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Homogeneous data are all alike;
all heterogeneous data are

heterogeneous
 in their own way.



Example 1: Human Microbiome

Joint work with David Relman and his Lab, funded by NIH TR01:
Perturbations and Resilience of the Human Microbiome and
March of Dimes.

• Effect of Antibiotics.
• Colonic Cleanout.
• Diet perturbations.
• .......and March of Dimes study of pregnancy.



Example 2: Immune Cells and their role in virus response.

Joint work with Catherine Blish and her Lab, funded by the NIH.

• Influenza, Pregnancy and NK cells.
• NK cells and HIV response.



Challenges when working with Longitudinal Multidomain data

Keeping all the data together

LOST    INFORMATION

Original
         Data

Final
Results

• Data heterogeneity and Information leeks.
• Multidomain, multiway, multimodal, multitable data
integration.

• Longitudinal, data are dependent (less information).
• Reproducibility of results across labs, experimental
conditions and users.

• Confirmatory analyses: uncertainty propagation and
quantification.



Paths to analysing heterogeneous systems

• You can use a list of multiple components to store the
data (phyloseq in Bioconductor).

• You can use Graph or Trees to ”influence” these distances
(Structured high-dimensionality).

• Mixtures are everywhere (not one parametric population).
• Latent variables or factors are an enormous resource.
• Don’t stress about choices, they are not forever (because
of reproducible workflows).

• Think carefully when you throw out information of any
sort.

• Be lazy: re-use and recycle methods, vocabulary and
infrastructure.



Heterogeneity of Data

• Status : response/ explanatory.
• Hidden (latent)/measured.
• Types :

• Continuous
• Binary, categorical
• Graphs/ Trees
• Images
• Maps/ Spatial Information
• Rankings

• Amounts of dependency: independent/time
series/spatial.

• Different technologies used (Sanger, 454, Illumina,
MassSpec, minion, RNA-seq, Chip-seq, imaging, CyTOF,
single-cell).





Heterogeneity of methods and disciplines

• Multiway, Multimodal, Multidomain, Multitable, Multiview,
Triadic, Tensor...

• Data fusion, data integration, conjoint analyses.
• Approaches:

• Matrix factorization, dimension reduction.
• Latent variable estimation and Bayesian hierarchical
models.

• Algorithmic graph based methods (Nearest neighbor,
Geometric Graphs).

• Embedding methods often combine a graph and spectral
decompositions.

Sankaran, Kris and Holmes, Susan P (2019) Multitable Methods
for Microbiome Data Integration, Frontiers in genetics, 10, 2019.



Multiviews



Multiviews

Images generated using an origami- Foldscope microscope



An example: the Microbiome data

DNA The Genomic material present (16S rRNA-gene
especially).

RNA What genes are being turned on (gene
expression), transcriptomics.

Mass Spec Specific signatures of chemical compounds
present.

Clinical Multivariate information about patients’ clinical
status, medication, weight.

Environmental Location, nutrition, time.
Domain Knowledge Metabolic networks, phylogenetic trees,

gene ontologies.



Heterogeneous Data Objects
Input and data manipulation with phyloseq
(McMurdie and Holmes, 2013, Plos ONE)
As always in R: object oriented data.



ape
package

OTU Abundance
otu_table

Sample Variables
sample_data 

Taxonomy Table
taxonomyTable 

Phylogenetic Tree
phylo

otu_table sample_data tax_table phy_tree

otu_table sample_data tax_table

read.tree
read.nexus
read_tree

as as as

import

phyloseq
constructor:

Biostrings
package

Reference Seq.
XStringSet

DNAStringSet
 RNAStringSet

AAStringSet

phyloseq

Experiment Data

otu_table,
sam_data,
tax_table,
phy_tree
refseq

Accessors:
get_taxa
get_samples
get_variable
nsamples
ntaxa
rank_names
sample_names
sample_sums
sample_variables
taxa_names
taxa_sums

Processors:
filter_taxa
merge_phyloseq
merge_samples
merge_taxa
prune_samples
prune_taxa
subset_taxa
subset_samples
tip_glom
tax_glom

matrix matrixdata.frame

optional

refseq

data

data structure & APIphyloseq

http://joey711.github.io/phyloseq/



phyloseq

Preprocessing

Import

Direct Plots

plot_network plot_heatmap plot_ordination

distance ordinate

Summary / Exploratory
Graphics

filter_taxa
filterfun_sample
genefilter_sample
prune_taxa
prune_samples
subset_taxa
subset_samples
transform_sample_counts

import_biom
import_mothur
import_pyrotagger
import_qiime
import_RDP

plot_tree

plot_richness

plot_bar

bootstrap
permutation tests
regression
discriminant analysis
multiple testing
gap statistic
clustering
procrustes

Inference, Testing

sample data

OTU cluster output

Input

raw

phyloseq
processed

work flowphyloseq
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graphics

plot_ordination()
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markdown !
(code + console) + 

figures

phyloseq + !
ggplot2 + !
etc.

