

Integrating Spatial Information in Single-Cell Transcriptomics Analysis

Guo-Cheng Yuan

Department of Pediatric Oncology Dana-Farber Cancer Institute Harvard Medical School

BIRSBioIntegration, June 15th, 2020

A complete cell state contains many components

Different components are interconnected

Different components are interconnected

Different components are interconnected

How to represent an integrated cell state?

Few components can be measured in the same cell

	RNA level
Gene 1	
Gene 2	
Gene 3	
Gene 4	

	methylaton
CpG 1	
CpG 2	
CpG 3	
CpG 4	

	Protein level
Gene 1	
Gene 2	
Gene 3	
Gene 4	

	Accessibility
Bin 1	
Bin 2	
Bin 3	
Bin 4	

Few components can be measured in the same cell

	RNA level
Gene 1	
Gene 2	
Gene 3	
Gene 4	

	methylaton
CpG 1	
CpG 2	
CpG 3	
CpG 4	

	Protein level
Gene 1	
Gene 2	
Gene 3	
Gene 4	

Accessibility

I can only measure X. Can I use it to predict Y?

Why mathematical modeling is important

- Conceptual: Modeling the system.
 - Causal inference
 - Factor analysis
 - Biological networks
 - Multi-scale modeling
 - Dynamical Systems

Why mathematical modeling is important

- Practical: Predicting the unknowns.
 - Supervised vs unsupervised
 - Bayesian vs frequentist
 - Model based vs data driven
 - Statistical vs machine learning

Integration of spatial information

Integration of spatial information

scRNA-seq

Integration of spatial information

spatial transcriptomics

Spatial organization is important for function

The brain has complex but structured anatomy.

Specialized functions are carried out by focal regions.

Cell type composition at different regions are distinct.

Communications between different neurons are critical for carrying out brain functions.

Sten Linnarsson

Cell-type mapping and spatial distribution

Spatially coherent gene detection

Spatial clustering

Spatial-temporal trajectory analysis

Cell-cell interaction

Challenges

Technological:

- Gene coverage is often limited.
- Single-cell resolution data are difficult to generate.
- 3D data are difficult to generate
- Imaging/sequencing associated artifacts

Challenges

Computational:

- Delineating cell boundaries.
- Creating spatial proximity networks.
- Classifying spatial patterns at cellular or subcellular scale.
- Mechanistic understanding of cell-cell interaction.
- Dissecting the contribution of spatial environment in mediating cell states

seqFISH: a case study

Sheel Shah, Long Cai

Question 1: How do we identify cell types from seqFISH data

Challenge: The number of profiled genes is limited.

Question 1: How do we identify cell types from seqFISH data

Challenge: The number of profiled genes is limited.

Approach: Integrating seqFISH with external scRNAseq data

seqFISH

scRNAseq

Our computational strategy

Our computational strategy

Our computational strategy

Evaluating the accuracy of cell-type mapping

Evaluating the accuracy of cell-type mapping

Evaluating the accuracy of cell-type mapping

Qian Zhu

Question 2: How do we identify distinct spatial patterns?

Question 2: How do we identify distinct spatial patterns?

Challenge: The number of images is too large for manual annotation.

> 100 images.

Approach: Hidden Markov Random Field (HMRF)

gene expression pattern

use HMRF to create discrete domains based on shared spatial gene expression patterns across cell types

Spatial domains recapitulate layer-like structure in visual cortex

Complementary information in spatial domain and cell-type annotations

Spatial Domain

Complementary information in spatial domain and cell-type annotations

Spatial Domain

Using spatial domain annotation to study within cell-type variations associated with spatial location

Take the image with all the cells, ...

Using spatial domain annotation to study within cell-type variations associated with spatial location

if we focus only on glutamatergic cells ...

Domains

Use domain-specific signatures to reanalyze scRNAseq data

Cortex-seqFISH Hackathon data

File	Description
/tasic_training_b2.txt	normalized scRNAseq data
<pre>/seqfish_cortex_b2_testing.txt</pre>	normalized seqFISH data
/seqfish_labels.tsv	spatial cluster labels and SVM learned cell types for seqFISH
/tasic_labels.tsv	cell type labels for scRNAseq
/fcortex.coordinates.txt	Spatial cell coordinates
/hmrf-usage/data/fcortex.gene.ALL.txt	z-scored matrix incorporating the spatial gene expression of 69 genes

seqFISH data source: (125 genes, 1597 cells)

Zhu Q, Shah S, Dries R, Cai L, Yuan GC. Nat Biotechnol. 2018 Oct 29:10.1038/nbt.4260.

scRNAseq data source: (24057 genes, 1723 cells)

Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, Levi B, Gray LT, Sorensen SA, Dolbeare T, Bertagnolli D, Goldy J, Shapovalova N, Parry S, Lee C, Smith K, Bernard A, Madisen L, Sunkin SM, Hawrylycz M, Koch C, Zeng H. Nat Neurosci. 2016 Feb;19(2):335-46.

Giotto, a toolbox for integrative analysis and visualization of spatial expression data

Ruben Dries, Qian Zhu, Rui Dong, Chee-Huat Linus Eng, Huipeng Li, Kan Liu, Yuntian Fu, Tianxiao Zhao, Arpan Sarkar, Feng Bao, Rani E George, Nico Pierson, Long Cai, Guo-Cheng Yuan **doi:** https://doi.org/10.1101/701680

Ruben Dries

Qian Zhu

Giotto in a snapshot

Main Website: Www.spatialgiotto.com

Application of Giotto to diverse datasets

Application of Giotto to diverse datasets

Spatial gene detection

Spatial gene detection

Spatial Cell-Cell Interaction

gene x gene y

Spatial Cell-Cell Interaction

Spatial Cell-Cell Interaction

Ligand-Receptor interactions

gene x gene y

Ligand-Receptor interactions

gene x gene y

Ligand-Receptor interactions

Analysis of data with lower spatial resolution

10X Genomics Visium (mouse brain)

How to estimate cell type distribution when the data does not have single-cell resolution?

Spatial enrichment of cell types

Rui Dong

Spatial enrichment of cell types

10X Genomics Visium (mouse brain)

Interactive visualization:

Qian Zhu

Qian Zhu

Compare annotations

Compare annotations

Subcellular localization

Acknowledgement

<u>Yuan Lab</u>

Ruben Dries Rui Dong Kan Liu Tianxiao Zhao Arpan Sarkar **Qian Zhu** Huipeng Li Yuntian Fu Feng Bao <u>Cai Lab</u> Long Cai Sheel Shah Linus Eng Niko Pierson

Notes

Spatial co-expression module

binSpect for spatial gene detection

Validation of spatial enrichment analysis

seqFISH+: transcriptome-scale super-resolved imaging

- Solving the optical crowding problem.
- Quantification of 10,000 genes in a single cell.
- Detecting subcellular spatial organization.

Eng et al. 2019, Nature