Scaling limit of Baxter permutations and Bipolar orientations

Mickaël Maazoun — Oxford University Joint work with Jacopo Borga, University of Zürich

"Banff", 17 september 2020

version 2 of the slides, figures fixed

Limit shapes of uniform restricted permutations

Limit shapes of uniform restricted permutations

Permutons

A permuton is a probability measure on $[0, 1]^2$ with both marginals uniform.

 \implies compact metric space (with weak convergence).

Permutations of all sizes are densely embedded in permutons.

Baxter Permutations

A *Baxter* permutation avoids the vincular patterns 2413 and 3142. In other words, a permutation σ is Baxter if it is not possible to find i < j < k s.t. $\sigma(j + 1) < \sigma(i) < \sigma(k) < \sigma(j)$ or $\sigma(j) < \sigma(k) < \sigma(j + 1)$.

Baxter Permutations

A *Baxter* permutation avoids the vincular patterns 2413 and 3142. In other words, a permutation σ is Baxter if it is not possible to find i < j < k s.t. $\sigma(j + 1) < \sigma(i) < \sigma(k) < \sigma(j)$ or $\sigma(j) < \sigma(k) < \sigma(i) < \sigma(j + 1)$.

Counted by the Baxter numbers (A001181) $\sum_{k=1}^{n} \frac{\binom{n+1}{k-1}\binom{n+1}{k}\binom{n+1}{k+1}}{\binom{n+1}{1}\binom{n+1}{2}} \sim \frac{2^{3n+5}}{\pi\sqrt{3}n^4}$ which count many other objects (see Felsner,Fusy,Noy,Orden 08)

Baxter Permutations

A *Baxter* permutation avoids the vincular patterns 2413 and 3142. In other words, a permutation σ is Baxter if it is not possible to find i < j < k s.t. $\sigma(j + 1) < \sigma(i) < \sigma(k) < \sigma(j)$ or $\sigma(j) < \sigma(k) < \sigma(i) < \sigma(j + 1)$.

Counted by the Baxter numbers (A001181) $\sum_{k=1}^{n} \frac{\binom{n+1}{k-1}\binom{n+1}{k}\binom{n+1}{k+1}}{\binom{n+1}{1}\binom{n+1}{2}} \sim \frac{2^{3n+5}}{\pi\sqrt{3}n^4}$ which count many other objects (see Felsner,Fusy,Noy,Orden 08)

Theorem. (Borga, M) There exists a random permuton μ_B such that if σ_n is a uniform random Baxter permutation of size n, $\mu_{\sigma_n} \rightarrow \mu_B$ in distribution in the space of permutons.

 $\times \quad \sigma \in \mathcal{P}_n$

A Baxter

X

X

×

 $\times \quad \sigma \in \mathcal{P}_n$

A Baxter

X

X

 $\times \quad \sigma \in \mathcal{P}_n$

A *Baxter* permutation avoids the vincular patterns 2413 and 3142.

X

X

X

X

X

 $\times \quad \sigma \in \mathcal{P}_n$

A *Baxter* permutation avoids the vincular patterns

2413 and 3142.

 $\times \quad \sigma \in \mathcal{P}_n$

A Baxter

X

X

 $\times \quad \sigma \in \mathcal{P}_n$

A Baxter

 $\times \quad \sigma \in \mathcal{P}_n$

A Baxter

 $\times \quad \sigma \in \mathcal{P}_n$

A Baxter

 $\times \quad \sigma \in \mathcal{P}_n$

A Baxter

X

X

X

o × $\sigma \in \mathcal{P}_n$

A Baxter

o
$$\mathbf{x} \quad \sigma \in \mathcal{P}_n$$

×
$$\sigma \in \mathcal{P}_n$$

- $m = OP^{-1}(\sigma) \in \mathcal{O}_n$
- $m^* = OP^{-1}(\sigma^*) \in \mathcal{O}_n$

×
$$\sigma \in \mathcal{P}_n$$

- $m = OP^{-1}(\sigma) \in \mathcal{O}_n$
- $m^* = OP^{-1}(\sigma^*) \in \mathcal{O}_n$
- $T(m)$

