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Motivation: entropic force for polymer chains

Let us recall the basic micro-macro model for polymeric fluids.
We consider a dilute solution of polymers, with polymer chains
which are:

1. very numerous (statistical mechanics),

2. small and light (Brownian effects),

3. within a Newtonian solvent.
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Macroscopic level

Momentum equations (incompressible fluid):
p(0: +uV)u=—-Vp+div (o) + fex,

div (u) = 0.

Non-Newtonian fluids:
o=n (Vu + (VU)T) + T,

where the extra-stress T depends on the history of the deformation.
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Multiscale modeling

Phenomenological modelling
using principles of fluid mechanics

|

[Microscopic models (kinetic theory) ]

[ Integral models ]H[ Differential models H Stochastic models ]

Discretization
of the integral

Finite Element

FEM (fluid)

using the decreaging Methods Monte Carlo (polymers)
memory functio
‘ Macroscopic simulations ‘ ‘ Micro—macro simulations ‘
: ; . Dt
Differential models : 5T = f(7, Vu),

Integral models :

(Macroscopic approach: R. Keunings & al.,

T=J"

B. van den Brule & al., M. Picasso & al.)

m(t — t')S¢(t') dt’.
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Microscopic model (1/4)

A coarse-grained description: consider blobs (1 blob ~ 20 CH,
groups). The basic model (the dumbbell model): only two blobs.
The conformation is given by the “end-to-end vector’.

References: R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamic of Polymeric Liquids,
Wiley / M. Doi, S.F. Edwards, The theory of polymer dynamics, Oxford Science Publication) / H.C.

Ottinger, Stochastic processes in polymeric fluids, Springer.
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Microscopic model (2/4)

Forces on bead i (i = 1 or 2) of coordinate vector X' in a velocity
field u(t, x) of the solvent (zero mass Langevin equation):

) X :
e Drag force: —¢ <d t _ u(t7xé)> 7
dt
e Entropic force on bead i: F* = —F2 = F(X? — X}). For

example:

F(X) = HX (Hookean dumbbell),

HX
F(X) = FENE dumbbell).
X = T Rr ) | )
e “Brownian force”: \/2kT(C dBi

with B} a Brownian motion.
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Microscopic model (3/4)

We have:
dXt =u(t,X})dt + CIF(X;) dt + \/2kT(¢-1dB;
dX? = u(t,X?)dt — C"'F(X;) dt + /2kT(~1dB?

Let us introduce the end-to-end vector X; = (Xf - X%) and the
position of the center of mass R, = 3 (X} + X2):

dX¢ = (u(t,X2) —u(t, Xy)) dt — 2('F(X;) dt + 2/ kT Ld W,
%( (t, X}) +u(t,X?)) dt + VkT¢1dW?2,

= 5 (Bf — B;) and W? = 75 (B} + BY).
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Microscopic model (4/4)

Approximations:
o u(t,X}) ~u(t,Rs) + Vu(t,R:)(Xi — Ry),
e the noise on R; is negligible.

We finally get

2 [4kT
dXt:Vu(t, Rt)xtdt_EF(Xt)dt—’_ Tth,
th = U(t, Rt) dt.

Eulerian version: at a fixed macroscopic point x

dX(x) +u(t,x).VX.(x)dt
— Vu(t, )X (x) dt — %F(Xt(x)) dt + | /gdwt.
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Micro-macro model

The Kramers formula gives the stress tensor 7 in terms of the
polymer chain configurations:

(t,x) = n,,( — kT + E (X.(x) ® F(Xt(x)))).
This yields the complete coupled system:

p (0 +uV)u=—-Vp+nAu+div (7) + fext,
div (u) =0,

r= n,,(— kTId —|—E(Xt®F(Xt))>>

2 [4kT
dXt+uvatdt: (vuxt—zF(Xt)> dt + Tth
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Entropic force and coarse-graining

Where does the entropic force come from?

F! = V1 Inteq([| X2 — X1||), where 1beq is the equilibrium density
of the end-to-end distance || X? — X!||, in zero velocity field. In
statistical physics, this force is called the mean force associated
with the collective variable “end-to-end vector”.

