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Quantified Boolean Formulas (QBF)

What’s different in QBF from propositional proof complexity?

• Quantification

• Boolean quantifiers ranging over 0/1

Why QBF proof complexity?

• driven by QBF solving

• shows different effects from propositional proof complexity

• connects to circuit complexity, bounded arithmetic, . . .
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Interesting test case for algorithmic progress

SAT revolution

SAT NP main breakthrough late 90s
QBF PSPACE reaching industrial applicability now
DQBF NEXPTIME very early stage
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A core QBF system: QU-Resolution

= Resolution + ∀-reduction [Kleine Büning et al. 95, V. Gelder 12]

Rules

• Resolution: x ∨ C ¬x ∨ D (C ∨ D is not tautological.)
C ∨ D

• ∀-Reduction: C ∨ u (u universally quantified)
C

C does not contain variables right of u in the quantifier prefix.

Example ∀u∃x u ∨ xu ∨ ¬x
u

⊥
∀u
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From propositional proof systems to QBF

A general ∀red rule

• Fix a prenex QBF Φ.

• Let F (~x , u) be a propositional line in a refutation of Φ,
where u is universal with innermost quant. level in F

F (~x , u)

F (~x , 0)

F (~x , u)
(∀red)

F (~x , 1)

New QBF proof systems

For any ‘natural’ line-based propositional proof system P define
the QBF proof system Q-P by adding ∀red to the rules of P.

Proposition (B., Bonacina & Chew 16)

Q-P is sound and complete for QBF.
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From propositional proof systems to QBF

A general ∀red rule

• Fix a prenex QBF Φ.

• Let F (~x , u) be a propositional line in a refutation of Φ,
where u is universal with innermost quant. level in F

F (~x , u)

F (~x , 0)

F (~x , u)
(∀red)

F (~x , 1)

New QBF proof systems

For any ‘natural’ line-based propositional proof system P define
the QBF proof system Q-P by adding ∀red to the rules of P.

Remark
For P = Resolution this exactly yields QU-Resolution.
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Genuine QBF lower bounds

Propositional hardness transfers to QBF

• If φn(~x) is hard for P, then ∃~x φn(~x) is hard for Q-P .

• propositional hardness: not the phenomenon we want to study.

Genuine QBF hardness

• in Q-P : just count the number of ∀red steps

• can be modelled precisely by allowing NP oracles in QBF
proofs [Chen 16; B., Hinde & Pich 17]
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QBF proof systems with NP oracles

The QBF system Q-P NP has the rules:

• of the propositional system P

• ∀-reduction

• C1 . . . Cl

D
for any l ,

where
∧l

i=1 Ci |= D

Motivation

• allow NP oracles to collapse arbitrary propositional derivations
into one step

• akin to using SAT calls in QBF solving
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Reasons for QBF hardness

NP oracles in QBF proof systems

• eliminate propositional hardness

• What sources of hardness exist for these QBF systems?

Answer

• circuit complexity lower bounds
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The proof complexity theme song

You say you work on resolution
Well, you know, we all want a lower bound
You tell me you’d add substitution
Well, you know, first you gotta prove it sound

. . .

You say you can prove Pigeonhole
Well, you know, hard examples are hard to find
Though bounds for circuits play a role
Well, you know, this connection isn’t well-defined

. . .

Jan Johannsen & Antonina Kolokolova
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Proof complexity vs circuit complexity

A formal connection?

• general belief: there is a connection between lower bounds for
proof systems working on C circuits and lower bounds for C
• has not been made formal yet

Resolution and feasible interpolation

• imports lower bounds for monotone circuits

Algebraic proof systems

• connections between algebraic proof systems and lower
bounds for algebraic circuits [Grochow & Pitassi 18]
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Precise characterisations in QBF

Theorem [B. & Pich 16]

There exist hard formulas in Q-Frege if and only if there exist

• lower bounds for propositional Frege or

• there exist lower bounds for non-uniform NC1

(more precisely PSPACE 6⊆ NC1).

Alternative formulation

• super-polynomial lower bounds for Q-FregeNP iff
PSPACE 6⊆ NC1

• super-polynomial lower bounds for Q-EFNP iff
PSPACE 6⊆ P/poly
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This work: circuits and QBF resolution

Open problem

• Can we characterise QBF resolution hardness by circuit
complexity?

• QBF resolution corresponds to QBF solving.

Our contributions

• tight characterisation of QBF resolution by a decision list
model

• new size-width relation for QBF resolution

• unifies and generalises previous lower bound approaches

• easy lower bounds
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Unified decision lists

Our circuit model

• natural multi-output generalisation of decision lists [Rivest 87]

• computes functions {0, 1}n → {0, 1}m

• input variables x1, . . . , xn
• output variables u1, . . . , um

If t1 Then ~u = ~b1

Else If t2 Then ~u = ~b2
...

Else If tk Then ~u = ~bk
Else ~u = ~bk+1

• ti are terms in x1, . . . , xn
• ~bi are total assignments

to u1, . . . , um

We call this model unified decision lists (UDL).
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Unified decision lists

Unified decision lists (UDLs)

• naturally compute countermodels for false QBFs.

• Let Φ(~x , ~u) be a QBF with existential variables ~x and
universal variables ~u.

