Scaling limit of Baxter permutations and Bipolar orientations

Mickaël Maazoun - Oxford University
Joint work with Jacopo Borga, University of Zürich

"Banff", 17 september 2020
version 2 of the slides, figures fixed

Limit shapes of uniform restricted permutations

Limit shapes of uniform restricted permutations

Permutons

A permuton is a probability measure on $[0,1]^{2}$ with both marginals uniform.

\Longrightarrow compact metric space (with weak convergence).
Permutations of all sizes are densely embedded in permutons.

Baxter Permutations

A Baxter permutation avoids the vincular patterns 2413 and 3142. In other words, a permutation σ is Baxter if it is not possible to find $i<j<k$ s.t. $\sigma(j+1)<\sigma(i)<\sigma(k)<\sigma(j)$ or $\sigma(j)<\sigma(k)<\sigma(i)<\sigma(j+1)$.

Baxter Permutations

A Baxter permutation avoids the vincular patterns 2413 and 3142. In other words, a permutation σ is Baxter if it is not possible to find $i<j<k$ s.t. $\sigma(j+1)<\sigma(i)<\sigma(k)<\sigma(j)$ or
$\sigma(j)<\sigma(k)<\sigma(i)<\sigma(j+1)$.
Counted by the Baxter numbers (A001181) $\sum_{k=1}^{n} \frac{\binom{n+1}{k-1}\binom{n+1}{k}\binom{n+1}{k+1}}{\binom{n+1}{1}\left(\begin{array}{c}\binom{2}{2}\end{array}\right.} \sim \frac{2^{3 n+5}}{\pi \sqrt{3} n^{4}}$ which count many other objects (see Felsner,Fusy,Noy,Orden 08)

Baxter Permutations

A Baxter permutation avoids the vincular patterns 2413 and 3142. In other words, a permutation σ is Baxter if it is not possible to find $i<j<k$ s.t. $\sigma(j+1)<\sigma(i)<\sigma(k)<\sigma(j)$ or
$\sigma(j)<\sigma(k)<\sigma(i)<\sigma(j+1)$.
Counted by the Baxter numbers (A001181) $\sum_{k=1}^{n} \frac{\binom{n+1}{k+1}\binom{n+1}{k}\binom{n+1}{k+1}}{\left(\begin{array}{c}n+1\end{array}\right)\binom{n+1}{2}} \sim \frac{2^{3 n+5}}{\pi \sqrt{3} n^{4}}$ which count many other objects (see Felsner,Fusy,Noy,Orden 08)

Theorem. (Borga, M) There exists a random permuton μ_{B} such that if σ_{n} is a uniform random Baxter permutation of size $\mathrm{n}, \mu_{\sigma_{n}} \rightarrow \mu_{B}$ in distribution in the space of permutons.

Baxter permutations and bipolar oriented maps

Baxter permutations and bipolar oriented maps

Baxter permutations and bipolar oriented maps

$$
\times \quad \sigma \in \mathcal{P}_{n}
$$

A Baxter
permutation avoids the vincular patterns 2413 and 3142.

Baxter permutations and bipolar oriented maps

$$
\times \quad \sigma \in \mathcal{P}_{n}
$$

A Baxter permutation avoids the vincular patterns 2413 and 3142 .

Baxter permutations and bipolar oriented maps

Baxter permutations and bipolar oriented maps

Baxter permutations and bipolar oriented maps

Baxter permutations and bipolar oriented maps

Baxter permutations and bipolar oriented maps

Baxter permutations and bipolar oriented maps

Baxter permutations and bipolar oriented maps

Baxter permutations and bipolar oriented maps

Baxter permutations and bipolar oriented maps

Baxter permutations and bipolar oriented maps

Baxter permutations and bipolar oriented maps

Baxter permutations and bipolar oriented maps

Baxter permutations and bipolar oriented maps

$$
\begin{array}{ll}
\times & \sigma \in \mathcal{P}_{n} \\
\hdashline- & m=\mathrm{OP}^{-1}(\sigma) \in O_{n} \\
\multimap & m^{*}=\mathrm{OP}^{-1}\left(\sigma^{*}\right) \in \boldsymbol{O}_{n} \\
\hdashline & T(m)-\bigcirc T\left(m^{* *}\right) \\
\multimap & T\left(m^{*}\right)-\bigcirc T\left(m^{* * *}\right)
\end{array}
$$

