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What is a toggle?

Define a toggle te for each e in P .
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What is a toggle?

Define a toggle te for each e in P .

If an element is in an order ideal, toggling that element
removes it from the order ideal, if possible.
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The rowmotion action

We can define an action rowmotion in two ways.

Definition

Let P be a poset and I an order ideal of P . Row(I ) is the
order ideal generated by the minimal elements of P not in
I .

Theorem (Cameron and Fon-der-Flaass, 1995)

Rowmotion can be performed on a finite poset by toggling
from top to bottom.
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Promotion

Rowmotion toggles our poset from top to bottom.

We can define, analogously, promotion which toggles
our poset from left to right.
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An orbit under promotion

If we continue to apply promotion, we eventually return to
the order ideal at which we started, giving us an orbit of
order ideals under the action.
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What is homomesy?

Observe: the average cardinality of our example orbit
under promotion is 3.

2 + 5 + 3 + 1 + 4

5
= 3
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What is homomesy?

If we check another orbit, the average cardinality is also 3.

0 + 3 + 6 + 4 + 2

5
= 3

Notice that for the poset [3]× [2], the average cardinality
of an order ideal over all order ideals is 3.
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Homomesy in the two-dimensional product of chains

If every orbit average of a statistic is the same as the
global average of that statistic, we say we have
homomesy.

Theorem (Propp and Roby, 2015)

Order ideals of [a]× [b] under promotion with cardinality
statistic exhibit homomesy with average value ab/2.

What about rowmotion?
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Recombination

Row Row Row

Pro

These are two partial orbits, the top is under rowmotion,
the bottom is under promotion.
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Recombination

The previous proof technique is called recombination.

Theorem (Einstein and Propp, 2014)

Recombination gives a bijection between order ideals of a
product of chains poset under rowmotion and promotion.

Because recombination preserves cardinality, this gives a
slick proof for the following result.

Theorem (Propp and Roby, 2015)

Order ideals of [a]× [b] under rowmotion with cardinality
statistic exhibit homomesy with average value ab/2.
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Promotion on a higher dimensional product of chains

Definition (Dilks, Pechenik, Striker, 2017)

Let P = [a1]× · · · × [an] and let v = (v1, v2, . . . , vn)
where vj ∈ {±1}. Instead of toggling from left to right,
we sweep through P with a hyperplane in a direction
given by v . We call this Prov .

Example: Toggle order of Pro(1,1,1)
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Promotion on a higher dimensional product of chains

Definition (Dilks, Pechenik, Striker, 2017)

Let P = [a1]× · · · × [an] and let v = (v1, v2, . . . , vn)
where vj ∈ {±1}. Instead of toggling from left to right,
we sweep through P with a hyperplane in a direction
given by v . We call this Prov .

Observe: Pro(1,1,1) is Row.
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Another Example: Toggle order of Pro(1,1,−1)

Toggling elements on the hyperplane x + y − z = 4

xy

z
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xy
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Another Example: Toggle order of Pro(1,1,−1)

Toggling elements on the hyperplane x + y − z = 1

xy

z
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Another Example: Toggle order of Pro(1,1,−1)

Toggling elements on the hyperplane x + y − z = 0

xy

z
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Homomesy in the product of three chains

We will start by focusing on one particular Prov .

Theorem (V., 2019)

Let v = (1, 1,−1). Order ideals of [2]× [b]× [c] under
Prov with cardinality statistic exhibit homomesy with
average value bc.

0 + 2 + 6 + 8 + 4

5
= 4
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Homomesy in the product of three chains

We will start by focusing on one particular Prov .

Theorem (V., 2019)

Let v = (1, 1,−1). Order ideals of [2]× [b]× [c] under
Prov with cardinality statistic exhibit homomesy with
average value bc.

To prove this result on v = (1, 1,−1), we use increasing
tableaux.
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Increasing tableaux

Definition

An increasing tableau is a filling of a partition shape with
positive integers such that the rows and columns are
strictly increasing.