General question: Starting from dynamics on the full-atom polymer
chain X; = (X},..., X/") with values in R3" (n atoms), and the
coarse-graining map £(X) = X" — X! (end-to-end vector), we
would like to derive effective Markov dynamics in R3 close to
(&(Xt))e>0- Is the mean force a good coarse-grained force?
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General setting

Let us consider a stochastic dynamics
dXe = =V V(X;) dt + V2dW,.

and a smooth one dimensional function ¢ : R? — R. This dynamics
admits as an invariant measure:

u(dx) = Z 7t exp(—V/(x)) dx.

Problem: Propose a Markovian dynamics (say on Z; € R) that
approximates the dynamics (£(X¢))t>o0-

In all what follows, to keep things simple, let us assume that d =2
and
§(x1, %) = x1.
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Free energy

The free energy A: R — R is defined by:
exp(—A(x1)) = Z_I/ exp(—V/(x1,x2)) dxa.
R

Notice that, & * u = exp(—A(x1)) dxy: for all test function ¢,

[ eotdi= [ o) en(-Ab) o
R2 R
Question: Is the effective dynamics

dZ; = —A'(Z:) dt + V2dB;

close to (&(X¢))t>0 = (X2)i>0 ? It is thermodynamically consistent
(correct invariant measure) but is it dynamically consistent ?
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Construction of the effective dynamics (1/3)
Original dynamics:
e SDE on X; = (X}, X?):
dXe = —VV(X;) dt + V2dW,.
PDE on L£(X:) = 9(t, x) dx = 1(t, x1, x2) dxydxa:
O = div (V V) + A,

Equilibrium: 1o, = Z exp(—V).
e SDE on X}:

dX} = —01 V(X X?) dt +V2dW}.
PDE on L(XY) = (t,x1) dx1, where
lzj(tu Xl) = fR ll}(t,X]_,Xz) dXZ:

81“% =0 (/R oL V) dX2> + 81,1E.

We need a closure approximation.
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Construction of the effective dynamics (2/3)

First attempt: Closure by conditional expectation
SDE on Z: 5 }
dZ, = —b(t, Z;) dt + V2dW}

where

b(t,z) = E(OLV(X{, XD) X = 2) = =

PDE: One has E(Zt) = 1(t,x1) dx1! Indeed,

Oeh = o (bY) + 9119

since / 01 Vipdxo = b
R

But b is not easy to compute... and where is the free energy?
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Construction of the effective dynamics (3/3)

Second attempt: Closure by conditional expectation at equilibrium
SDE on Z;:
dZ, = —b(Z;) dt + v/2dW}

where

/ 01V exp(—V)dxy

/ exp(—V)dxo
R
Notice that, since A(x;) = —In [, exp(—=V)dxx +In Z,
b(Xl) = A/(Xl).
PDE on L(Z;) = ¢(t,x1) dxq:
ded = 01(A'9) + D110

Related approaches: Mori-Zwanzig and projection operator
formalism [e/vanden-Eijnden, ..], asymptotic approaches [papanicolaou, Freidiin,

b(x1) = E, (1 V(XY X?) X! = x1)

Pavliotis/Stuart, ...].
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Error analysis: time marginals

Theorem [Legoll, TL, 2010]
Let us recall that £(x1,x2) = x1. Under the assumptions:

(H1) For all x;, the conditional probability measures

p(lE(x) = x1) = %’&?{m satisfy a Logarithmic Sobolev
Inequality with constant p,
(H2) Bounded coupling assumption: |01 2 V|| < k.

Then, if £(£(Xo)) = £(Z), 3C >0, Vt >0,
HL(EX), £(20)) < € (HL(o) ) — HE(X)In)

where H(u|v) = [In(dp/dv)dp denotes the relative entropy.
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Longtime convergence and entropy (1/3)

Recall the original dynamics:
dXy = —VV/(X,) dt + V2dW,.
The associated Fokker-Planck equation writes:
o = div (VV) + A

where X; ~ 9(t, x) dx.

The rate of convergence of 1) to 1o, = Z > exp(— V) in entropy is
dictated by the LSI constant of p(dx) = oo (x) dx.
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Longtime convergence and entropy (2/3)

Notice that the Fokker-Planck equation rewrites

: Y
o = div o -
)

where o, = Z"Lexp(—V).

Let us introduce the entropy:

H(e ) = [ (25 ) v
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Longtime convergence and entropy (3/3)

M:/ n (%) B

R2 oo
= /Rzln (%) div (:poov (%))
= —/Rz Vin <¢%)

¢ = =1((t, )[Yoo)-
Definition: The meas 1 (x) dx satisfies a Logarithmic Sobolev
Inequality (LSI(R)) iff: V¢ pdf,

H(dhine) <

< S 1(0l=0)

Lemma: o, satisfies LSI(R) <= for all IC ¢(0,-), for all t >0,
H(1(t,)|[oo) < H(1(0, -)|thoc ) exp(—2Rt).