Theorem (Bonichon, Bousquet-Mélou, Fusy '11) $\mathrm{OP}^{-1}: \mathcal{P}_{n} \rightarrow \mathcal{O}_{n}$ is a bijection.

Baxter permutations and bipolar oriented maps

$$
\begin{array}{ll}
\times & \sigma \in \mathcal{P}_{n} \\
\hdashline & m=\mathrm{OP}^{-1}(\sigma) \in \mathcal{O}_{n} \\
\hdashline & m^{*}=\mathrm{OP}^{-1}\left(\sigma^{*}\right) \in O_{n} \\
\hdashline & T(m)-m^{*}-T\left(m^{* *}\right) \\
\hdashline & T\left(m^{*}\right) \multimap T\left(m^{* * *}\right)
\end{array}
$$

Theorem (Bonichon, Bousquet-Mélou, Fusy '11) $\mathrm{OP}^{-1}: \mathcal{P}_{n} \rightarrow \mathcal{O}_{n}$ is a bijection.

Baxter permutations and bipolar oriented maps

$$
\begin{array}{ll}
\times & \sigma \in \mathcal{P}_{n} \\
\hdashline- & m=\mathrm{OP}^{-1}(\sigma) \in \mathcal{O}_{n} \\
\hdashline & m^{*}=\mathrm{OP}^{-1}\left(\sigma^{*}\right) \in O_{n} \\
\hdashline & T(m)-\bigcirc T\left(m^{* *}\right) \\
\hdashline & T\left(m^{*}\right)-\bigcirc T\left(m^{* * *}\right)
\end{array}
$$

Theorem (Bonichon, Bousquet-Mélou, Fusy '11) $\mathrm{OP}^{-1}: \mathcal{P}_{n} \rightarrow \mathcal{O}_{n}$ is a bijection.

Baxter permutations and bipolar oriented maps

Baxter permutations and bipolar oriented maps

$$
\begin{cases}\times & \sigma \in \mathcal{P}_{n} \\ -\bigcirc- & m=\mathrm{OP}^{-1}(\sigma) \in O_{n} \\ - & m^{*}=\mathrm{OP}^{-1}\left(\sigma^{*}\right) \in O_{n} \\ -\bigcirc-T(m)-0-T\left(m^{* *}\right) \\ -\bigcirc-T\left(m^{*}\right)-\bigcirc T\left(m^{* * *}\right)\end{cases}
$$

Theorem (Bonichon, Bousquet-Mélou, Fusy '11) $\mathrm{OP}^{-1}: \mathcal{P}_{n} \rightarrow \mathcal{O}_{n}$ is a bijection.

Inverse bijection: OP(m) is the only permutation π such that the i-th edge in the exploration of $T(m)$ is the $\pi(i)$-th edge in the exploration of $T\left(m^{*}\right)$

Bipolar orientations and walks in the quadrant

Bipolar orientations and walks in the quadrant

Bipolar orientations and walks in the quadrant

Bipolar orientations and walks in the quadrant
Theorem.
(Kenyon-Miller-Sheffield-Wilson, 2010) Let $\left(0, X_{1}+1, X_{2}+1, \ldots X_{n}+1\right)$ and $\left(0, Y_{n}+1, Y_{n-1}+1, \ldots, Y_{1}+1\right)$ be the height processes of $T(m)$ and $T\left(m^{* *}\right)$. Denote OW $(m)=W=(X, Y)$. Then OW is a bijection between \mathcal{P}_{n} and the set W_{n} of n-step walks in the cone from $(\mathbb{N}, 0)$ to $(0, \mathbb{N})$ and steps in $(1,-1) \cup(-\mathbb{N}) \times \mathbb{N}$.

