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Motivation: entropic force for polymer chains

Let us recall the basic micro-macro model for polymeric fluids.

We consider a dilute solution of polymers, with polymer chains
which are:

1. very numerous (statistical mechanics),

2. small and light (Brownian effects),

3. within a Newtonian solvent.
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Macroscopic level

Momentum equations (incompressible fluid):

ρ (∂t + u.∇) u = −∇p + div (σ) + fext ,

div (u) = 0.

Non-Newtonian fluids:

σ=η
(

∇u + (∇u)T
)

+ τ ,

where the extra-stress τ depends on the history of the deformation.
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Multiscale modeling

Methods

of the integral

using the decreasing

 

Phenomenological modelling

Stochastic models

Microscopic models (kinetic theory)

Macroscopic simulations

Integral models Differential models

Finite Element

Discretization

memory function

FEM (fluid)

Monte Carlo (polymers)

Micro−macro simulations

using principles of fluid mechanics 

Differential models : Dτ

Dt
= f (τ ,∇u),

Integral models : τ =
∫ t

−∞m(t − t ′)St(t
′) dt ′.

(Macroscopic approach: R. Keunings & al., B. van den Brule & al., M. Picasso & al.)
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Microscopic model (1/4)

A coarse-grained description: consider blobs (1 blob ≃ 20 CH2

groups). The basic model (the dumbbell model): only two blobs.
The conformation is given by the “end-to-end vector”.

1
2

3

n

References: R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamic of Polymeric Liquids,

Wiley / M. Doi, S.F. Edwards, The theory of polymer dynamics, Oxford Science Publication) / H.C.

Öttinger, Stochastic processes in polymeric fluids, Springer.
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Microscopic model (2/4)

Forces on bead i (i = 1 or 2) of coordinate vector X
i
t in a velocity

field u(t, x) of the solvent (zero mass Langevin equation):

• Drag force: −ζ
(

dX
i
t

dt
− u(t,X i

t)

)

,

• Entropic force on bead i : F1 = −F2 = F(X 2
t − X

1
t ). For

example:

F(X ) = HX (Hookean dumbbell),

F(X ) =
HX

1 − ‖X‖2/(bkT/H)
(FENE dumbbell).

• “Brownian force”:
√

2kT ζ dB
i
t

with Bi
t a Brownian motion.
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Microscopic model (3/4)

We have:
{

dX
1
t = u(t,X 1

t ) dt + ζ−1
F(X t) dt +

√

2kT ζ−1dB
1
t

dX
2
t = u(t,X 2

t ) dt − ζ−1
F(X t) dt +

√

2kT ζ−1dB
2
t

Let us introduce the end-to-end vector X t =
(

X
2
t −X

1
t

)

and the
position of the center of mass Rt =

1
2

(

X
1
t + X

2
t

)

:







dX t =
(

u(t,X 2
t )− u(t,X 1

t )
)

dt − 2ζ−1
F(X t) dt + 2

√

kT ζ−1dW
1
t ,

dRt =
1

2

(

u(t,X 1
t ) + u(t,X 2

t )
)

dt +
√

kT ζ−1dW
2
t ,

where W
1
t =

1√
2

(

B
2
t −B

1
t

)

and W
2
t =

1√
2

(

B
1
t + B

2
t

)

.
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Microscopic model (4/4)

Approximations:

• u(t,X i
t) ≃ u(t,Rt) +∇u(t,Rt)(X

i
t − Rt),

• the noise on Rt is negligible.

We finally get











dX t = ∇u(t,Rt)X t dt −
2

ζ
F(X t) dt +

√

4kT

ζ
dW t ,

dRt = u(t,R t) dt.

Eulerian version: at a fixed macroscopic point x

dX t(x) + u(t, x).∇X t(x) dt

= ∇u(t, x)X t(x) dt −
2

ζ
F(X t(x)) dt +

√

4kT

ζ
dW t .
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Micro-macro model

The Kramers formula gives the stress tensor τ in terms of the
polymer chain configurations:

τ (t, x) = np

(

− kT Id + E (X t(x)⊗ F(X t(x)))
)

.

