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Lower Bounds and Metamathematics

Complexity lower bounds are hard to prove.

Metamathematics of lower bounds: understand the difficulty of proving them.

◦ guides us away from methods that cannot work

◦ inspires new approaches to lower bounds
e.g. natural proofs → new proof complexity lower bounds → hardness magnification

◦ important on its own
e.g. complexity of the minimum circuit size problem MCSP
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History: Circuit Complexity

Closely related struggle we are building on

Golden age: AC0, AC0[p], monotone circuit lower bounds ...

Barriers: natural proofs, relativization, algebrization ...

Natural proofs of Razborov-Rudich:

◦ a dense easy subset of hard Boolean functions
◦ known explicit circuit lower bounds are natural
◦ natural proofs against strong circuit models break SPRNGs

- influential (emphasize central role of MCSP in Complexity Theory)
- ad-hoc (natural proofs are not mathematical proofs in formal sense)
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Natural proofs as proof complexity lower bounds

Razborov: S2
2 (α) 6` SAT /∈ P/poly unless ¬∃ SPRNGs

Propositional version (Razborov-Kraj́ıček):
tt(f , nO(1)) hard for automatizable propositional proof systems unless ¬∃ SPRNG

tt(f , s) ∈ TAUT⇔ f /∈ Circuit[s]

2n bits encoding f , poly(s) variables for circuits of size s, total size: 2O(n)

tt(f , s):

◦ candidate hard tautologies for strong proof systems
◦ extensively studied

- Raz: Resolution has no p-size proofs of tt(f , nO(1))

- Razborov: Res(ε log n) does not have p-size proofs of tt(f , nω(1))

- Proof Complexity Generators

We’ll use similar framework for reasoning about hardness of proof complexity LBs
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Barriers on Proof Complexity Lower Bounds

- historically, PCLBs tend to be harder to prove than CLBs

major example: AC0[p]-Frege LBs still open

- but metamathematics of PCLBs received less attention than
metamathematics of CLBs
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Earlier results on hardness of PCLBs

1. ‘Simulation’ barrier (Cook-Reckhow, Kraj́ıček-Pudlák)

P ` lb(Q, nO(1), φ) ⇒ P simulates Q

lb(Q, s, φ) ∈ TAUT ⇔ ¬∃ s-size Q-proof of φ
lb(Q, s, φ) has poly(s, |φ|) variables for Q-proofs of size s

Proof. P ` lb(Q, nO(1), φ) ⇒ P ` RefQ .

Ex. Reasoning inside EF cannot prove lower bounds for ZFC

unless EF simulates ZFC.

2. ‘Translation’ barrier (Cook-Urquhart, Buss, Kraj́ıček-Pudlák)

PV1 6` ∀n ∃φn ∈ TAUT, |φn| = n s.t.
∀π, |π| = nlog n, π is not EF-proof of φn

PV1 ` Haken’s lower bound for Resolution (Pitassi-Cook)

PV1 `? constant-depth Frege lower bounds (Bellantoni-Pitassi-Urquhart)

6 / 16



Earlier results on hardness of PCLBs

1. ‘Simulation’ barrier (Cook-Reckhow, Kraj́ıček-Pudlák)
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Earlier results on hardness of PCLBs

3. ‘Witnessing’ barrier (Kraj́ıček)

PV1 6` NP 6= coNP unless NP ∩ coNP ⊆A Circuit[2n
ε
]

NP 6= coNP formalized so that

# of assignments of hard φn ∈ TAUT is feasible

i.e. 2n is a length of some number

4. Reductions to hard problems

IPS not p-bounded ⇒ VP 6= VNP (Grochow-Pitassi)

EF not p-bounded ⇒ P 6= NP consistent with S1
2
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Our results: natural proofs for proof complexity
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Natural proofs (more details)

Fn: Boolean functions on n inputs

C ⊆ Fn is B-natural proof useful against D iff

Constructivity. truth tables of f ∈ C recognizable by a B-circuit
with 2n inputs and size 2O(n)

Largeness. Pr[f ∈ C] ≥ 1/2O(n)

Usefulness. f ∈ C ⇒ f /∈ D

Razborov-Rudich: SPRNGs ⇒ ¬∃ P/poly-natural proof against P/poly.

Rudich: Super-bits ⇒ ¬∃ NP-natural proof against P/poly.