# Main title	
!
This is an [R Markdown](my.link.com) 
document of my recent analysis.	
!
## Subsection: some code	
Here is some import code, etc.	
```{r}	
library("phyloseq")	
library("ggplot2")	
physeq = import_biom(“datafile.biom”)	
plot_richness(physeq)	
```

source.Rmd

Complete HTML5

knitr::knit2html()

microbiome data

Our Goal with Collaborators:!
Reproducible analysis workflow 
with R-markdown

Better Reproducibility



Part I

An Example



Example of Study

file://localhost/Users/susan/Dropbox/CaseStudies/RREnterotype_WEHI.html


Summary of the study

• Choose the data transformation (here proportions replaced the
original counts).

... log, rlog, subsample, prop, orig.

• Take a subset of the data, some samples declared as outliers. ...
leave out 0, 1, 2 ,..,9, + criteria (10)......

• Filter out certain taxa (unknown labels, rare, etc...)
... remove rare taxa (threshold at 0.01%, 1%, 2%,...)

• Choose a distance.
... 40 choices in vegan/phyloseq.

• Choose an ordination method and number of coordinates.
... MDS, NMDS, k=2,3,4,5..

• Choose a clustering method, choose a number of clusters.
... PAM, KNN, density based, hclust ...

• Choose an underlying continuous variable (gradient or group of
variables: manifold).

• Choose a graphical representation.



There are thus more than 200 million possible ways of
analyzing this data:

5× 100× 10× 40× 8× 16× 2× 4 = 204800000



Transfer Learning for Humans: Extend existing methods

• Spatial statistics.
• Probabilistic denoising.
• Extend covariances from variables to tables.
• Nonparametric Network testing.
• Latent variables, latent clusters, latent networks, latent
manifolds.

• Hierarchical, iterative methods.



Stained Lymph Node



Output Data

Setiadi AF, Ray NC, Kohrt HE, Kapelner A, Carcamo-Cavazos V, Levic EB,
Yadegarynia S, Van Der Loos CM, Schwartz EJ, Holmes S, Lee PP.
Quantitative, architectural analysis of immune cell subsets in
tumor-draining lymph nodes from breast cancer patients and
healthy lymph nodes. PLoS One. 2010;5(8).



Data Analysis

• Data are output and read into R.
• Orders of magnitude: 100,000- 1.5 million cells per lymph
node.

• As many as 100,000 Tumor cells.
• Only a few hundred dendritic cells.

• Spatial Analysis done with spatstat, spdep,
DCluster..



Reading Data into R

for ( i in (1:16)){
DCname=paste("/U/cells/P1out/",tumorsp[i],"-DCs.txt",sep="");
DCs=read.delim2(DCname, sep=",", header=TRUE)
list.slides[[i]]=ppp(list.all[[i]][,1],list.maxs[[i]][2]-
list.all[[i]][,2],window=owin(c(0,list.maxs[[i]][1]),
c(0,list.maxs[[i]][2])),marks=as.factor(c(rep("Other",
list.counts[[i]][1]),rep("Tumor",list.counts[[i]]
[2]),rep("Tcells",list.counts[[i]][3]))))
}

list.slides[haveall[2]]
marked planar point pattern: 107347 points
multitype, with levels = DCs^^IOther^^ITcells^^ITumor
window: rectangle = [0, 11492] x [0, 12825] units



Using statistics:

F

x 
θ

θ

θP

See book:
http://bios221.stanford.edu/book/

http://bios221.stanford.edu/book/


Standard spatial statistical methods

Transformation of Ripley’s K statistic:

See full explanation in this chapter: https:
//www.huber.embl.de/msmb/Chap-Images.html

https://www.huber.embl.de/msmb/Chap-Images.html
https://www.huber.embl.de/msmb/Chap-Images.html


Part II

Features generated from raw data

(quality and frequencies)



Diversities in the microbiome depend on the number of taxa

• α-diversity: Number of ‘species’-taxa in a biological
sample ( from one location).

