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Dyck paths

Definition
A Dyck path of semilength n is a lattice path in Z2 from (0,0) to
(2n,0) consisting of up steps (1,1) and down steps (1,−1) that
never goes below the x-axis.

Example (Dyck path of semilength 10)

The number of Dyck paths of semilength n is Cat(n) = 1
n+1

(2n
n

)
.



Valleys

Definition
A valley is a↘ step immediately followed by a↗ step.

0 valleys

1 valley

1 valley

1 valley

1 valley

1 valley

1 valley

2 valleys

2 valleys

2 valleys

3 valleys

2 valleys

2 valleys

2 valleys

valleys 0 1 2 3
# Dyck paths 1 6 6 1



Valleys

Definition
A valley is a↘ step immediately followed by a↗ step.

0 valleys

1 valley

1 valley

1 valley

1 valley

1 valley

1 valley

2 valleys

2 valleys

2 valleys

3 valleys

2 valleys

2 valleys

2 valleys

valleys 0 1 2 3
# Dyck paths 1 6 6 1



Major index

Consider the positions (from left to right) of each↘ followed by
a↗ step. The sum of these is the major index of the Dyck path.

Example (n = 10)
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# valleys: 4 major index: 3 + 8 + 11 + 15 = 37



Major index

Definition
Consider the positions (from left to right) of each↘ followed by
a↗ step. The sum of these is the major index of the Dyck path.

maj: 0

maj: 2

maj: 3

maj: 4

maj: 5

maj: 6

maj: 4

maj: 8

maj: 6

maj: 10

maj: 12

maj: 8

maj: 7

maj: 9

major index 0 1 2 3 4 5 6 7 8 9 10 11 12
# Dyck paths 1 0 1 1 2 1 2 1 2 1 1 0 1



Major index

Definition
Consider the positions (from left to right) of each↘ followed by
a↗ step. The sum of these is the major index of the Dyck path.

maj: 0

maj: 2

maj: 3

maj: 4

maj: 5

maj: 6

maj: 4

maj: 8

maj: 6

maj: 10

maj: 12

maj: 8

maj: 7

maj: 9

major index 0 1 2 3 4 5 6 7 8 9 10 11 12
# Dyck paths 1 0 1 1 2 1 2 1 2 1 1 0 1



The Lalanne–Kreweras involution on Dyck paths

Lalanne and Kreweras studied an involution LK : Dyckn → Dyckn
for which:

1 If p ∈ Dyckn has v valleys, then LK(p) has n− 1− v valleys.
2 If p ∈ Dyckn has major index m, then LK(p) has major index

n(n− 1)−m.



The Lalanne–Kreweras involution on Dyck paths

1 Take a Dyck path p.
2 Draw southeast line from each junction of consecutive↗ steps.
3 Draw southwest line from each junction of consecutive↘ steps.
4 Mark the intersection between kth (from left-to-right) southwest

line and the kth southeast line.
5 LK(p) is the unique Dyck path (drawn upside-down) with valleys

at marked points.



Symmetry of valley and major index statistics

1 If p ∈ Dyckn has v valleys, then LK(p) has n− 1− v valleys.
2 If p ∈ Dyckn has major index m, then LK(p) has major index

n(n− 1)−m.
Example (n = 10)
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Antichains of the root poset An

It will be easier to study the Lalanne–Kreweras involution on the
set of antichains of the type A root poset.

Definition
The elements of the type A root poset An are the intervals
[i, j] ⊆ [n] := {1,2, . . . ,n}, ordered by containment.

Example (A4)

[1,4]

[1,3] [2,4]

[1,2] [2,3] [3,4]

[1,1] [2,2] [3,3] [4,4]



Antichains of the root poset An

There is a simple bijection between Dyck paths of semilength
n + 1 and antichains of An.