×
$$\sigma \in \mathcal{P}_n$$

• $m = OP^{-1}(\sigma) \in \mathcal{O}_n$
• $m^* = OP^{-1}(\sigma^*) \in \mathcal{O}_n$
• $T(m)$ • $T(m^{**})$
• $T(m^*)$ • $T(m^{***})$

×
$$\sigma \in \mathcal{P}_n$$

• $m = OP^{-1}(\sigma) \in \mathcal{O}_n$
• $m^* = OP^{-1}(\sigma^*) \in \mathcal{O}_n$
• $T(m)$ • $T(m^{**})$
• $T(m^*)$ • $T(m^{***})$

×
$$\sigma \in \mathcal{P}_n$$

• $m = OP^{-1}(\sigma) \in \mathcal{O}_n$
• $m^* = OP^{-1}(\sigma^*) \in \mathcal{O}_n$
• $T(m)$ • $T(m^{**})$
• $T(m^*)$ • $T(m^{***})$

×
$$\sigma \in \mathcal{P}_n$$

- $m = OP^{-1}(\sigma) \in \mathcal{O}_n$
- $m^* = OP^{-1}(\sigma^*) \in \mathcal{O}_n$
- $T(m)$ - $T(m^{**})$
- $T(m^*)$ - $T(m^{***})$

×
$$\sigma \in \mathcal{P}_n$$

• $m = OP^{-1}(\sigma) \in \mathcal{O}_n$
• $m^* = OP^{-1}(\sigma^*) \in \mathcal{O}_n$
• $T(m)$ • $T(m^{**})$
• $T(m^*)$ • $T(m^{***})$

Theorem (Bonichon, Bousquet-Mélou, Fusy '11) $OP^{-1} : \mathcal{P}_n \to \mathcal{O}_n$ is a bijection.

Inverse bijection: OP(m)is the only permutation π such that the *i*-th edge in the exploration of T(m) is the $\pi(i)$ -th edge in the exploration of $T(m^*)$

Theorem.

(Kenyon-Miller-Sheffield-Wilson, 2010) Let $(0, X_1 + 1, X_2 + 1, ..., X_n + 1)$ and $(0, Y_n + 1, Y_{n-1} + 1, ..., Y_1 + 1)$ be the height processes of T(m) and $T(m^{**})$. Denote OW(m) = W = (X, Y). Then OW is a bijection between \mathcal{P}_n and the set W_n of *n*-step walks in the cone from $(\mathbb{N}, 0)$ to $(0, \mathbb{N})$ and steps in $(1, -1) \cup (-\mathbb{N}) \times \mathbb{N}$.

We construct a coalescent process $Z = (Z^{(j)}(i))_{1 \le j \le i \le n}$ driven by (X, Y). The branching structure of the trajectories is that of $T(m^*)$, but edges are visited in the order given by T(m). Comparing the orders given by visit times and by the contour exploration allows to recover the permutation.

Theorem (Kenyon, Miller, Sheffield, Wilson) Let (X_n, Y_n) be the coding walk of a uniform bipolar orientation of size n. Then $\frac{1}{\sqrt{2n}}(X_n(n\cdot), Y_n(n\cdot))$ converges to a pair of Brownian excursions with cross-correlation -1/2. This is *peanosphere convergence* of bipolar-oriented maps to SLE-decorated LQG.

Theorem (Kenyon, Miller, Sheffield, Wilson) Let (X_n, Y_n) be the coding walk of a uniform bipolar orientation of size n. Then $\frac{1}{\sqrt{2n}}(X_n(n\cdot), Y_n(n\cdot))$ converges to a pair of Brownian excursions with cross-correlation -1/2. This is *peanosphere convergence* of bipolar-oriented maps to SLE-decorated LQG.

Theorem (Kenyon, Miller, Sheffield, Wilson) Let (X_n, Y_n) be the coding walk of a uniform bipolar orientation of size n. Then $\frac{1}{\sqrt{2n}}(X_n(n\cdot), Y_n(n\cdot))$ converges to a pair of Brownian excursions with cross-correlation -1/2. This is *peanosphere convergence* of bipolar-oriented maps to SLE-decorated LQG.