• β-diversity: Differentiation in diversity among different
samples from different locations.

Extremely sensitive to noise.
Fake species:



How many words does Professor D. know?

• Maybe 15,000, 20,000?
• Start sampling...... banana, bannana, bannanna, orange,
orenge, muscle, musel, muscel, foreign, forene, forane,.........

• How many real words does Prof D. know?
• Use more information than the spelling....

The success of dada2 is in it’s use of the frequencies, often
forgotten or hidden from the user if you only inventory the
different sequences.



From reads to Operational Taxonomic Units
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From reads to Operational Taxonomic Units

OTU  1

OTU  2
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Curent practice (qiime, mothur, rdp,...): 97% similarity.



Probabilistic Model accounting for frequencies and distances

.



Error Model

s: ATTAACGAGATTATAACCAGAGTACGAATA...
| |

r: ATCAACGAGATTATAACAAGAGTACGAATA...

P(r|s) =

L∏
i=1

P(r(i)|s(i), qr(i), Z)

P probabilities of substitutions (A− > C)
q Quality score (Q=30) Batch effect (run)
Use the denoised sequence instead of the OTU[2].

LOST    INFORMATION

Original
         Data

Final
Results



Higher resolution strain clustering: DADA2
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L. crispatus sampled from 45 pregnant women

R package: http:
//benjjneb.github.io/dada2/R/tutorial.html

http://benjjneb.github.io/dada2/R/tutorial.html
http://benjjneb.github.io/dada2/R/tutorial.html


Part III

Multitable approaches



Multi-table methods

Inertia, Co-Inertia

We generalize it in several directions through the idea of
inertia.

As in physics, we define inertia as a weighted sum of distances
of weighted points.

This enables us to use abundance data in a contingency table
and compute its inertia which in this case will be the weighted
sum of the squares of distances between observed and
expected frequencies, such as is used in computing the
chisquare statistic.

Another generalization of variance-inertia is the useful
Phylogenetic diversity index. (computing the sum of distances
between a subset of taxa through the tree).

We also have such generalizations that cover variability of
points on a graph taken from standard spatial statistics.



Co-Inertia

When studying two variables measured at the same locations,
for instance PH and humidity the standard quantification of
covariation is the covariance.

sum(x1 ∗ y1+ x2 ∗ y2+ x3 ∗ y3)

if x and y co-vary -in the same direction this will be big.

A simple generalization to this when the variability is more
complicated to measure as above is done through Co-Inertia
analysis (CIA):
a multivariate method that identifies trends or
co-relationships in multiple datasets which contain the same
samples or the same time points. That is the rows or columns
of the matrix have to be weighted similarly and thus must be
matchable.



RV coefficient

The global measure of similarity of two data tables as opposed
to two vectors can be done by a generalization of covariance
provided by an inner product between tables that gives the RV
coefficient, a number between 0 and 1, like a correlation
coefficient, but for tables.

RV(A,B) =
Tr(A ′B)√

Tr(A ′A)
√

Tr(B ′B)



Example

Taxa Read counts (3 patients taking cipro: two time
courses) : .

Mass-Spec Positive and Negative ion Mass Spec features and
their intensities: .

RNA-seq Metagenomic data on genes :.

Here is the RV table of the three array types:

> fourtable$RV
Taxa Kegg MassSpec+ MassSpec-

Taxa 1 0.565 0.561 0.670
Kegg 0.565 1 0.686 0.644
MassSpec+ 0.561 0.686 1 0.568
MassSpec- 0.670 0.644 0.568 1



Multiple table methods: STATIS and DiSTATIS

In PCA we compute the variance-covariance matrix, in multiple
table methods we can take a cube of tables and compute the
RV coefficient of their characterizing operators.

We then diagonalize this and find the best weighted ‘ensemble’
(PCA of PCA, Escoufier, 1975, L’Hermier des Plantes, 1976).

This is called the ‘compromise’ and all the individual tables
can be projected onto it.



A compromise projection approach

Naively overlaying projections of the principal coordinate
loadings generated from different posterior samples of S on
the same plot could show the variability of the projections
(Holmes, 1985).
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Other examples: Ten quick tips for effective dimensionality
reduction (2019), Nguyen, Lan Huong and SH, PLoS
computational biology [? ].



