AUTOMATING RESOLUTION IS NP-HARD

Albert Atserias Moritz Müller

Universitat Politècnica de Catalunya Barcelona

Satisfiability Problem and Resolution : Timeline 1960-1986

Satisfiability Problem and Resolution : Timeline 1987-today

DEFINITIONS AND STATEMENT OF THE MAIN RESULT

Variables, Literals, Clauses, and CNF Formulas

Resolution Rule: Derives New Clauses From Old

Resolution Refutations, a.k.a. **Proofs of Unsatisfiability**

Note: $Res(F) \le 2^n$ or $Res(F) = \infty$

Proof Search Problem for Resolution

Given an unsatisfiable CNF formula F

find a Resolution refutation of F

by Haken's Theorem, the complexity is necessarily exponential in the size of F

Proof Search Problem for Resolution

Q1: Could we find short proofs under the promise that they exist?

alternative formulations of the same question

Q2: Could the problem be solved in reasonable time as a function of n, m, and s = Res(F)?

We would say that Resolution is AUTOMATABLE in poly time, quasipoly time, etc. [Bonet, Pitassi, Raz 97] **Main Result**

Theorem:

Resolution is not automatable in polynomial-time unless P = NP

Main Result

Theorem:

Resolution is not automatable in polynomial-time unless P = NP nor in subexponential-time unless ETH fails

We find a map that takes CNFs into CNFs:

Corollary:

Minimum Resolution proof-length is not approximable within subexponential error in polynomial-time unless P = NP

HISTORY OF THE PROBLEM

- Some partial **POSITIVE** results.
- Some partial **NEGATIVE** results.

Stronger and **Weaker** Proof Systems

arbitrary formulas, circuits, etc.

given $C \lor A$ and $D \lor \neg A$ infer $C \lor D$

Stronger and Weaker Proof Systems

Extended Frege	circuits
Frege	formulas
TC ⁰ -Frege	threshold formulas of bdd depth
AC ⁰ -Frege •	formulas of bdd depth
k -DNF-Frege \equiv Res(k)	<i>k</i> -DNFs

Resolution ----- clauses

regular Resolution +----- clauses, but read-once proof-graphs tree-like Resolution +----- clauses, but tree-like proof-graphs

Partial **POSITIVE** Result 1: Tree-like Resolution in quasi-poly time

Theorem [Beame-Pitassi 98] Tree-like Resolution is automatable in time $n^{O(\log s)}$

- Intuitively: tree-like proofs \equiv decision trees, and divide & conquer works.

- It says: upper bound $\text{Res}(G) \leq \text{SMALL}$ cannot be tree-like (unless ETH fails).

Partial **POSITIVE** Result 2: Resolution in subexponential time

Theorem [Ben-Sasson-Wigderson 99] Resolution is automatable in time $n^{O(\sqrt{n \log s} + k)}$

- For s = poly(n), this is $exp(n^{1/2} log(n)^{3/2})$.
- Puts limits on the efficiency of our reduction (unless ETH fails).

Partial **NEGATIVE** Result 1: Stronger Proof Systems

Theorem [Krajicek-Pudlak 98] Extended Frege is not automatable in poly time unless RSA is broken by poly-size circuits

- Assumption is crypto, and far from optimal.

- Later improved to Frege, TC⁰-Frege and AC⁰-Frege [Bonet et al. 97, 99]
- Still crypto and very far from Resolution.

Partial **NEGATIVE** Result 2: Weaker Hardness, Stronger Assumption

Theorem [Alekhnovich-Razborov 01] Resolution is not automatable in polynomial time unless W[P] is tractable

- Says nothing about automatability in, say, quasipoly-time.
- Best lower bound: time $n^{\log\log(n)^{0.14}}$, under ETH [Mertz-Pitassi-Wei 19]
- Applies to tree-like Resolution!

Reflection Principle for Resolution

[Cook 75, Razborov 96, Pudlak 01]

Reflection Principle for Resolution (cntd)

$SAT(X, Y) \land REF(X, Z)$

X(i,q,b): clause C_i contains variable x_q with sign bY(q): variable x_q evaluates to 1 under the truth assignmentZ(i,j,k,q): clause D_i is inferred from D_j and D_k by resolving on x_q Z(i,q,b): clause D_i contains variable x_q with sign b

Reflection Principle for Resolution (cntd)

building on Pudlak 01]

Theorem [Atserias-Bonet 02]

 $SAT(X, Y) \land REF(X, Z)$ has poly-size 2-DNF Frege refs.

Reflection Principle for Resolution (cntd)

Proof (idea):

$$\begin{array}{c} D_{1}, \dots, D_{j}, \dots, D_{k}, \dots, D_{l}, \dots, D_{s} = \emptyset \\ SAT(X, Y) \\ REF(X, Z) \\ \bigvee_{q=1}^{n} (Y(q) \land Z(1, q, 1)) \lor \bigvee_{q=1}^{n} (\neg Y(q) \land Z(1, q, 0)). \\ \vdots \\ & \dots \\ \bigvee_{q=1}^{n} (Y(q) \land Z(s, q, 1)) \lor \bigvee_{q=1}^{n} (\neg Y(q) \land Z(s, q, 0)). \\ \end{array}$$
But *REF* says that this last one is empty!
2-DNF

formulas

First Half of the Main Result

$F \text{ is satisfiable } \Longrightarrow \operatorname{Res}(REF(F, \mathbb{Z})) \leq SMALL$ G

Proof (idea):

- Suppose *Y* satisfies *F*
- $SAT(F,Y) \land REF(F,\mathbb{Z}) \equiv REF(F,\mathbb{Z})$
- $\bigvee_{q=1}^{n} (Y(q) \wedge Z(i,q,1)) \vee \bigvee_{q=1}^{n} (\neg Y(q) \wedge Z(i,q,0))$ is a clause!

