2)

I X (m) := Thom(B Pin(2),−mλ)
I inclusion of bundles mλ ↪→ (m + 1)λ

=⇒ X (m + 1) −→ X (m)
=⇒ X (m + 1) −→ X (m) −→ Σ−mCP∞

I fiber bundle RP2 ↪→ B Pin(2) −→ HP∞

gives cell structures on B Pin(2) and X (m).
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S2H ∃−→ S8R̃

S3H @−→ S8R̃
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Classical Adams spectral sequence
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Some relations in π∗S0

I π4 = 0

I π5 = 0

I π12 = 0

I π13 = 0

I η · π6 = 0

I π8 · η2 = 0
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Induction finished!



Intuition for a technical step
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Thank you!