Example

1 # valleys of Dyck path = cardinality of antichain.
2 The major index of the antichain A is maj(A) =

∑
[i,j]∈A(i + j).
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Antichains of the root poset An

There is a simple bijection between Dyck paths of semilength
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Lalanne–Kreweras involution described on antichains of An

[1, 1] [2, 2] [3, 3] [4,4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9]

[1,2] [2, 3] [3, 4] [4, 5] [5,6] [6, 7] [7, 8] [8, 9]

[1, 3] [2, 4] [3, 5] [4, 6] [5, 7] [6, 8] [7, 9]

[1, 4] [2, 5] [3, 6] [4, 7] [5, 8] [6,9]

[1, 5] [2, 6] [3, 7] [4, 8] [5, 9]

[1, 6] [2, 7] [3, 8] [4, 9]

[1, 7] [2, 8] [3, 9]

[1, 8] [2, 9]

[1, 9]

maj(A) =
∑
[i,j]∈A

(i + j) = (1 + 2) + (4 + 4) + (5 + 6) + (6 + 9) = 37



Lalanne–Kreweras involution described on antichains of An

Proposition

If A = {[i1, j1], . . . , [ik, jk]} is an antichain of An, then
LK(A) = {[i′1, j′1], . . . , [i′n−k, j

′
n−k]} where

{i′1, . . . , i′n−k} := [n] \ {j1, . . . , jk},
{j′1, . . . , j′n−k} := [n] \ {i1, . . . , ik}.

Example (n = 9)

A = {[1,2], [4,4], [5,6], [6,9]}
{i′1, i′2, i′3, i′4, i′5} = {1,3,5,7,8}
{j′1, j′2, j′3, j′4, j′5} = {2,3,7,8,9}
LK(A) = {[1,2], [3,3], [5,7], [7,8], [8,9]}

Panyushev called LK(A) the dual antichain of A, apparently
unaware this same involution was studied by Lalanne and
Kreweras on Dyck paths.
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Rowmotion on antichains

Antichain rowmotion RowA : A(P)→ A(P) is a map on the set
A(P) of antichains of a poset P.

1 ∆−1: Saturate downward (giving an order ideal)
2 Θ: Take the complement (giving an order filter)
3 ∇: Take the minimal elements (giving an antichain)

RowA : ∆−1

7−→ Θ7−→ ∇7−→



Rowmotion on antichains

1 On An, Row
2(n+1)
A is the identity.

2 On An, Rown+1
A is reflection across the center vertical line.

7−→ 7−→ 7−→

7−→ 7−→ 7−→

7−→

7−→

7−→

7−→
7−→

7−→

←
→



Toggles

Definition
Let e ∈ P. Then the antichain toggle corresponding to e is the map
τe : A(P)→ A(P) defined by

τe(A) =


A ∪ {e} if e 6∈ A and A ∪ {e} ∈ A(P),
A \ {e} if e ∈ A,
A otherwise.

Proposition
Let P be a graded poset of rank r.
Pi = {v ∈ P : rk(v) = i}.
τ i =

∏
v∈Pi

τv

RowA = τ r ◦ · · · ◦ τ 1 ◦ τ 0
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Toggles

RowA : ∆−1

7−→ Θ7−→ ∇7−→



Dihedral action

Proposition (Panyushev 2009)

LK ◦RowA = Row−1
A ◦LK

The cyclic group action of rowmotion extends to a dihedral
group action generated by RowA and LK.

Example

LK

LK

RowA Row−1
A



Goal

Our goal was to find a lifting of the Lalanne–Kreweras involution
on An to the piecewise-linear and birational realms, such that the
four main properties generalize to these realms.

1 LK2 is the identity.
2 LK ◦RowA = Row−1

A ◦LK

3 card(A) + card(LK(A)) = n
4 maj(A) + maj(LK(A)) = n(n + 1)



Chain polytope

We can associate an indicator function to any subset of P.

←→

0

0 1

1 0 0

The convex hull of A(P) is Stanley’s chain polytope C(P).



Chain polytope

Definition (Stanley 1986)

The chain polytope of P is the set C(P) of f ∈ [0,1]P such that
n∑

i=1
f(xi) ≤ 1 for all chains x1 < x2 < · · · < xn.

