AUTOMATING RESOLUTION IS NP-HARD

Albert Atserias
 Moritz Müller

Universitat Politècnica de Catalunya Barcelona

Satisfiability Problem and Resolution : Timeline 1960-1986

Davis and Putnam `procedure' [JACM 60]

Robinson defines
Resolution as a proof system [JACM 65]

Cook proves SAT is NP-complete. Asks about hard examples for Davis-Putnam [STOC 71]

1971

Haken's Theorem: PHP is hard for Resolution, hence for Davis-Putnam [TCS 86]

Satisfiability Problem and Resolution : Timeline 1987-today

Variables, Literals, Clauses, and CNF Formulas

$$
\begin{aligned}
& \left.\qquad x_{1}, x_{2}, \ldots, x_{n} \text { and } \neg x_{1}, \neg x_{2}, \ldots, \neg x_{n}\right\} \text { literals } \\
& F=\left(x_{1} \vee \neg x_{3} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{5} \vee x_{3}\right)
\end{aligned}
$$

Resolution Rule: Derives New Clauses From Old

Resolution Refutations, a.k.a. Proofs of Unsatisfiability

Proof Search Problem for Resolution

Given an unsatisfiable CNF formula F find a Resolution refutation of F

by Haken's Theorem, the complexity is necessarily exponential in the size of F

Proof Search Problem for Resolution

Q2: Could the problem be solved in reasonable time as a function of n, m, and $s=\operatorname{Res}(F)$?

We would say that Resolution is AUTOMATABLE in poly time, quasipoly time, etc.
[Bonet, Pitassi, Raz 97]

Theorem:

Resolution is not automatable in polynomial-time unless $P=N P$

Main Result

Theorem:

Resolution is not automatable
in polynomial-time unless $P=N P$
nor in subexponential-time unless ETH fails

Main Result (contd)

We find a map that takes CNFs into CNFs:

$$
F \xrightarrow{\text { polytime }} G
$$

F is satisfiable
F is unsatisfiable
$\operatorname{Res}(G) \leq|G|^{1+\varepsilon}$
$\operatorname{Res}(G) \geq \exp \left(|G|^{\frac{1}{2}-\varepsilon}\right)$

Main Result (contd)

Corollary:

Minimum Resolution proof-length is not approximable within subexponential error in polynomial-time unless $P=N P$

HISTORY OF THE PROBLEM

History of the problem

- Some partial POSITIVE results.
- Some partial NEGATIVE results.

Stronger and Weaker Proof Systems

arbitrary formulas, circuits, etc.

given $C \vee A$ and $D \vee \neg A$ infer $\quad C \vee D$

Stronger and Weaker Proof Systems

$$
\begin{aligned}
& \text { Extended Frege ------------ circuits } \\
& \text { Frege ---------------------- formulas } \\
& \text { TC } 0 \text {-Frege }----------------\quad \text { threshold formulas of bdd depth } \\
& \text { AC }{ }^{0} \text {-Frege }----------------\quad \text { formulas of bdd depth } \\
& k \text {-DNF-Frege } \equiv \operatorname{Res}(k) \cdots-----\quad k \text {-DNFs }
\end{aligned}
$$

Resolution ---------------- clauses

regular Resolution --------- clauses, but read-once proof-graphs
tree-like Resolution --------- clauses, but tree-like proof-graphs

Partial POSITIVE Result 1: Tree-like Resolution in quasi-poly time

Theorem [Beame-Pitassi 98]

Tree-like Resolution is automatable in time $n^{O(\log s)}$

- Intuitively: tree-like proofs \equiv decision trees, and divide \& conquer works. - It says: upper bound $\operatorname{Res}(G) \leq$ SMALL cannot be tree-like (unless ETH fails).

Partial POSITIVE Result 2: Resolution in subexponential time

Theorem [Ben-Sasson-Wigderson 99]

Resolution is automatable in time $n^{O(\sqrt{n \log s}+k)}$

- For $s=\operatorname{poly}(n)$, this is $\exp \left(n^{1 / 2} \log (n)^{3 / 2}\right)$.
- Puts limits on the efficiency of our reduction (unless ETH fails).

Partial NEGATIVE Result 1: Stronger Proof Systems

Theorem [Krajicek-Pudlak 98]

Extended Frege is not automatable in poly time unless RSA is broken by poly-size circuits

- Assumption is crypto, and far from optimal.
- Later improved to Frege, TC^{0}-Frege and AC^{0}-Frege [Bonet et al. 97, 99]
- Still crypto and very far from Resolution.

Partial NEGATIVE Result 2: Weaker Hardness, Stronger Assumption

Theorem [Alekhnovich-Razborov 01]

Resolution is not automatable

 in polynomial time unless $\mathrm{W}[\mathrm{P}]$ is tractable

- Says nothing about automatability in, say, quasipoly-time.
- Best lower bound: time $n^{\log \log (n)^{0.14}}$, under ETH [Mertz-Pitassi-Wei 19]
- Applies to tree-like Resolution!