Example:

1 2 4

2 4 5

6
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A useful bijection

Theorem (Dilks, Pechenik, Striker, 2017)

There exists a bijection between order ideals of
[a]× [b]× [c] and increasing tableaux of shape a × b and
entries at most a + b + c − 1.

Corollary

There exists a bijection between order ideals of
[2]× [b]× [c] and increasing tableaux of shape 2× b and
entries at most b + c + 1.
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Bijection example

0
222

21 1
654

53

Pro(1,1,−1) on order ideals of [a]× [b]× [c] corresponds to
an action K -promotion on increasing tableaux.
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K -promotion

1 2
4 5

4 6

6 7

1 2

Switch 1’s to 2’s and 2’s to 1’s, if possible.
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1 2
4 5

4 6

6 7

1 3

Switch 2’s to 3’s and 3’s to 2’s, if possible.
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1 2
4 5

4 6

6 7

1 3
4

Switch 3’s to 4’s and 4’s to 3’s, if possible.
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K -promotion

1

3 5

4 6

6 7

1

3
3

Switch 3’s to 4’s and 4’s to 3’s, if possible.
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K -promotion

1

3
4 6

6 7

1

3
3

5
Switch 4’s to 5’s and 5’s to 4’s, if possible.
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3
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K -promotion

1

3
5 6

6 7

1

3
3

4
Switch 5’s to 6’s and 6’s to 5’s, if possible.
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K -promotion

1

3
5 6

6 7

1

3
3

4
Switch 6’s to 7’s and 7’s to 6’s, if possible.
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K -promotion

1

3
5 6

6 7

1

3
3

4
The result is K -Pro(T ).
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A K -Promotion result

Theorem (Bloom, Pechenik, Saracino, 2016)

Increasing tableaux of shape 2× n and entries at most q
under K-promotion with statistic the sum of the entries
exhibits homomesy.

Theorem (V., 2019)

Let v = (1, 1,−1). Order ideals of [2]× [b]× [c] under
Prov with cardinality statistic exhibit homomesy with
average value bc.
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Recombination

Does recombination work in higher dimensions? We’ll look
at an example. Below is a partial orbit under Pro(1,1,1).

Pro(1,1,1) Pro(1,1,1)
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Recombination

Pro(1,1,1) Pro(1,1,1)

Pro(1,1,−1)
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General recombination result

Theorem (V., 2019)

Let v and u be n-dimensional vectors with entries ±1
such that v and u differ in one component. Then we can
perform recombination to get from Prov to Prou.

Pro(1,1,1) Pro(1,1,1)

Pro(1,1,−1)
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Homomesy in the product of three chains

Theorem (V., 2019)

Let v = (1, 1,−1). Order ideals of [2]× [b]× [c] under
Prov with cardinality statistic exhibit homomesy with
average value bc.

Using recombination, we obtain homomesy results for all
v .

Theorem (V., 2019)

Order ideals of [2]× [b]× [c] under Prov with cardinality
statistic exhibit homomesy with average value bc.
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Homomesy nonexamples in the product of chains

Order ideals of [3]× [3]× [4] under Prov with
cardinality statistic are not homomesic.

Order ideals of [2]× [2]× [2]× [3] under Prov with
cardinality statistic are not homomesic.

Order ideals of [2]× [2]× [2]× [2]× [2] under Prov
with cardinality statistic are not homomesic.
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Refined homomesy example on [3]× [2]

x

y

x

y

x

y

x

y

x

y

0+2+1+0+2
5 = 1

x

y

x

y

x

y

x

y

x

y

0+1+2+1+1
5 = 1
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Refined homomesy on [a]× [b]

In a product of chains, x and y are antipodal if x can
be obtained from y by rotating 180◦ about the center.