Example

0.2

0.7 0

0.1 0 0.3

∈ C(A3)



Piecewise-linear antichain toggle

Definition (J. 2017)
For g ∈ C(P), e ∈ P, τe(g) can only differ from g at the value of e.(

τe(g)
)
(e) = 1−max

{
k∑

i=1

g(yi)

∣∣∣∣∣ (y1, . . . , yk) is a maximal
chain in P that contains e

}

Piecewise-linear antichain rowmotion (or chain polytope
rowmotion) is given by

Pi = {v ∈ P : rk(v) = i}.
τ i =

∏
v∈Pi

τv

RowC = τ r ◦ · · · ◦ τ 1 ◦ τ 0
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Piecewise-linear and birational dynamics

Piecewise-linear and birational toggling and rowmotion were
originally defined by Einstein and Propp in 2013.



Detropicalization: from the piecewise-linear to the birational realm

max + − 0 1
Replace with + · / 1 C

Definition
For e ∈ P, the birational antichain toggle τe is:

(
τe(g)

)
(x) =


C∑

(y1,...,yk)∈MCe(P)

g(y1) · · · g(yk)
if x = e

g(x) if x 6= e

Birational antichain rowmotion (BAR-motion) is given by
Pi = {v ∈ P : rk(v) = i}.
τ i =

∏
v∈Pi

τv

BAR = τ r ◦ · · · ◦ τ 1 ◦ τ 0



Birational antichain rowmotion

(
τe(g)

)
(x) =


C∑

(y1,...,yk)∈MCe(P)

g(y1) · · · g(yk)
if x = e

g(x) if x 6= e

Example

z

x y

u v w



Birational antichain rowmotion
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g(y1) · · · g(yk)
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z

x y

C
uxz

C
v(x + y)z

C
wyz



Birational antichain rowmotion

(
τe(g)

)
(x) =


C∑

(y1,...,yk)∈MCe(P)

g(y1) · · · g(yk)
if x = e

g(x) if x 6= e

Example

xy
x + y

uv(x + y)

ux + vx + vy
vw(x + y)

vx + vy + wy

C
uxz

C
v(x + y)z

C
wyz



Birational antichain rowmotion

z

x y

u v w

BAR

xy
x+y

uv(x+y)
ux+vx+vy

vw(x+y)
vx+vy+wy

C
uxz

C
vz(x+y)

C
wyz



Birational antichain rowmotion

z

x y

u v w

BAR2

uvw
uv+uw+vw

C(uv+uw+vw)
uz(v+w)(ux+vx+vy)

C(uv+uw+vw)
wz(u+v)(vx+vy+wy)

(ux+vx+vy)z
vy

(ux+vx+vy)(vx+vy+wy)z
(uv+uw+vw)xy

(vx+vy+wy)z
vx



Birational antichain rowmotion

z

x y

u v w

BAR3

C
(ux+vx+vy+wy)z

(ux+vx+vy+wy)z
(v+w)y

(ux+vx+vy+wy)z
(u+v)x

y(v+w)
w

(u+v)(v+w)xy
v(ux+vx+vy+wy)

x(u+v)
u



Birational antichain rowmotion

z

x y

u v w

BAR4

z

y x

w v u



Birational antichain rowmotion

Theorem (Grinberg–Roby 2014)

On An, BAR2(n+1) is the identity.
On An, BARn+1 is reflection across the center vertical line.



Goal

Our goal was to find a lifting of the Lalanne–Kreweras involution
on An to the piecewise-linear and birational realms, such that the
four main properties generalize to these realms.

1 LK2 is the identity.
2 LK ◦RowA = Row−1

A ◦LK

3 card(A) + card(LK(A)) = n
4 maj(A) + maj(LK(A)) = n(n + 1)

It turns out that LK is equivalent to a map called rowvacuation
on An and this allows us to lift LK to the higher realms.
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Rowvacuation on antichains

On any graded poset with rank r, there is an involution
antichain rowvacuation

RvacA := (τ r)(τ rτ r−1) · · · (τ rτ r−1 · · · τ 2τ 1)(τ rτ r−1 · · · τ 2τ 1τ 0)

where again τi is the product of all antichain toggles of rank
i elements.

On any graded poset:
RvacA is an involution,
RvacA ◦RowA = Row−1

A ◦RvacA.



Rowvacuation is the Lalanne–Kreweras involution

Theorem (Hopkins–J.)
The Lalanne–Kreweras involution LK is RvacA on An.

Definition (Hopkins–J.)