Theorem (Prokaj, Cinlar, Hajri, Karakus) Let (X, Y) be a pair of standard Brownian motions with cross-correlation coefficient $\rho \in [-1, 1)$. Then the *perturbed Tanaka's equation* $dZ(t) = \mathbf{1}_{\{Z(t)>0\}} dY(t) - \mathbf{1}_{\{Z(t)\leq 0\}} dX(t), t \ge 0$ has strong solutions.

Let (X, Y) be a Brownian excursion of correlation -1/2 in the quarter-plane. For every $u \in [0, 1]$, let $Z^{(u)}$ solve the perturbed Tanaka's SDE with the same noise (X, Y), starting at time u. In other words,

$$\begin{cases} dZ^{(u)}(t) = \mathbf{1}_{\{Z^{(u)}(t)>0\}} dY(t) - \mathbf{1}_{\{Z^{(u)}(t)\le 0\}} dX(t), t \ge u, \\ Z^{(u)}(u) = 0, \end{cases}$$

Let (X, Y) be a Brownian excursion of correlation -1/2 in the quarter-plane. For every $u \in [0, 1]$, let $Z^{(u)}$ solve the perturbed Tanaka's SDE with the same noise (X, Y), starting at time u. In other words,

$$\begin{cases} dZ^{(u)}(t) = \mathbf{1}_{\{Z^{(u)}(t)>0\}} dY(t) - \mathbf{1}_{\{Z^{(u)}(t)\le0\}} dX(t), t \ge u, \\ Z^{(u)}(u) = 0, \end{cases}$$

Main lemma. Jointly with $\frac{1}{\sqrt{2n}}(X_n(n\cdot), Y_n(n\cdot)) \to (X, Y)$, we have that $\frac{1}{\sqrt{2n}}(Z_n^{(\lfloor nu \rfloor)}(n\cdot) \to Z^{(u)}$.

Let (X, Y) be a Brownian excursion of correlation -1/2 in the quarter-plane. For every $u \in [0, 1]$, let $Z^{(u)}$ solve the perturbed Tanaka's SDE with the same noise (X, Y), starting at time u. In other words,

$$\begin{cases} dZ^{(u)}(t) = \mathbf{1}_{\{Z^{(u)}(t)>0\}} dY(t) - \mathbf{1}_{\{Z^{(u)}(t)\le0\}} dX(t), t \ge u, \\ Z^{(u)}(u) = 0, \end{cases}$$

Main lemma. Jointly with $\frac{1}{\sqrt{2n}}(X_n(n\cdot), Y_n(n\cdot)) \to (X, Y)$, we have that $\frac{1}{\sqrt{2n}}(Z_n^{(\lfloor nu \rfloor)}(n\cdot) \to Z^{(u)}$.

The construction of the Baxter permuton is then straightforward. For 0 < s < t < 1, set s < t if $Z^{(s)}(t) < 0$ and t < s otherwise.

Let (X, Y) be a Brownian excursion of correlation -1/2 in the quarter-plane. For every $u \in [0, 1]$, let $Z^{(u)}$ solve the perturbed Tanaka's SDE with the same noise (X, Y), starting at time u. In other words,

$$\begin{cases} dZ^{(u)}(t) = \mathbf{1}_{\{Z^{(u)}(t)>0\}} dY(t) - \mathbf{1}_{\{Z^{(u)}(t)\le0\}} dX(t), t \ge u, \\ Z^{(u)}(u) = 0, \end{cases}$$

Main lemma. Jointly with $\frac{1}{\sqrt{2n}}(X_n(n\cdot), Y_n(n\cdot)) \to (X, Y)$, we have that $\frac{1}{\sqrt{2n}}(Z_n^{(\lfloor nu \rfloor)}(n\cdot) \to Z^{(u)}$.

The construction of the Baxter permuton is then straightforward. For 0 < s < t < 1, set s < t if $Z^{(s)}(t) < 0$ and t < s otherwise. Set $\phi(t) = \text{Leb}\{s \in [0,1] : s < t\}$ and $\mu_B = (\text{Id}, \phi)_*\text{Leb} = P(X, Y)$.