• Let T be a UDL with inputs ~x and outputs ~u.

• We call T a UDL for Φ if for each assignment α to ~x ,
the UDL T computes an assignment T (α) such that
α ∪ T (α) falsifies Φ.

• The UDL needs to respect the quantifier dependencies of Φ,
e.g. in ∃x1∀u1∃x2 the value of u1 must only depend on x1.
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Our characterisation

Theorem

• Let Φ be a false QBF of bounded quantifier complexity.

• Then the size of the smallest QU-ResNP refutation of Φ
is polynomially related to the size of the smallest UDL for Φ.

Equivalently

A sequence Φn of bounded quantification is hard for QU-Res if
and only if

1. Φn require large UDLs, or

2. Φn contain propositional resolution hardness.

Remark
The propositional resolution hardness in 2. can be precisely
identified.
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Comparison to QBF Frege

In QBF Frege

• hardness in Q-FregeNP working with lines from C is
characterised precisely by hardness for C circuits
[B. & Pich 16].

In QBF resolution

• we work with CNFs (depth-2 circuits).

• Complexity of decision lists (and hence UDLs) is strictly
intermediate between depth-2 and depth-3 circuits
[Krause 06].

• Hence, circuit characterisation of QBF resolution by a slightly
stronger model than used in the proof system.
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Proof ingredients – Part 1

From proofs to circuits

• From a QU-ResNP efficiently extract a winning strategy for
the universal player in terms of a UDL.

• Strategy extraction for each universal variable previously
known via single-output decision lists
[Balabanov & Jiang 12],[B., Bonacina & Chew 16]

• Need to be combined into one UDL (this step depends on
quantifier complexity).

Remarks

• Single output decision lists provably too strong too
characterise QU-ResNP hardness.

• There exist QBFs hard for QU-ResNP , but with trivial
single-output decision lists.
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Proof ingredients – Part 2

From circuits to proofs

• We construct a normal form for a QU-ResNP refutation of Φ
via an entailment sequence from a UDL for Φ.

• Intuition: entailment sequence proves the correctness of the
UDL.

Remarks

• Conceptually novel: Efficient construction of proofs from
strategies not considered before.

• Entailment sequence allows to identify propositional resolution
hardness.
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Q-Res vs QU-Res

Q-Res

• defined analogously to QU-Res [Kleine Büning et al. 95]

• Resolution pivots must be existential.

• Better captures ideas in QBF solving.

• QU-Res is exponentially stronger than Q-Res [Van Gelder 12].

We show:

• Q-Res and QU-Res are p-equivalent on bounded quantifier
QBFs.

• UDL characterisation therefore transfers to Q-Res.
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Size width for QBF?

Size-width for propositional resolution
[Ben-Sasson & Wigderson 01]

S(F ` ⊥) = exp

(
Ω

(
(w (F ` ⊥)− w(F ))2

n

))
(1)

• predominant lower bound technique for resolution

• (1) ruled out for QBF with specific counterexamples
[B., Chew, Mahajan, Shukla 18]

• Counterexamples use unbounded quantifier alternations.

• Also the proof idea for (1) does not lift to QBF.
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Size-width for QBF does work

Size-width for QU-ResNP

S(F ` ⊥) = exp

(
Ω

(
w∃ (F ` ⊥)2

d3n log n

))

• w∃ counts existential literals in clauses, but ignores axioms

• d is quantifier alternation of F

• no dependence on initial width

Proof

• uses our characterisation by UDLs

• and a size-width result for decision lists [Bshouty 96]
(generalised to UDLs)
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A first example

Parity formulas

QParityn = ∃x1 · · · xn ∀u ∃t1 · · · tn

{x1 ↔ t1} ∪
n⋃

i=2

{(ti−1 ⊕ xi )↔ ti} ∪ {u 6↔ tn}

• The only winning strategy is to compute u = x1 ⊕ . . .⊕ xn.

Hardness for QU-Res

• easy to see: the first line of each UDL for QParityn requires
all existential variables x1, . . . , xn
• immediately yields a lower bound of 2n/ log n

• previous lower bounds used hardness for AC 0 [Håstad 87]
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A second example

Equality formulas

EQn = ∃x1 · · · xn∀u1 · · · un∃t1 · · · tn(
n∧

i=1

(xi ∨ ui ∨ ¬ti ) ∧ (¬xi ∨ ¬ui ∨ ¬ti )

)
∧

(
n∨

i=1

ti

)

• The only winning strategy is to compute ui = xi for i ∈ [n].

Hardness for QU-Res

• easy to see: the first line of each UDL for EQn requires all
existential variables x1, . . . , xn
• formulas previously shown hard via the size-cost-capacity

technique [B., Blinkhorn & Hinde 18]
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Conclusion

• Tight characterisation of QBF resolution hardness by circuit
complexity (UDLs)

• UDLs are a natural computational model to compute QBF
countermodels.

• yields size-width relation for QBF, but different dependence
than in [Ben-Sasson & Wigderson 01]

• allows to elegantly reprove many known lower bounds

• generalises and unifies the two main previous lower bound
techniques for QBF: strategy extraction and size-cost-capacity

Open problem

• find the right circuit model for unbounded QBFs
(UDLs too weak)
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