The piecewise-linear Lalanne–Kreweras involution LKPL is
rowvacuation

(τ r)(τ rτ r−1) · · · (τ rτ r−1 · · · τ 2τ 1)(τ rτ r−1 · · · τ 2τ 1τ 0)

on An, where we use piecewise-linear toggles.

Definition (Hopkins–J.)

The birational Lalanne–Kreweras involution LKB is rowvacuation

(τ r)(τ rτ r−1) · · · (τ rτ r−1 · · · τ 2τ 1)(τ rτ r−1 · · · τ 2τ 1τ 0)

on An, where we use birational toggles.



Birational Lalanne–Kreweras involution

We get the following because it is true for rowvacuation.

Proposition

LKB is an involution.
LKB ◦BAR = BAR−1 ◦LKB

Q: What about the cardinality and major index?
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Piecewise-linear “cardinality”

cardPL(g) =
∑

[i,j]∈An

g([i, j])

Example (n = 4)

.4
.1 .2

0 .3 .1
.5 0 0 .1

g =

0
.1 .2

.4 .7 .5
0 .1 .1 .2

LKPL(g) =

cardPL(g) = .5 + 0 + .1 + 0 + .4 + .3 + .2 + 0 + .1 + .1 = 1.7

cardPL (LKPL(g)
)

= 0 + .4 + .1 + .1 + 0 + .7 + .2 + .1 + .5 + .2 = 2.3



Piecewise-linear major index

majPL(g) =
∑

[i,j]∈An

(i + j)g([i, j])

Example (n = 4)

.4
.1 .2

0 .3 .1
.5 0 0 .1

g =

0
.1 .2

.4 .7 .5
0 .1 .1 .2

LKPL(g) =

2(.5) + 3(0) + 4(.1 + 0) + 5(.4 + .3) + 6(.2 + 0) + 7(.1) + 8(.1) = 7.6

2(0) + 3(.4) + 4(.1 + .1) + 5(0 + .7) + 6(.2 + .1) + 7(.5) + 8(.2) = 12.4

The major indexes add to 20 = 4(4 + 1).



Birational cardinality and major index

cardB(g) =
∏

[i,j]∈An

g([i, j]) majB(g) =
∏

[i,j]∈An

g([i, j])i+j

z

x y

u v w
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wyz

C
uxz
·

C
v(x + y)z

·
C

wyz
·

(x + y)z
y

·
(x + y)z

x
·

xy
x + y

=
C3

uvwxyz
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Birational cardinality and major index

Theorem (Hopkins–J.)

For g ∈ RAn
≥0,

cardB(g) cardB (LKB(g)
)

=
∏

[i,j]∈An

g([i, j])
(
LKB(g)

)
([i, j])

= Cn

majB(g) majB
(
LKB(g)

)
=
∏

[i,j]∈An

g([i, j])i+j (LKB(g)
)

([i, j])i+j

= Cn(n+1)



Homomesy

Proposition

Under the action of LK on A(An),
1 card is homomesic with average n/2,
2 maj is homomesic with average n(n + 1)/2.

Theorem (Hopkins–J.)
These homomesies lift to the piecewise-linear and birational realms.
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1 card is homomesic with average n/2,
2 maj is homomesic with average n(n + 1)/2.

Theorem (Hopkins–J.)
These homomesies lift to the piecewise-linear and birational realms.



More refined homomesies

Theorem
For each 1 ≤ i ≤ n, hi :=

i∑
j=1

1[j,i] +
n∑

j=i

1[i,j]

is 1-mesic under the action of LK on A(An).

[1,4]

[1,3] [2,4]

[1,2] [2,3] [3,4]

[1,1] [2,2] [3,3] [4,4]

h1 h2 h3 h4
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More refined homomesies

Theorem
For each 1 ≤ i ≤ n, hi :=

i∑
j=1

1[j,i] +
n∑

j=i

1[i,j]

is 1-mesic under the action of LK on A(An).

[1,4]

[1,3] [2,4]

[1,2] [2,3] [3,4]

[1,1] [2,2] [3,3] [4,4]

h1 h2 h3 h4

card =
1
2

(h1 + h2 + h3 + · · ·+ hn)

maj = h1 + 2h2 + 3h3 + · · ·+ nhn



More refined homomesies

[1,4]

[1,3] [2,4]

[1,2] [2,3] [3,4]

[1,1] [2,2] [3,3] [4,4]

h1 h2 h3 h4

The hi statistics are the same as those Einstein, Farber, Gunawan,
J., Macauley, Propp, Rubinstein-Salzedo proved to be 1-mesic
under a product of toggles on noncrossing partitions (2015).