Super-bit. (PRG safe against nondeterministic circuits)

g : {0, 1}n 7→ {0, 1}n+1 computable in P/poly s.t. ∃ε > 0,
∀ nondeterministic circuits C of size 2n

ε
,

Pr[C (y) = 1]− Pr[C (g(y)) = 1] < 1/|C |
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Proof complexity version of natural proofs

Recall: tt(f , s) ∈ TAUT⇔ f /∈ Circuit[s]

lb(Q, s, φ) ∈ TAUT ⇔ ¬∃ s-size Q-proof of φ

Definition: pps Q defines Q-natural property useful against pps P
≡

Q ` lb(P, 2O(n), tt(f , nO(1))) for 1
2O(n) of all f ∈ Fn

WHY this definition?
◦ constructivity: replaced by provability

◦ largeness: accepts many hard tautologies instead of hard functions

◦ tt(f , s): candidate hard tautologies for strong proof systems

we consider also random 3CNFs instead of tt(f , s) formulas

Note: if we want φ ∈ TAUT hard for all pps

φ cannot be generated in (det.) p-time, i.e. focus on random φ

(Alternative definitions possible)

Ex.: EF-natural proofs useful against Resolution?
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Theorem 1

Super-bits ⇒ ∀ pps P simulating Resolution

for each f , tt(f , nO(1)) hard for P
or ∀ pps Q,

¬∃ Q-natural property useful against P.

Proof: By counterpositive. Assume P ` tt(f , nk)

Suffices to construct NP/poly-natural property useful against P/poly:

S := {g ∈ Fn | Q ` lb(P, 2O(n), tt(f⊕g , nk/3))}

Constuctivity X Largeness X
Usefulness:

Claim: P ` tt(f ⊕ g , nk/3) ∨ tt(g , nk/3)

Therefore, g ∈ Circuit[nk/3]⇒ P ` tt(f ⊕ g , nk/3) ⇒ g /∈ S
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Theorem 2 (Unconditional LB)

Definition: The existence of super-bits admits feasible proofs if
∀ non-uniform pps P ∃ pps Q s.t. for 1− 1/2ω(n) fraction of fn’s

Q ` lb(P, 2O(n), tt(fn, n
O(1)))

Theorem 2: The existence of super-bits does not admit feasible proofs.

Note: Thm 2 unconditional but does not imply NP 6= coNP

because lb(P, 2O(n), tt(fn, n
O(1))) might not be a tautology.

Proof:

∃ NP-natural property against P/poly ⇒ X

else ⇒ SAT /∈ P/poly
⇒ ∃ pps P s.t. P ` tt(SAT , n2)
⇒ ¬∃ Q-natural proof against P (by Theorem 1)

Compare to natural proofs: Thm 2 unconditional but
does not necessarilly work for specific systems like EF
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Feige’s hypothesis (random 3CNFs)

U∆,n: distribution over 3CNFs on n inputs with ∆n clauses, ∆ > 0
pick each clause by selecting 3 literals uniformly at random from 2n possibilities

Nondeterministic Feige’s hypothesis:
∀ non-uniform pps R w.h.p. φ ∈ UNSAT but ¬φ hard for R.

Definition: Nondeterministic Feige’s hypothesis admits feasible proofs if
∀ non-uniform pps P ∃ pps Q s.t. for 1− o(1) fraction of φ,

Q ` lb(P, |φ|k , φ).

Theorem 3: Super-bits⇒ ¬∃ feasible proof of nondet. Feige hypothesis

Proof: Use KT (y) = min{|d |+ t;Ud(i) = yi in t steps}

Claim: If KT (φ) high, then φ unsatisfiable.

Proceed as in Thm 1 but with tautologies expressing high KT instead of tt(f , s).
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First-order unprovability of ∃ Super-bits

We can show that the existence of super-bits cannot be proved in theories of

bounded arithmetic either.

- also unconditional result
- completely different proof

Theorem 4: PV1 6` ∃ Super-bits.

∃ Super-bits formalized so that 2n is a length of a number.

Proof:

Builds on Kraj́ıček’s proof of a conditional unprovability of NP 6= coNP.
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Builds on Kraj́ıček’s proof of a conditional unprovability of NP 6= coNP.

14 / 16



Further questions

◦ Show hardness of PCLBs for specific systems such as EF?

◦ Show unconditional hardness of non-deterministic Feige’s hypothesis?

◦ Get hardness of PCLBs for other families of random tautologies?

All p-time samplable families?

◦ Find more applications of non-constructive methods in Proof Complexity.

◦ Better understanding of metamathematics of lower bounds and

connections between Proof Complexity and Circuit Complexity LBs?
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Thank You for Your Attention

Kraj́ıček’s Fest & Complexity Theory with a Human Face

1-4 September 2020, Tábor, Czech Republic

more info: users.math.cas.cz/∼pich
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