This yields the complete coupled system:







































ρ (∂t + u.∇) u = −∇p + η∆u+ div (τ ) + fext ,

div (u) = 0,

τ = np

(

− kT Id + E (X t ⊗ F(X t))
)

,

dX t + u.∇xX t dt =

(

∇uX t −
2

ζ
F(X t)

)

dt +

√

4kT

ζ
dW t .
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Entropic force and coarse-graining

Where does the entropic force come from?
F1 = ∇

x
1 lnψeq(‖X 2

t − X
1
t‖), where ψeq is the equilibrium density

of the end-to-end distance ‖X 2 − X
1‖, in zero velocity field. In

statistical physics, this force is called the mean force associated
with the collective variable “end-to-end vector”.

General question: Starting from dynamics on the full-atom polymer
chain Xt = (X 1

t , . . . ,X
n
t ) with values in R

3n (n atoms), and the
coarse-graining map ξ(X ) = X n − X 1 (end-to-end vector), we
would like to derive effective Markov dynamics in R

3 close to
(ξ(Xt))t≥0. Is the mean force a good coarse-grained force?
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General setting

Let us consider a stochastic dynamics

dXt = −∇V (Xt) dt +
√

2dWt .

and a smooth one dimensional function ξ : Rd → R. This dynamics
admits as an invariant measure:

µ(dx) = Z−1 exp(−V (x)) dx .

Problem: Propose a Markovian dynamics (say on Zt ∈ R) that
approximates the dynamics (ξ(Xt))t≥0.

In all what follows, to keep things simple, let us assume that d = 2
and

ξ(x1, x2) = x1.
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Free energy

The free energy A : R → R is defined by:

exp(−A(x1)) = Z−1

∫

R

exp(−V (x1, x2)) dx2.

Notice that, ξ ∗ µ = exp(−A(x1)) dx1: for all test function ϕ,

∫

R2
ϕ ◦ ξdµ =

∫

R

ϕ(x1) exp(−A(x1)) dx1.

Question: Is the effective dynamics

dZt = −A′(Zt) dt +
√

2dBt

close to (ξ(Xt))t≥0 = (X 1
t )t≥0 ? It is thermodynamically consistent

(correct invariant measure) but is it dynamically consistent ?
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Construction of the effective dynamics (1/3)
Original dynamics:

• SDE on Xt = (X 1
t ,X

2
t ):

dXt = −∇V (Xt) dt +
√

2dWt .

PDE on L(Xt) = ψ(t, x) dx = ψ(t, x1, x2) dx1dx2:

∂tψ = div (∇Vψ) + ∆ψ.

Equilibrium: ψ∞ = Z−1 exp(−V ).

• SDE on X 1
t :

dX 1
t = −∂1V (X 1

t ,X
2
t ) dt +

√
2dW 1

t .

PDE on L(X 1
t ) = ψ(t, x1) dx1, where

ψ(t, x1) =
∫

R
ψ(t, x1, x2) dx2:

∂tψ = ∂1

(
∫

R

∂1Vψ dx2

)

+ ∂1,1ψ.

We need a closure approximation.
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Construction of the effective dynamics (2/3)
First attempt: Closure by conditional expectation
SDE on z̃t :

dZ̃t = −b̃(t,Zt) dt +
√

2dW 1
t

where

b̃(t, z) = E(∂1V (X 1
t ,X

2
t )|X 1

t = z) =

∫

R

∂1V (x)ψ(t, x)dx2

∫

R

ψ(t, x)dx2

.

PDE: One has L(Z̃t) = ψ(t, x1) dx1! Indeed,

∂tψ = ∂1(b̃ψ) + ∂1,1ψ

since

∫

R

∂1Vψdx2 = b̃ ψ.

But b̃ is not easy to compute... and where is the free energy?
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Construction of the effective dynamics (3/3)
Second attempt: Closure by conditional expectation at equilibrium
SDE on Zt :

dZt = −b(Zt) dt +
√

2dW 1
t

where

b(x1) = Eµ(∂1V (X 1,X 2)|X 1 = x1) =

∫

R

∂1V exp(−V )dx2

∫

R

exp(−V )dx2

.

Notice that, since A(x1) = − ln
∫

R
exp(−V ) dx2 + lnZ ,

b(x1) = A′(x1).

PDE on L(Zt) = φ(t, x1) dx1:

∂tφ = ∂1(A
′φ) + ∂1,1φ.