More refined homomesies

[1,4]

[1,3] [2,4]

[1,2] [2,3] [3,4]

[1,1] [2,2] [3,3] [4,4]

h1 h2 h3 h4

In the combinatorial realm, these homomesies are
straightforward from the antichain description of LK.

Proposition

If A = {[i1, j1], . . . , [ik, jk]} is an antichain of An, then
LK(A) = {[i′1, j′1], . . . , [i′n−k, j

′
n−k]} where

{i′1, . . . , i′n−k} := [n] \ {j1, . . . , jk},
{j′1, . . . , j′n−k} := [n] \ {i1, . . . , ik}.



More refined homomesies

[1,4]

[1,3] [2,4]

[1,2] [2,3] [3,4]

[1,1] [2,2] [3,3] [4,4]

h1 h2 h3 h4

In the birational realm, the proof of these homomesies uses an
embedding (due to Grinberg and Roby) of the labelings of An

into the product [n + 1]× [n + 1] of two chains.



Rowvacuation homomesies yield rowmotion homomesies

Theorem (Hopkins–J.)
Consider a statistic f that is a linear combination of poset-element
indicator functions.

1 If f is homomesic under the action of antichain rowvacuation
RvacA, then f is also homomesic under the action of antichain
rowmotion RowA.

2 If f is homomesic under the action of order ideal rowvacuation
RvacJ , then f is also homomesic under the action of order
ideal rowmotion RowJ .

The proof is along the same lines as Einstein and Propp’s
recombination argument.



Rowvacuation homomesies yield rowmotion homomesies

Theorem (Armstrong–Stump–Thomas 2011)

Cardinality is homomesic under RowA on A(An).

Theorem (Propp 2019)

Major index is homomesic under RowA on A(An).

Theorem (Hopkins–J.)

hi :=
i∑

j=1
1[j,i] +

n∑
j=i
1[i,j] is homomesic under RowA on A(An).
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Rowvacuation homomesies yield rowmotion homomesies

Theorem (Armstrong–Stump–Thomas 2011)

Cardinality is homomesic under RowA on A(An).

Theorem (Propp 2019)

Major index is homomesic under RowA on A(An).

Theorem (Hopkins–J.)

hi :=
i∑

j=1
1[j,i] +

n∑
j=i
1[i,j] is homomesic under RowA on A(An).



hi is homomesic on rowmotion orbits

h2 = 1[1,2] + 2 · 1[2,2] + 1[2,3]

h2 = 1
7−→

h2 = 1
7−→

h2 = 0
7−→

h2 = 2

h2 = 2

7−→
h2 = 0

7−→
h2 = 1

7−→
h2 = 1

7−→

7−→ AVG = 1

AVG = 1AVG = 1

h2 = 0
7−→

h2 = 2

7−→

h2 = 2

7−→

h2 = 0

7−→

h2 = 0

←
→

h2 = 2



Unsolved problem: birational lifting of the OY-invariant?

Oksana Yakimova discovered a statistic Y : A(An)→ Z≥0

discussed in Panyushev’s 2009 paper.

Definition
The OY-invariant Y : A(An)→ Z≥0 is

Y(A) :=
∑
e∈A

(
|∇(F \ {e})| − |A|+ 1

)
where F is the order filter generated by A and ∇(F \ {e}) is the
set of minimal elements of F \ {e}.

Theorem (Panyushev–Yakimova 2009)

For any A ∈ A(An), we have Y(RowA(A)) = Y(A) = Y(LK(A)).



Unsolved problem: birational lifting of the OY-invariant?

Definition
The OY-invariant Y : A(An)→ Z≥0 is

Y(A) :=
∑
e∈A

(
|∇(F \ {e})| − |A|+ 1

)
where F is the order filter generated by A and ∇(F \ {e}) is the
set of minimal elements of F \ {e}.

Example

Y(A) = ? + ?
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Unsolved problem: birational lifting of the OY-invariant?