Coalescent-walk processes

We construct a coalescent process $Z=\left(Z^{(j)}(i)\right)_{1 \leq j \leq i \leq n}$ driven by (X, Y). The branching structure of the trajectories is that of $T\left(m^{*}\right)$, but edges are visited in the order given by $T(m)$. Comparing the orders given by visit times and by the contour exploration allows to recover the permutation.

Scaling limits of coalescent-walk processes

Theorem (Kenyon, Miller,Sheffield,Wilson) Let $\left(X_{n}, Y_{n}\right)$ be the coding walk of a uniform bipolar orientation of size n. Then $\frac{1}{\sqrt{2 n}}\left(X_{n}(n \cdot), Y_{n}(n \cdot)\right)$ converges to a pair of Brownian excursions with cross-correlation $-1 / 2$. This is peanosphere convergence of bipolar-oriented maps to SLE-decorated LQG.

Scaling limits of coalescent-walk processes

Theorem (Kenyon, Miller,Sheffield,Wilson) Let (X_{n}, Y_{n}) be the coding walk of a uniform bipolar orientation of size n. Then $\frac{1}{\sqrt{2 n}}\left(X_{n}(n \cdot), Y_{n}(n \cdot)\right)$ converges to a pair of Brownian excursions with cross-correlation $-1 / 2$. This is peanosphere convergence of bipolar-oriented maps to SLE-decorated LQG.

Scaling limits of coalescent-walk processes

Theorem (Kenyon, Miller,Sheffield,Wilson) Let (X_{n}, Y_{n}) be the coding walk of a uniform bipolar orientation of size n. Then $\frac{1}{\sqrt{2 n}}\left(X_{n}(n \cdot), Y_{n}(n \cdot)\right)$ converges to a pair of Brownian excursions with cross-correlation $-1 / 2$. This is peanosphere convergence of bipolar-oriented maps to SLE-decorated LQG.

Theorem (Prokaj, Cinlar, Hajri, Karakus) Let (X, Y) be a pair of standard Brownian motions with cross-correlation coefficient $\rho \in[-1,1)$. Then the perturbed Tanaka's equation $d Z(t)=\mathbf{1}_{\{Z(t)>0\}} d Y(t)-\mathbf{1}_{\{Z(t) \leq 0\}} d X(t), t \geq 0$ has strong solutions.

Scaling limit of coalescent-walk processes

Let (X, Y) be a Brownian excursion of correlation $-1 / 2$ in the quarter-plane. For every $u \in[0,1]$, let $Z^{(u)}$ solve the perturbed Tanaka's SDE with the same noise (X, Y), starting at time u. In other words,

$$
\left\{\begin{array}{l}
d Z^{(u)}(t)=\mathbf{1}_{\left\{Z^{(u)}(t)>0\right\}} d Y(t)-\mathbf{1}_{\left\{Z^{(u)}(t) \leq 0\right\}} d X(t), t \geq u, \\
Z^{(u)}(u)=0,
\end{array}\right.
$$

Scaling limit of coalescent-walk processes

Let (X, Y) be a Brownian excursion of correlation $-1 / 2$ in the quarter-plane. For every $u \in[0,1]$, let $Z^{(u)}$ solve the perturbed Tanaka's SDE with the same noise (X, Y), starting at time u. In other words,

$$
\left\{\begin{array}{l}
d Z^{(u)}(t)=\mathbf{1}_{\left\{Z^{(u)}(t)>0\right\}} d Y(t)-\mathbf{1}_{\left\{Z^{(u)}(t) \leq 0\right\}} d X(t), t \geq u, \\
Z^{(u)}(u)=0,
\end{array}\right.
$$

Main lemma. Jointly with $\frac{1}{\sqrt{2 n}}\left(X_{n}(n \cdot), Y_{n}(n \cdot)\right) \rightarrow(X, Y)$, we have that $\frac{1}{\sqrt{2 n}}\left(Z_{n}^{(\lfloor n u\rfloor)}(n \cdot) \rightarrow Z^{(u)}\right.$.