Related approaches: Mori-Zwanzig and projection operator
formalism [E/Vanden-Eijnden, ...], asymptotic approaches [Papanicolaou, Freidlin,

Pavliotis/Stuart, ...].
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Error analysis: time marginals

Theorem [Legoll, TL, 2010]

Let us recall that ξ(x1, x2) = x1. Under the assumptions:

(H1) For all x1, the conditional probability measures

µ(·|ξ(x) = x1) =
ψ∞(x1,x2)dx2

ψ∞(x1)
satisfy a Logarithmic Sobolev

Inequality with constant ρ,

(H2) Bounded coupling assumption: ‖∂1,2V ‖L∞ ≤ κ.

Then, if L(ξ(X0)) = L(Z0), ∃C > 0, ∀t ≥ 0,

H(L(ξ(Xt)),L(Zt)) ≤ C
κ

ρ

(

H(L(X0)|µ)− H(L(Xt)|µ)
)

where H(µ|ν) =
∫

ln(dµ/dν)dµ denotes the relative entropy.
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Longtime convergence and entropy (1/3)

Recall the original dynamics:

dXt = −∇V (Xt) dt +
√

2dWt .

The associated Fokker-Planck equation writes:

∂tψ = div (∇Vψ) + ∆ψ.

where Xt ∼ ψ(t, x) dx .

The rate of convergence of ψ to ψ∞ = Z−1 exp(−V ) in entropy is
dictated by the LSI constant of µ(dx) = ψ∞(x) dx .
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Longtime convergence and entropy (2/3)

Notice that the Fokker-Planck equation rewrites

∂tψ = div

(

ψ∞∇
(

ψ

ψ∞

))

where ψ∞ = Z−1 exp(−V ).

Let us introduce the entropy:

H(ψ(t, ·)|ψ∞) =

∫

R2
ln

(

ψ

ψ∞

)

ψ.
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Longtime convergence and entropy (3/3)

dH(ψ(t, ·)|ψ∞)

dt
=

∫

R2
ln

(

ψ

ψ∞

)

∂tψ

=

∫

R2
ln

(

ψ

ψ∞

)

div

(

ψ∞∇
(

ψ

ψ∞

))

= −
∫

R2

∣

∣

∣

∣

∇ ln

(

ψ

ψ∞

)
∣

∣

∣

∣

2

ψ =: −I (ψ(t, ·)|ψ∞).

Definition: The meas ψ∞(x) dx satisfies a Logarithmic Sobolev
Inequality (LSI(R)) iff: ∀φ pdf,

H(φ|ψ∞) ≤ 1

2R
I (φ|ψ∞)

Lemma: ψ∞ satisfies LSI(R) ⇐⇒ for all IC ψ(0, ·), for all t ≥ 0,
H(ψ(t, ·)|ψ∞) ≤ H(ψ(0, ·)|ψ∞) exp(−2Rt).
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Proof (1/4)

Truth: X 1
t with law ψ(t, x1)dx1 and

∂tψ = ∂1(b̃ψ) + ∂1,1ψ where b̃(t, x1) =

∫

R

∂1V (x)ψ(t, x)dx2

ψ(t, x1)
.

Approximation: Zt with law φ(t, x1)dx1 and

∂tφ = ∂1(A
′φ) + ∂1,1φ where A′(x1) =

∫

R

∂1V (x)ψ∞(x)dx2

ψ∞(x1)
.

We would like to estimate H
(

ψ(t, ·)|φ(t, ·)
)

=

∫

R

ln

(

ψ

φ

)

ψ dx1.
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Proof (2/4)

Step 1: Entropy estimate

One has
∂tψ = ∂1(A

′ψ) + ∂1,1ψ + ∂1((b̃ − A′)ψ)

and thus

dH(ψ|φ)
dt

= −I (ψ|φ) +
∫

R

(

A′ − b̃
)

ψ ∂1

(

ln
ψ

φ

)

dx1

≤ −I (ψ|φ) + 1

2

∫

R

(

∂1

(

ln
ψ

φ

))2

ψ +
1

2

∫

R

(

A′ − b̃
)2

ψ dx1

≤ 1

2

∫

R

(

A′ − b̃
)2

ψ dx1.
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Proof (3/4)
Step 2: Transport inequality [Grunewald/Otto/Villani/Westdickenberg]

For fixed t and x1, let πx1
t (dx2, dx̃2) be a coupling measure with

marginals νx1
t = ψ(t,x1,x2)

ψ(t,x1)
and νx1∞ = ψ∞(x1,x̃2)

ψ∞(x1,x2)
. We have, using

(H2),
∣

∣

∣
A′(x1)− b̃(t, x1)

∣

∣

∣
=

∣

∣

∣

∣

∫

R2
(∂1V (x1, x2)− ∂1V (x1, x̃2)) π

x1
t (dx2, dx̃2)

∣

∣

∣

∣

≤ ‖∂12V ‖L∞
∫

R2
|x2 − x̃2|πx1

t (dx2, dx̃2).