Bayesian Unidimensional Scaling (BUDS)

Lan Huong Nguyen, SH, BMC Bioinformatics, 2017.



Part IV

Uncertainty quantification
and propagation



Bayesian posterior uncertainty measures
Parameters for samples
Yj, j ∈ J = {1, . . . , J}

Define a joint prior on these
factors through the Gram
matrix (ϕ(j1, j2))j1,j2∈J
The parameters Yj can be
interpreted as key
characteristics of the biological
samples that affect the relative
abundance of ASVs.
Qi,j = ⟨Xi,Yj⟩+ ϵi,j,

ϵi,j iid Normal
Bayesian Nonparametric Ordination for the Analysis of
Microbial Communities, Ren, Bacallado, Favaro, Holmes, Trippa
(2017, JASA).



Parameters for samples

Yj, j ∈ J = {1, . . . , J}

Define a joint prior on these factors through the Gram matrix

(ϕ(j1, j2))j1,j2∈J

The parameters Yj can be interpreted as key characteristics of
the biological samples that affect the relative abundance of
OTUs.

Qi,j = ⟨Xi,Yj⟩+ ϵi,j, (1)

where the ϵi,j are independent Normal variables.



The methods that we consider here are all related to PCA and
use the normalized Gram matrix S between biological samples.

S is the correlation matrix of (Qi,1, . . . , Qi,J). Based on a single
posterior instance of S, we can visualize biological samples in
a lower dimensional space through PCA, with each biological
sample projected once.





Registration: Find S0

Identify a Gram matrix S0 that best summarizes K posterior
samples’ Gram matrix S1, . . . , SK. Minimizing L2 loss
element-wise leads to S0 = (

∑
i Si)/K.

We prefer to choose S0, the Gram matrix that maximizes
similarity with S1, . . . , SK.

We use the RV similarity metric between two symmetric square
matrices A and B

RV(A,B) = Tr(AB)/
√
Tr(AA)Tr(BB)

We diagonalize the RV matrix to obtain S0.



Find lower dimensional consensus space V

For dim 2, v1 and v2 of S0 corresponding to the largest
eigenvalues λ1 and λ2. All biological samples in V are
visualized by projecting rows of S0 onto V :
(ψ0

1,ψ
0
2) = S0(v1λ−1/2

1 , v2λ−1/2

2 ).



Project the rows of posterior sample Sk onto V by
(ψk

1 ,ψ
k
2) = Sk(v1λ−1/2

1 , v2λ−1/2

2 ). Overlaying all the ψk displays
uncertainty of S in the same linear subspace. Posterior
variability of the biological samples’ projections is visualized in
V by plotting each row of the matrices (ψk

1 ,ψ
k
2), k = 1, . . . , K,

in the same figure.



We can see the uncertainties

Bayesian Nonparametric Ordination for the Analysis of
Microbial Communities, Ren et al, 2017 (JASA).
A contour plot is produced for each biological sample to
facilitate visualization of the posterior variability of its position
in the consensus space V .



Part V

Communities and
networks



Graphs and Nonparametric two sample testing

Friedman and Rafksy devised an extension of the Wald
Wolfowitz test.

For univariate continuous observations:

• Pool the observations.
• Rank the observations.
• Count the number of runs (sequences of observations
that are from the same sample and follow each other).

The Test statistic is the total number of ”runs”.





Multivariate extension: multivariate ranking?

Friedman and Rafsky proposed to use minimal spanning trees
as a multivariate generalization of the univariate sorted list.
Runs are ”pure” edges.
The null distribution of the test statistics can be computed
using permutation tests: fix the tree and permute the labels.
Good power in finite samples for multivariate data (against
general alternatives: location, spread, and shape).
Note: You can use other ”skeleton graphs” not necessarily the
minimum spanning tree.
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Graph based Tests in practice

In our example: Fo = 69

Keeping the graph fixed, permute the labels and recompute the
number of pure edges. All 1000 simulated values had Fs < 69

so p < 0.001.
●

0
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15

20

20 40 60
Number of pure edges

cou
nt

Different versions of this test are implemented in the R
package phyloseqGraphTest written by Julia Fukuyama
(available on CRAN).



The Yoda of Silicon Valley

“premature optimization is the root of
all evil in coding”



In Statistics

“premature summarization is the root of

all evil in statistics and
data science”



Keeping all the information

Source:

Ottawa, 2016, using data Natural Resources Canada, Canvec +, 2015. Software used: Esri, ArcGIS, version 10.3.1.