Proof (1/4)
Truth: X} with law v(t, x1)dx; and

/ o1V (x)y(t x)dx2
o) = 81 (b)) + &1 1% where b(t,x1)

(t Xl)
Approximation: Z; with law ¢(t, x;)dx; and
/31 V(x)¥oo (x)dx2
Ordp = O1(A'}) + 01,10 where A'(xy) = B o .
¢m(xl)

We would like to estimate H (¢(t,-)|¢(t,")) = / In (%) ) dxy.
R
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Proof (2/4)

Step 1: Entropy estimate

One has B B B . -
Ot = O (AY) + d11¢ + 01 ((b — A)e)

and thus

M) iGloy+ [ (4 -5)T 01 (n) o

<o 5 [ (m(nD)) Tl [ (4-5) 500

< %/R (A’ — E)zwdxl.
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Proof (3/4)
Step 2: Transport inequality [Grunewald/Otto/Villani/Westdickenberg]
For fixed t and xq, let m3*(dx2, dX2) be a coupling measure with

x1 _ P(txi,x2) and v = Yoo (x1,X2)

marginals v} D(E1) Yoo (x1,%2)

(H2),

We have, using

Alxi) — E(t,xl)‘ = | [ (01V(x,5) = 01V (. %)) m (db, d52)
R

< ||312V||Loo/ 150 — S| 2% (da, d50).

Taking the infimum on 7} € M (1%, ),

Aa) = Bt )| < 012Vl WA(?, v

We now use the Talagrand inequality and the LSI on 2 (H1) to

get

1012 V|10
p

A'a) = B(t. )| < I v2)
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Proof (4/4)

Motivation

Step 3: Conclusion
We thus have

2
[ (A6 = Bleox) Do) o < 12270 [ gy
HaleHLoo
)

Plugging this into the entropy estimate, we get

dt . 2p?
__1012Vfe dH(®[ts)
202 d

Integrating in time (since H(v)(0,-)|¢(0,-)) = 0):

vt 2 0, HEIHOIo(0) < 12271 () vac) — H@(O0))
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Entropy techniques

Other results based on this set of assumptions (LSI for the
conditional measures and bounded coupling):

® [TL, JFA 2008]
LSI for the cond. meas. u(:|{(x) = z) + bdd coupling
+ LSI for the marginal £ x © = LSI for p.

® [TL, Rousset, Stoltz Nonlinearity, 2008] Analysis of the adaptive biasing
force method which writes, for £(x1, x2) = x1:

{ dX; = —V(V — Ar 0 €)(Xe) dt + V2dW, ,
Ai(z) = E(91V(Xp)[E(Xt) = 2).



Error analysis

Error analysis: trajectories
Theorem [Legoll, TL, Olla, 2017]
Let us recall that £(x1,x2) = x1. Under the assumptions:
(H1") For all x1, the conditional probability measures p(-[£(x) = x1)
satisfy a Poincaré inequality with constant p,
(H2) Bounded coupling assumption: [|012V/||12(,) < &,
(H3) b is one-sided Lipschitz (—b’ < Lp) and such that
/ sup | b (2)PE(dxt) < oo.
R z€[—[xa|,[xa]
Then, if Zy = £(Xo) is distributed according to a measure 1 such
that 92 € L,

A

te[0,T]

E( sup [§(X¢) — Zt‘) < ct

The proof uses probabilistic arguments (Poisson equations and
Doob's martingale inequalities).
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Remark: Application to averaging principle

These techiques can be used to obtain quantitative results for
averaging principles. For example, let us consider

dX}S = —a1 V(XE) dt + vV2dW}

€
dx2e — _@Vf(xt) dt + \/gde

Then, under the assumptions above:

E | sup ‘th’E—Zt
te[0,T]

)gcxff-
P
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Recent extensions and on-going works

We recently extended these results to general vectorial reaction
coordinates and to non-reversible dynamics (non-gradient forces)

(collab. with U. Sharma and W. Zhang).

From a numerical viewpoint, these coarse-grained dynamics can be
used as predictors in predictor-corrector schemes (parareal
a|g0rithms) (collab. with G. Samaey).
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