Definition
The OY-invariant Y : A(An)→ Z≥0 is

Y(A) :=
∑
e∈A

(
|∇(F \ {e})| − |A|+ 1

)
where F is the order filter generated by A and ∇(F \ {e}) is the
set of minimal elements of F \ {e}.

Example

Y(A) = 2 + ?



Unsolved problem: birational lifting of the OY-invariant?

Definition
The OY-invariant Y : A(An)→ Z≥0 is

Y(A) :=
∑
e∈A

(
|∇(F \ {e})| − |A|+ 1

)
where F is the order filter generated by A and ∇(F \ {e}) is the
set of minimal elements of F \ {e}.

Example

Y(A) = 2 + 0



Unsolved problem: birational lifting of the OY-invariant?

Definition
The OY-invariant Y : A(An)→ Z≥0 is

Y(A) :=
∑
e∈A

(
|∇(F \ {e})| − |A|+ 1

)
where F is the order filter generated by A and ∇(F \ {e}) is the
set of minimal elements of F \ {e}.

Example

Y(A) = 2 + 0 = 2



Unsolved problem: birational lifting of the OY-invariant?

Y(A) = 1

7−→
Y(A) = 1

7−→
Y(A) = 1

7−→
Y(A) = 1

Y(A) = 1

7−→
Y(A) = 1

7−→
Y(A) = 1

7−→
Y(A) = 1

7−→
7−→

Y(A) = 0

7−→
Y(A) = 0

7−→

Y(A) = 0

7−→

Y(A) = 0

7−→

Y(A) = 2

←
→

Y(A) = 2



Unsolved problem: birational lifting of the OY-invariant?

Question: How could we lift the OY-invariant to the higher
realms if there is no “antichain” to sum over?

Y(A) :=
∑
e∈A

(
|∇(F \ {e})| − |A|+ 1

)

Y(A) =
∑

[i,j]∈An

Y[i,j](A)

where

Y[i,j](A) :=

{
|∇(F \ {e})| − |A|+ 1 if [i, j] ∈ A,
0 if [i, j] 6∈ A.

Find an equivalent description of Y[i,j] that doesn’t ask if [i, j] is in
the antichain.
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Unsolved problem: birational lifting of the OY-invariant?

We have found a way to lift Y to the birational realm! But we do
not know how to prove YB is invariant under BAR or LKB.

Example (A3)

[1,3]

[1,2] [2,3]

[1,1] [2,2] [3,3]

z

x y

u v w

YB(g) = YB
[1,1](g)YB

[2,2](g)YB
[3,3](g)YB

[1,2](g)YB
[2,3](g)YB

[1,3](g)

=
u + v

v
· u + v

u
· v + w

w
· v + w

v
· vx + vy + wy

(v + w)y
· ux + vx + vy

(u + v)x
· 1

=
(ux + vx + vy)(vx + vy + wy)(u + v)(v + w)

uv2wxy
.



Thank You!



Fixed points

Q: How many antichains A ∈ A(An) satisfy A = LK(A)?

It is easy to see that these are exactly the antichains
{[i1, j1], [i2, j2], · · · , [in/2, jn/2]} in which each of 1,2, . . . ,n appear
exactly once among i1, i2, · · · , in/2, j1, j2, · · · , jn/2.

Example (in A8)

A = {[1,2], [3,5], [4,7], [6,8]}

These correspond to standard Young tableaux of the two-rowed
rectangle with n/2 columns.

1 3 4 6
2 5 7 8

#{A ∈ A(An) : A = LK(A)} =

{
0 if n is odd,
Cat

(
n
2

)
if n is even.
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Fixed points

Q: How many antichains A ∈ A(An) are fixed under LK ◦RowA?

Proposition (Hopkins–J.)

#{A ∈ A(An) : A = LK
(

RowA(A)
)
} =

(
n + 1

b(n + 1)/2c

)
(

n+1
b(n+1)/2c

)
is also the number of antichains that are symmetric

across the center vertical line. We showed that LK ◦RowA is
conjugate to flip = Rown+1

A in the toggle group.

flip flip flip flip

LK ◦RowA LK ◦RowA LK ◦RowA LK ◦RowA
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