Scaling limit of coalescent-walk processes

Let (X, Y) be a Brownian excursion of correlation $-1 / 2$ in the quarter-plane. For every $u \in[0,1]$, let $Z^{(u)}$ solve the perturbed Tanaka's SDE with the same noise (X, Y), starting at time u. In other words,

$$
\left\{\begin{array}{l}
d Z^{(u)}(t)=\mathbf{1}_{\left\{Z^{(u)}(t)>0\right\}} d Y(t)-\mathbf{1}_{\left\{Z^{(u)}(t) \leq 0\right\}} d X(t), t \geq u, \\
Z^{(u)}(u)=0,
\end{array}\right.
$$

Main lemma. Jointly with $\frac{1}{\sqrt{2 n}}\left(X_{n}(n \cdot), Y_{n}(n \cdot)\right) \rightarrow(X, Y)$, we have that $\frac{1}{\sqrt{2 n}}\left(Z_{n}^{(\lfloor n u\rfloor)}(n \cdot) \rightarrow Z^{(u)}\right.$.

The construction of the Baxter permuton is then straightforward. For $0<s<t<1$, set $s<t$ if $Z^{(s)}(t)<0$ and $t<s$ otherwise.

Scaling limit of coalescent-walk processes

Let (X, Y) be a Brownian excursion of correlation $-1 / 2$ in the quarter-plane. For every $u \in[0,1]$, let $Z^{(u)}$ solve the perturbed Tanaka's SDE with the same noise (X, Y), starting at time u. In other words,

$$
\left\{\begin{array}{l}
d Z^{(u)}(t)=\mathbf{1}_{\left\{Z^{(u)}(t)>0\right\}} d Y(t)-\mathbf{1}_{\left\{Z^{(u)}(t) \leq 0\right\}} d X(t), t \geq u, \\
Z^{(u)}(u)=0,
\end{array}\right.
$$

Main lemma. Jointly with $\frac{1}{\sqrt{2 n}}\left(X_{n}(n \cdot), Y_{n}(n \cdot)\right) \rightarrow(X, Y)$, we have that $\frac{1}{\sqrt{2 n}}\left(Z_{n}^{(\lfloor n u\rfloor)}(n \cdot) \rightarrow Z^{(u)}\right.$.

The construction of the Baxter permuton is then straightforward. For $0<s<t<1$, set $s<t$ if $Z^{(s)}(t)<0$ and $t<s$ otherwise.
Set $\phi(t)=\operatorname{Leb}\{s \in[0,1]: s<t\}$ and $\mu_{B}=(\operatorname{Id}, \phi)_{*} \operatorname{Leb}=P(X, Y)$.

Scaling limits of bipolar orientations

Let $\left(X_{n}, Y_{n}\right)$ be the walks coding, respectively, the map m_{n} and its dual m_{n}^{*}. Let (X, Y be a Brownian excursion in the quadrant of correlation $-1 / 2$. Consider the map $s: C\left([0,1], \mathbb{R}^{2}\right) \rightarrow C\left([0,1], \mathbb{R}^{2}\right)$ defined by $s(f, g)=(g(1-\cdot), f(1-\cdot))$. Consider also the map $R: \mathcal{M} \rightarrow \mathcal{M}$ that rotates a permuton by an angle $-\pi / 2$,

Scaling limits of bipolar orientations

Let $\left(X_{n}, Y_{n}\right)$ be the walks coding, respectively, the map m_{n} and its dual m_{n}^{*}. Let (X, Y be a Brownian excursion in the quadrant of correlation $-1 / 2$. Consider the map $s: C\left([0,1], \mathbb{R}^{2}\right) \rightarrow C\left([0,1], \mathbb{R}^{2}\right)$ defined by $s(f, g)=(g(1-\cdot), f(1-\cdot))$. Consider also the map $R: \mathcal{M} \rightarrow \mathcal{M}$ that rotates a permuton by an angle $-\pi / 2$,