Contains information licensed under Open Government Licence – Canada



• Waste not, Want not supplementary material:
http://joey711.github.io/waste-not-supplemental/

• Pregnancy Study:PNAS Supplement

• Prevotella and Bacteroidetes with Sue Huse and
Anastassia Gorvitovskaia :
https://purl.stanford.edu/fs506ff9976

• Complete Bioconductor workflow, F1000Research:
http://f1000research.com/articles/5-1492/v1

• PSB Reproducible research examples (enterotypes, oral,
pregnancy microbiomes):
http://statweb.stanford.edu/~susan/papers/PSBRR.html

• Treelapse for antibiotics

• Short course materials open source

http://joey711.github.io/waste-not-supplemental/
http://statweb.stanford.edu/~susan/papers/PNASRR.html
https://purl.stanford.edu/fs506ff9976
http://f1000research.com/articles/5-1492/v1
http://statweb.stanford.edu/~susan/papers/PSBRR.html
http://statweb.stanford.edu/~kriss1/antibiotic.html
https://web.stanford.edu/class/bios221/Pune/


R packages and resources

phyloseq: http://bioconductor.org/packages/stats/
bioc/phyloseq/

dada2: http://bioconductor.org/packages/stats/
bioc/dada2/

treelapse: https:
//krisrs1128.github.io/treelapse/

treelapse antibiotics http://statweb.stanford.
edu/~kriss1/antibiotic.html

microbiome_pvlm: https://github.com/
krisrs1128/microbiome_plvm

decontam:
https://github.com/benjjneb/decontam/

adaptiveGPCA: https://cran.r-project.org/web/
packages/adaptiveGPCA/index.html

bootLong: https:
//github.com/PratheepaJ/bootLong/
blob/master/vignettes/Workflow.Rmd

Modern Statistics for Modern Biology
http://bios221.stanford.edu/book/

http://bioconductor.org/packages/stats/bioc/phyloseq/
http://bioconductor.org/packages/stats/bioc/phyloseq/
http://bioconductor.org/packages/stats/bioc/dada2/
http://bioconductor.org/packages/stats/bioc/dada2/
https://krisrs1128.github.io/treelapse/
https://krisrs1128.github.io/treelapse/
http://statweb.stanford.edu/~kriss1/antibiotic.html
http://statweb.stanford.edu/~kriss1/antibiotic.html
https://github.com/krisrs1128/microbiome_plvm
https://github.com/krisrs1128/microbiome_plvm
https://github.com/benjjneb/decontam/
https://cran.r-project.org/web/packages/adaptiveGPCA/index.html
https://cran.r-project.org/web/packages/adaptiveGPCA/index.html
https://github.com/PratheepaJ/bootLong/blob/master/vignettes/Workflow.Rmd
https://github.com/PratheepaJ/bootLong/blob/master/vignettes/Workflow.Rmd
https://github.com/PratheepaJ/bootLong/blob/master/vignettes/Workflow.Rmd
http://bios221.stanford.edu/book/


Solutions : respect the data.

• Poor data quality, information−→ quality scores &
probability.

• Maintain all information −→ sequences are names, retain
uncertainties.

• Interpretation −→ latent variables (gradients, clusters,
networks).

• Reproducibility −→ complete code source.
• Heterogeneity −→ multicomponent objects: BioC.
• Training and collaboration −→ Rmd and html.



More Solutions.

• Nonlinearity −→ Transformations help.
• Dependencies other than linear −→ new correlation

coefficients (XiCOR).
• Local information −→ collate patches and align(UMAP).
• Tree and graph integration −→ multi-table analyses with

kernels.
• Testing −→ nested permutations and dependent

(block bootstrap).
• Robustness −→ sparse methods using regularization.



Benefitting from the tools and schools of Statisticians.......

Thanks to the R and Bioconductor community and to
co-authors.

Wolfgang Huber, Martin Morgan, Joey McMurdie, Ben Callahan,
JJ Allaire and Rob Gentleman.

Thank you to the organizers for inviting me.



Lab Group and David Relman

Postdoctoral Fellows Paul (Joey) McMurdie, Ben Callahan,
Christof Seiler, Pratheepa Jeganathan. Students: John Cherian,
Diana Proctor, Lan Huong Nguyen, Julia Fukuyama, Kris
Sankaran, Claire Donnat. Funding from NIH TR01 and NSF-DMS.
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