The x − y file contains all elements (x , y) with
constant value x − y .

x

y

w

z

x and y are antipodal, w and z are in the same file.
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Refined homomesy on [a]× [b]

Theorem (Propp and Roby, 2015)

Let g denote the cardinality of two antipodal elements in
[a]× [b]. Order ideals of [a]× [b] under rowmotion (or
promotion) with statistic g exhibit homomesy.

Theorem (Propp and Roby, 2015)

Let h denote the cardinality of elements in a file of
[a]× [b]. Order ideals of [a]× [b] under rowmotion (or
promotion) with statistic h exhibit homomesy.
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Antipodal refined homomesy on [2]× [b]× [c]

Theorem (V., 2019)

Let g denote the cardinality of two antipodal elements in
[2]× [b]× [c]. Order ideals of [2]× [b]× [c] under Prov
with statistic g exhibit homomesy.
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Tableaux result

Let T ∈ Incq(λ) with fixed box B . Let Dist(B) denote
the set of values box B attains in an orbit of K -Pro.

Let arDist(B) denote the alphabet reversal of Dist(B),
the set of values q + 1− b for every b ∈ Dist(B).

Theorem (Pechenik)

Let T ∈ Incq(2× a), fix B and B∗ such that B∗ is the
box 180◦ rotated from B. Then Dist(B) = arDist(B∗).

We will look at an example orbit of order ideals of
[2]× [2]× [2] under Pro(1,1,−1) and the corresponding
orbit of Inc5(2× 2) under K -promotion.
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Example

1 2
2 3

B

B∗ 1 2
2 5

1 4
4 5

3 4
4 5

2 3
3 4

Dist(B) = {1, 1, 1, 3, 2}, Dist(B∗) = {3, 5, 5, 5, 4},
arDist(B∗) = {3, 1, 1, 1, 2}
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A more general homomesy definition

Rowmotion on a finite poset is a bijective action with
finite orbits. With infinite posets, this is not necessarily
the case. We need to modify the previous definition of
homomesy.

Definition (Roby)

Given a set S , an action τ : S → S , and a statistic f , then
(S , τ, f ) exhibits homomesy if there exists c such that

lim
N→∞

1

N

N−1∑
i=0

f (τ i(x)) = c

is independent of the starting point x ∈ S .
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Ordinal sums of antichains

Definition

Let Pn denote the n-element antichain.

We consider ordinal sums of Pn. For example, the

following is the poset
4⊕

i=1

P3 = P3

⊕
P3

⊕
P3

⊕
P3.
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Ordinal sums of antichains

We have a homomesy result for finite ordinal sums and for
infinite ordinal sums.

Theorem (V.)

If k is odd, order ideals of
k⊕

i=1

Pn under rowmotion with

signed cardinality statistic are n/2-mesic.

Theorem (V.)

Order ideals of
⊕
i∈N

Pn under rowmotion with signed

cardinality statistic are n/2-mesic.
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Ordinal sums of antichains example

Consider
⊕
i∈N

Pn. If we start with an order ideal that is not

generated by n elements of the same rank, we obtain an
orbit of size two under rowmotion.
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Ordinal sums of antichains example

The order ideal on the left has signed cardinality 3-1=2,
whereas the order ideal on the right has signed cardinality
3-2=1. Therefore, the average over the orbit is 3/2.
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Ordinal sums of antichains example

If we start with an order ideal that is generated by n
elements of rank k , applying rowmotion results in the
order ideal generated by n elements of rank k + 1.

Corey Vorland (MU) October 19, 2020 41 / 42



Ordinal sums of antichains example

The signed cardinalities of the order ideals are 3, 0, 3, and
0 respectively.
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Ordinal sums of antichains example

If f is the signed cardinality statistic and N is even,

1

N

N−1∑
j=0

f (Rowj(I )) =
3N

2N
=

3

2
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Ordinal sums of antichains example

If f is the signed cardinality statistic and N is odd,

1

N

N−1∑
j=0

f (Rowj(I )) =
3 + 0 + 3 + · · ·+ 0 + 3

N
=

3(N + 1)

2N
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