THE NEW CONSTRUCTION

$$
F \xrightarrow{\text { polytime }} G
$$

F is satisfiable
\Longrightarrow
F is unsatisfiable
\Longrightarrow
$\operatorname{Res}(G) \leq$ SMALL
$\operatorname{Res}(G) \geq$ BIG

Reflection Principle for Resolution [Cook 75, Razborov 96, Pudlak 01]

Reflection Principle for Resolution (cntd)

$\operatorname{SAT}(X, Y) \wedge R E F(X, Z)$

$X(i, q, b) \quad$: clause C_{i} contains variable x_{q} with sign b
$Y(q) \quad:$ variable x_{q} evaluates to 1 under the truth assignment
$\mathrm{Z}(i, j, k, q)$: clause D_{i} is inferred from D_{j} and D_{k} by resolving on x_{q}
$\mathrm{Z}(i, q, b) \quad$: clause D_{i} contains variable x_{q} with sign b

Reflection Principle for Resolution (cntd)

building on

Theorem [Atserias-Bonet 02]
$\operatorname{SAT}(X, Y) \wedge R E F(X, Z)$ has poly-size 2-DNF Frege refs.

Reflection Principle for Resolution (cntd)

Proof (idea):

$$
\underbrace{D_{1}, \ldots, D_{j}, \ldots, D_{k}, \ldots, D_{l}, \ldots, D_{s}=\emptyset}
$$

$\operatorname{SAT}(X, Y)$ $R E F(X, Z)$

$$
\vee_{q=1}^{n}(Y(q) \wedge Z(1, q, 1)) \vee \vee_{q=1}^{n}(\neg Y(q) \wedge Z(1, q, 0))
$$

$$
\vee_{q=1}^{n}(Y(q) \wedge Z(s, q, 1)) \vee \bigvee_{q=1}^{n}(\neg Y(q) \wedge Z(s, q, 0))
$$

But $R E F$ says that this last one is empty!

First Half of the Main Result

Corollary

Proof (idea):

- Suppose Y satisfies F
- $\operatorname{SAT}(F, Y) \wedge R E F(F, Z) \equiv \operatorname{REF}(F, Z)$
- $\mathrm{V}_{q=1}^{n}(Y(q) \wedge Z(i, q, 1)) \vee \bigvee_{q=1}^{n}(\neg Y(q) \wedge Z(i, q, 0))$ is a clause!

Status

F is satisfiable
$\Longrightarrow \quad \operatorname{Res}(\operatorname{REF}(F, Z)) \leq \mathbf{S M A L L}$ $\Longrightarrow \quad \operatorname{Res}(\operatorname{REF}(F, Z)) \geq \mathbf{B I G}$
for poly length Z

Towards a Lower Bound

Towards a Lower Bound

Towards a Lower Bound

Q1: Could we TRANSPORT the sat assignment? Q2: Could we also PRESERVE its local structure?

Towards a Lower Bound

Alas! Not known!

Since bijectivePHP $\left(n^{3}, 2^{n}\right)$ is PRESUMABLY HARD for 2-DNF Frege
F is unsatisfiable $\quad \Longrightarrow \quad \operatorname{Res}\left(R E F\left(F, n^{3}\right)\right) \geq$ BIG

Towards a Lower Bound: Width

Towards a Lower Bound: Width

Alas! Not enough for Ben-Sasson-Wigderson to apply!

Theorem

F is unsatisfiable \Longrightarrow Resolution refs of $\operatorname{REF}(F, Z)$) require (index-)width $\geq n$
for Z of length n^{3}

Relativization

$\operatorname{REF}(X, Z)$
 $\boldsymbol{R R E F}(X, Z)$

$\mathrm{Z}(i) \quad$: clause D_{i} is active
$\mathrm{Z}(i, j, k, q)$:if active, clause D_{i} is inferred from D_{j} and D_{k} by resolving on x_{q}
$\mathrm{Z}(i, q, b) \quad$:if active, clause D_{i} contains variable x_{q} with sign b

Relativization (cntd)

$\boldsymbol{R R E F}(X, Z)$

A few representative clauses of $R R E F$:

$$
\begin{array}{ll}
\neg Z(i) \vee \neg Z(i, j, k, q) \vee Z(j) \longleftarrow & \text { activity propagates upwards } \\
\neg Z(i) \vee \neg Z(i, j, k, q) \vee Z(j, q, 0) \longleftarrow & \begin{array}{l}
\text { proof shape is required } \\
\text { on active clauses (only) }
\end{array} \\
Z(s) \longleftarrow & \text { last clause is active }
\end{array}
$$