Theorem (Borga,M.) There exist two measurable maps $r: \mathcal{C}\left([0,1], \mathbb{R}_{\geq 0}^{2}\right) \rightarrow \mathcal{C}\left([0,1], \mathbb{R}_{\geq 0}^{2}\right)$ and $P: \mathcal{C}\left([0,1], \mathbb{R}_{\geq 0}^{2}\right) \rightarrow \mathcal{M}$ such that we have the convergence in distribution

$$
\left(X_{n}, Y_{n}, X_{n}^{*}, Y_{n}^{*}, \mu_{\sigma_{n}}\right) \rightarrow\left(X, Y, X^{*}, Y^{*}, \mu_{B}\right)
$$

where $\left(X^{*}, Y^{*}\right)=r(X, Y)$, and $\mu_{B}=P(X, Y)$. Moreover, we have the following equalities that hold at almost every point of $C\left([0,1], \mathbb{R}_{\geq 0}^{2}\right)$,

$$
r^{2}=s, \quad r^{4}=\mathrm{Id}, \quad P \circ r=R \circ P .
$$

Scaling limits of bipolar orientations

Let $\left(X_{n}, Y_{n}\right)$ be the walks coding, respectively, the map m_{n} and its dual m_{n}^{*}. Let (X, Y be a Brownian excursion in the quadrant of correlation $-1 / 2$. Consider the map $s: C\left([0,1], \mathbb{R}^{2}\right) \rightarrow C\left([0,1], \mathbb{R}^{2}\right)$ defined by $s(f, g)=(g(1-\cdot), f(1-\cdot))$. Consider also the map $R: \mathcal{M} \rightarrow \mathcal{M}$ that rotates a permuton by an angle $-\pi / 2$,

Theorem (Borga,M.) There exist two measurable maps $r: \mathcal{C}\left([0,1], \mathbb{R}_{\geq 0}^{2}\right) \rightarrow \mathcal{C}\left([0,1], \mathbb{R}_{\geq 0}^{2}\right)$ and $P: \mathcal{C}\left([0,1], \mathbb{R}_{\geq 0}^{2}\right) \rightarrow \mathcal{M}$ such that we have the convergence in distribution

$$
\left(X_{n}, Y_{n}, X_{n}^{*}, Y_{n}^{*}, \mu_{\sigma_{n}}\right) \rightarrow\left(X, Y, X^{*}, Y^{*}, \mu_{B}\right)
$$

where $\left(X^{*}, Y^{*}\right)=r(X, Y)$, and $\mu_{B}=P(X, Y)$. Moreover, we have the following equalities that hold at almost every point of $\mathcal{C}\left([0,1], \mathbb{R}_{\geq 0}^{2}\right)$,

$$
r^{2}=s, \quad r^{4}=\mathrm{Id}, \quad P \circ r=R \circ P .
$$

The convergence of the first four marginals is an extension of a result of Gwynne,Holden,Sun that deals with infinite-volume bipolar triangulations.

Perspectives

Our methods can be easily adapted to weighted models of bipolar orientations, including bipolar k-angulations.

Perspectives

Our methods can be easily adapted to weighted models of bipolar orientations, including bipolar k-angulations.

Many examples of classes of permutations are encoded by generating trees. A work of Borga gives bijections with colored walks in the quadrant. We expect that some of them have a coalescent-walk process encoding.

Perspectives

Our methods can be easily adapted to weighted models of bipolar orientations, including bipolar k-angulations.

Many examples of classes of permutations are encoded by generating trees. A work of Borga gives bijections with colored walks in the quadrant. We expect that some of them have a coalescent-walk process encoding.

We expect the correlation parameter ρ to vary, and might lose symmetry at the origin, as in the study of Schnyder woods by Li-Sun-Watson.