Taking the infimum on πx1
t ∈ Π(νx1

t , ν
x1∞),

∣

∣

∣
A′(x1)− b̃(t, x1)

∣

∣

∣
≤ ‖∂12V ‖L∞ W1(ν

x1
t , ν

x1
∞).

We now use the Talagrand inequality and the LSI on νx1∞ (H1) to
get

∣

∣

∣
A′(x1)− b̃(t, x1)

∣

∣

∣
≤ ‖∂12V ‖L∞

ρ

√

I (νx1
t |νx2∞)
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Proof (4/4)
Step 3: Conclusion

We thus have
∫

R

(

A′(x1)− b̃(t, x1)
)2

ψ(t, x1) dx1 ≤ ‖∂12V ‖2
L∞

ρ2

∫

R

I (νx1
t |νx1

∞)ψ

≤ ‖∂12V ‖2
L∞

ρ2
I (ψ|ψ∞).

Plugging this into the entropy estimate, we get

dH(ψ|φ)
dt

≤ ‖∂12V ‖2
L∞

2ρ2
I (ψ|ψ∞)

= −‖∂12V ‖2
L∞

2ρ2

dH(ψ|ψ∞)

dt
.

Integrating in time (since H(ψ(0, ·)|φ(0, ·)) = 0):

∀t ≥ 0, H(ψ(t)|φ(t)) ≤ ‖∂12V ‖2
L∞

2ρ2
(H(ψ(0)|ψ∞)− H(ψ(t)|ψ∞)).
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Entropy techniques

Other results based on this set of assumptions (LSI for the
conditional measures and bounded coupling):

• [TL, JFA 2008]

LSI for the cond. meas. µ(·|ξ(x) = z) + bdd coupling
+ LSI for the marginal ξ ∗ µ =⇒ LSI for µ.

• [TL, Rousset, Stoltz Nonlinearity, 2008] Analysis of the adaptive biasing
force method which writes, for ξ(x1, x2) = x1:

{

dXt = −∇(V − At ◦ ξ)(Xt) dt +
√

2dWt ,

A′
t(z) = E(∂1V (Xt)|ξ(Xt) = z).
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Error analysis: trajectories
Theorem [Legoll, TL, Olla, 2017]

Let us recall that ξ(x1, x2) = x1. Under the assumptions:

(H1’) For all x1, the conditional probability measures µ(·|ξ(x) = x1)
satisfy a Poincaré inequality with constant ρ,

(H2’) Bounded coupling assumption: ‖∂12V ‖L2(µ) ≤ κ,

(H3) b is one-sided Lipschitz (−b′ ≤ Lb) and such that
∫

R

sup
z∈[−|x1|,|x1|]

|b′(z)|2µ(dx1) <∞.

Then, if Z0 = ξ(X0) is distributed according to a measure µ0 such
that dµ0

dµ
∈ L∞,

E

(

sup
t∈[0,T ]

|ξ(Xt)− Zt |
)

≤ C
κ

ρ

The proof uses probabilistic arguments (Poisson equations and
Doob’s martingale inequalities).
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Remark: Application to averaging principle

These techiques can be used to obtain quantitative results for
averaging principles. For example, let us consider











dX
1,ε
t = −∂1V (X ε

t ) dt +
√

2dW 1
t

dX
2,ε
t = −∂2V (X ε

t )

ε
dt +

√

2

ε
dW 2

t

Then, under the assumptions above:

E

(

sup
t∈[0,T ]

∣

∣

∣
X

1,ε
t − Zt

∣

∣

∣

)

≤ C
√
ε
κ

ρ
.
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Recent extensions and on-going works

We recently extended these results to general vectorial reaction
coordinates and to non-reversible dynamics (non-gradient forces)
(collab. with U. Sharma and W. Zhang).

From a numerical viewpoint, these coarse-grained dynamics can be
used as predictors in predictor-corrector schemes (parareal
algorithms) (collab. with G. Samaey).
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