Refutation of $\boldsymbol{R R E F}\left(F, n^{3}\right)$
Refutation of $R E F\left(F, n^{3}\right)$

Upper Bound Revisited

$\operatorname{SAT}(X, Y) \wedge \boldsymbol{R R E F}(X, Z)$

SAT (X,Y)
$\operatorname{RREF}(X, Z)$
$\neg Z(1) \vee \vee_{q=1}^{n}(Y(q) \wedge Z(1, q, 1)) \vee \vee_{q=1}^{n}(\neg Y(q) \wedge Z(1, q, 0))$.
$\neg Z(s) \vee \vee_{q=1}^{n}(Y(q) \wedge Z(s, q, 1)) \vee \vee_{q=1}^{n}(\neg Y(q) \wedge Z(s, q, 0))$.
But RREF says that s is active and empty!

All Together

F is satisfiable $\quad \Longrightarrow \operatorname{Res}\left(\operatorname{RREF}\left(F, n^{3}\right)\right) \leq$ SMALL
F is unsatisfiable $\Longrightarrow \operatorname{Res}\left(\operatorname{RREF}\left(F, n^{3}\right)\right) \geq \operatorname{BIG}$

TO CONCLUDE

Satisfiability Problem and Resolution

CHAFF implementation.
First "evidence" that proof-search
is "easy". [CAD 01]

Alekhnovich-Razborov. First "evidence" that proof-search is "hard" [FOCS 01]

Boolean Pytagorean Triple Problem: 200 TB Resolution proof! [Nature 16]

Buffer

$$
\frac{C \vee x \quad D \vee \neg x}{C \vee D}
$$

F is satisfiable $\quad \Longrightarrow \min$ Resolution refutation size of G is $\leq|G|^{1+\varepsilon}$
F is unsatisfiable $\Longrightarrow \min$ Resolution refutation size of G is $\geq \exp \left(|G|^{\frac{1}{2}-\varepsilon}\right)$

The Resolution rule:

A Resolution refutation of F (a.k.a. proof of unsatisfiability):

History of the problem

- Some partial positive automatability results:
- for tree-like Resolution in quasipoly-time,
- for general Resolution in non-trivial time.
- Some partial negative automatability results:
- for stronger proof systems,
- for weak approximation
- under stronger (non-optimal) assumptions.

Partial negative automatability results:

- for stronger proof systems under stronger assumptions
- for Resolution under stronger assumptions
- very weak hardness of approximation of min-proof-length

Partial positive automatability results:

- for tree-Resolution in quasi-polynomial time
- for Resolution in non-trivial exponential time

Tree-like Resolution Proof Search

tree-like proof view

Stronger Proof Systems (cntd)

Extended Frege not automatable in polynomial time assuming RSA secure against poly-size circuits
[Krajicek-Pudlak 1998]
Frege and TC^{0}-Frege not automatable in polynomial time assuming Diffie-Helman secure against poly-size circuits
[Bonet-Pitassi-Raz 2000]
$A C^{0}$-Frege not automatable in polynomial time assuming Diffie-Helman secure against subexponential circuits
[Bonet-Domingo-Gavalda-Maciel-Pitassi 2004]

Proof idea:

Let $\mathrm{F}:\{0,1\}^{\wedge} \mathrm{n}->\{0,1\}^{\wedge} \mathrm{n}$ be a one-way permutation. Let WITNESS_b(X,Y) say " Y is a witness that hard bit of $F(X)$ is b." Then

WITNESS_0(X,Y) \& WITNESS_1(X,Z)

has a short Extended Frege refutation. QED

Resolution Refutations, a.k.a. Proofs of Unsatisfiability

Stronger Proof Systems (cntd)

Theorem [Bonet-Pitassi-Raz 97]

Frege and TC ${ }^{0}$-Frege are not automatable in poly time unless Diffie-Helman is broken by poly size circuits

Theorem [Bonet-Domingo-Gavalda-Maciel-Pitassi 99]
$A C^{0}$-Frege is not automatable in poly time unless Diffie-Helman is broken by subexp size circuits

Partial NEGATIVE Result 1: Stronger Proof Systems

[Bonet-Pitassi-Raz 97]
 [Bonet-Domingo-Gavalda-Maciel-Pitassi 99]

Non-automatability of Frege, TC^{0}-Frege and AC^{0}-Frege unless different (still crypto) assumptions fail

Reflection Principle for Resolution (cntd)

Proof (idea):

$$
\operatorname{SAT}(X, Y) \wedge R E F(X, Z)
$$

Each clause D_{i} in Z is made true by Y !

$$
\vee_{q=1}^{n}(Y(q) \wedge Z(i, q, 1)) \vee \vee_{q=1}^{n}(\neg Y(q) \wedge Z(i, q, 0))
$$

But for $i=s$ this is the empty clause!