Status

Towards a Lower Bound

Towards a Lower Bound

Towards a Lower Bound

Q1: Could we TRANSPORT the sat assignment?Q2: Could we also PRESERVE its local structure?

(cf. [Razborov 98], [Krajicek 01])

Alas! Not known!

Since $bijectivePHP(n^3, 2^n)$ is PRESUMABLY HARD for 2-DNF Frege

F is unsatisfiable \implies Res $(REF(F, n^3)) \ge$ BIG

Towards a Lower Bound: Width

for Z of length n^3

RREF(X, Z)

A few representative clauses of *RREF*:

$$\neg Z(i) \lor \neg Z(i, j, k, q) \lor Z(j)$$

$$\neg Z(i) \lor \neg Z(i, j, k, q) \lor Z(j, q, 0)$$

$$Z(s)$$

etc ...
activity propagates upwards
proof shape is required
on active clauses (only)
last clause is active

Upper Bound Revisited

$$SAT(X,Y) \land RREF(X,Z)$$

$$J_{1}, J_{2}, ..., J_{k}, ...,$$

F is satisfiable \Longrightarrow $\operatorname{Res}(RREF(F, n^3)) \leq$ **SMALL**F is unsatisfiable \Longrightarrow $\operatorname{Res}(RREF(F, n^3)) \geq$ **BIG**

TO CONCLUDE

Satisfiability Problem and Resolution

Buffer

 $\frac{C \lor x \qquad D \lor \neg x}{C \lor D}$

F is satisfiable \implies min Resolution refutation size of G is $\leq |G|^{1+\varepsilon}$ F is unsatisfiable \implies min Resolution refutation size of G is $\geq \exp(|G|^{\frac{1}{2}-\varepsilon})$

The Resolution rule:

A Resolution refutation of *F* (a.k.a. proof of unsatisfiability):

- Some partial positive automatability results:
 - for tree-like Resolution in quasipoly-time,
 - for general Resolution in non-trivial time.
- Some partial negative automatability results:
 - for stronger proof systems,
 - for weak approximation
 - under stronger (non-optimal) assumptions.

Partial negative automatability results:

- for stronger proof systems under stronger assumptions
- for Resolution under stronger assumptions
- very weak hardness of approximation of min-proof-length

Partial positive automatability results:

- for tree-Resolution in quasi-polynomial time
- for Resolution in non-trivial exponential time

Tree-like Resolution Proof Search

tree-like proof view

decision tree view

 $\boldsymbol{\chi}$

 C_2 C_3 C_4 C_2

V

 C_1 C_4 u

Extended Frege not automatable in polynomial time assuming RSA secure against poly-size circuits

[Krajicek-Pudlak 1998]

Frege and TC⁰-Frege not automatable in polynomial time assuming Diffie-Helman secure against poly-size circuits [Bonet-Pitassi-Raz 2000]

AC⁰-Frege not automatable in polynomial time assuming Diffie-Helman secure against subexponential circuits [Bonet-Domingo-Gavalda-Maciel-Pitassi 2004]

Proof idea:

Let F : {0,1}^n -> {0,1}^n be a one-way permutation. Let WITNESS_b(X,Y) say "Y is a witness that hard bit of F(X) is b." Then

WITNESS_0(X,Y) & WITNESS_1(X,Z)

has a short Extended Frege refutation. QED

Resolution Refutations, a.k.a. **Proofs of Unsatisfiability**

Res(F) := min { Length(P) : P is a Resolution refutation of F }

Theorem [Bonet-Pitassi-Raz 97] Frege and TC⁰-Frege are not automatable in poly time unless Diffie-Helman is broken by poly size circuits

Theorem [Bonet-Domingo-Gavalda-Maciel-Pitassi 99] AC⁰-Frege is not automatable in poly time unless Diffie-Helman is broken by subexp size circuits

Partial **NEGATIVE** Result 1: Stronger Proof Systems

[Bonet-Pitassi-Raz 97]

[Bonet-Domingo-Gavalda-Maciel-Pitassi 99]

Non-automatability of Frege, TC⁰-Frege and AC⁰-Frege unless different (still crypto) assumptions fail

Reflection Principle for Resolution (cntd)

Proof (idea): $D_1, \dots, D_j, \dots, D_k, \dots, D_l, \dots, D_s = \emptyset$ $SAT(X, Y) \land REF(X, Z)$

Each clause D_i in Z is made *true* by Y!

$$\bigvee_{q=1}^{n} (Y(q) \land Z(i,q,1)) \lor \bigvee_{q=1}^{n} (\neg Y(q) \land Z(i,q,0))$$

But for $i = s$ this is the empty clause!

2-DNF formulas