Scaling limits of bipolar orientations

Let (X_n, Y_n) be the walks coding, respectively, the map m_n and its dual m_n^* . Let (X, Y) be a Brownian excursion in the quadrant of correlation -1/2. Consider the map $s : C([0, 1], \mathbb{R}^2) \to C([0, 1], \mathbb{R}^2)$ defined by $s(f, g) = (g(1 - \cdot), f(1 - \cdot))$. Consider also the map $R : \mathcal{M} \to \mathcal{M}$ that rotates a permuton by an angle $-\pi/2$,

Scaling limits of bipolar orientations

Let (X_n, Y_n) be the walks coding, respectively, the map m_n and its dual m_n^* . Let (X, Y) be a Brownian excursion in the quadrant of correlation -1/2. Consider the map $s : C([0, 1], \mathbb{R}^2) \to C([0, 1], \mathbb{R}^2)$ defined by $s(f, g) = (g(1 - \cdot), f(1 - \cdot))$. Consider also the map $R : \mathcal{M} \to \mathcal{M}$ that rotates a permuton by an angle $-\pi/2$,

Theorem (Borga,M.) There exist two measurable maps $r : C([0,1], \mathbb{R}^2_{\geq 0}) \to C([0,1], \mathbb{R}^2_{\geq 0})$ and $P : C([0,1], \mathbb{R}^2_{\geq 0}) \to \mathcal{M}$ such that we have the convergence in distribution

$$(X_n, Y_n, X_n^*, Y_n^*, \mu_{\sigma_n}) \to (X, Y, X^*, Y^*, \mu_B),$$

where $(X^*, Y^*) = r(X, Y)$, and $\mu_B = P(X, Y)$. Moreover, we have the following equalities that hold at almost every point of $C([0, 1], \mathbb{R}^2_{>0})$,

$$r^2 = s$$
, $r^4 = \mathrm{Id}$, $P \circ r = R \circ P$.

Scaling limits of bipolar orientations

Let (X_n, Y_n) be the walks coding, respectively, the map m_n and its dual m_n^* . Let (X, Y) be a Brownian excursion in the quadrant of correlation -1/2. Consider the map $s : C([0, 1], \mathbb{R}^2) \to C([0, 1], \mathbb{R}^2)$ defined by $s(f, g) = (g(1 - \cdot), f(1 - \cdot))$. Consider also the map $R : \mathcal{M} \to \mathcal{M}$ that rotates a permuton by an angle $-\pi/2$,

Theorem (Borga,M.) There exist two measurable maps $r : C([0,1], \mathbb{R}^2_{\geq 0}) \to C([0,1], \mathbb{R}^2_{\geq 0})$ and $P : C([0,1], \mathbb{R}^2_{\geq 0}) \to \mathcal{M}$ such that we have the convergence in distribution

$$(X_n, Y_n, X_n^*, Y_n^*, \mu_{\sigma_n}) \to (X, Y, X^*, Y^*, \mu_B),$$

where $(X^*, Y^*) = r(X, Y)$, and $\mu_B = P(X, Y)$. Moreover, we have the following equalities that hold at almost every point of $C([0, 1], \mathbb{R}^2_{>0})$,

$$r^2 = s$$
, $r^4 = \mathrm{Id}$, $P \circ r = R \circ P$.

The convergence of the first four marginals is an extension of a result of Gwynne,Holden,Sun that deals with infinite-volume bipolar triangulations.

Perspectives

Our methods can be easily adapted to weighted models of bipolar orientations, including bipolar *k*-angulations.

Perspectives

Our methods can be easily adapted to weighted models of bipolar orientations, including bipolar *k*-angulations.

Many examples of classes of permutations are encoded by generating trees. A work of Borga gives bijections with colored walks in the quadrant. We expect that some of them have a coalescent-walk process encoding.

Perspectives

Our methods can be easily adapted to weighted models of bipolar orientations, including bipolar *k*-angulations.

Many examples of classes of permutations are encoded by generating trees. A work of Borga gives bijections with colored walks in the quadrant. We expect that some of them have a coalescent-walk process encoding.

We expect the correlation parameter ρ to vary, and might lose symmetry at the origin, as in the study of Schnyder woods by Li-Sun-Watson.