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Motivation

Characterizing the tumor ecosystem
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@ To identify prognosis and treatment in breast cancer
patients.
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Single-cell targeted proteomics methods?
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Heterogeneous tumor ecosystem
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@ Tumor ecosystem is phenotypically and functionally
heterogeneous.

@ Integrate multiple targeted proteomics methods.

Goal 1: How should we approach integrating
partially-overlapping proteomic data collected on different
patients with similar phenotypes?
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@ CyTOF :intensity is divided by five and arcsinh
transformed.

@ MIBI -TOF: Counts are divided by cell size, arcsinh
transformed, and standardized across markers.

@ Note: MIBI-TOF markers have transformed values more
than 4.2
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MultiAssayExperime
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Remove units of measurement effect

@ Z: Inverse transformation of CyTOF.
@ X: Given transformed data of MIBI-TOF.

@ For each marker i in MIBI-TOF, y; = (””“'”) X U,
Xj range
where u is the upper limit of the rescaled variable.
e uis the maximum of Z.
@ (Z,Y): Round to integer.
@ Note: We can match the quantiles if there is no concern on
the given transformation.
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Impute on rescaled data
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@ K-nearest neighbour averaging®.

4(Hastie, Tibshirani, Narasimhan, & Chu, 2019)

pjeganat@stanford.edu 9/25



Motivation  Single-cell proteomics data Topic modeling Results Conclusion References

Why topic modeling

@ Given (Z,Y).
@ Z does not have spatial information of cells.
@ Y has spatial information of cells.
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Why topic modeling

Goal 2: Without including the spatial x-y coordinate data,
how well can we predict cell co-location.
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Why topic modeling

Goal 3: Can we predict the spatial expression patterns of
proteins measured on CyTOF but not measured in the
MIBI-TOF data?

Simulate from the fitted topic model.
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Latent Dirichlet Allocation (LDA)®
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Hamiltonian Monte Carlo - No U-Turn Sampler (N

@ Hamiltonian Monte Carlo (HMC) is a Markov chain Monte
Carlo method (MCMC).

e Avoids random walk behaviour, takes series of steps
informed by first-order gradient information (of log posterior
density).

e Use when direct sampling is difficult (approximation to the
posterior).

e Two tuning parameters: step size and number of steps.

e HMC - NUTS method: user does not need to specify the
above two tuning parameters.

@ Use rstan R/Stan (probabilistic programming language for
statistical inference) package.
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Results on subset of data

@ Chose one patient from CyTOF (Live cells: immune panel)

@ Chose one patient from MIBI-TOF. Ideal is to use
MIBI-TOF data from the same patient.

@ Kept 10% cells from MIBI-TOF for the test data to choose
number of topics based on the posterior log-likelihood.

@ Model assessment: simulate data from the fitted model and
plot the distribution of the median of protein expression.
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Choosing number of topics
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Estimated topic distribution
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Model assessment
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Infer spatial co-location of CyTOF cells
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Predict spatial pattern of proteins not measured in the MIBI-TOF
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Conclusion

@ Goal 1: Integrate partial-overlapping proteomic data using
MultiAssayExperiment.

@ Goal 2: Leverage topic modeling to infer spatial co-location
of cells of CyTOF data.

@ Goal 3: Leverage topic modeling to predict spatial
expression pattern of proteins not measured in the
MIBI-TOF data.
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Challenges and future work

@ Transformation.
@ Units of measurements are different across platforms.

@ Different subjects in different platforms.
@ Topic modeling
e Expensive computational cost for four chain and 2000
iterations with 1000 warmup iterations.
e Computational cost for fixing label switching
e Recompute R, effective sample size (ESS), posterior log
likelihood on train data.
o Identify best range for the number of topics.

@ Infer spatial polygons.
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