Proof complexity workshop, Canada 21.1.2020

Why are proof complexity lower bounds hard?

Ján Pich

Institute of Mathematics Czech Academy of Sciences

joint work with Rahul Santhanam

Complexity lower bounds are hard to prove.

Metamathematics of lower bounds: understand the difficulty of proving them.

- \circ guides us away from methods that cannot work
- o inspires new approaches to lower bounds

e.g. natural proofs \rightarrow new proof complexity lower bounds \rightarrow hardness magnification

important on its own

e.g. complexity of the minimum circuit size problem MCSP

Closely related struggle we are building on

Golden age: AC^0 , $AC^0[p]$, monotone circuit lower bounds ...

Barriers: natural proofs, relativization, algebrization ...

Natural proofs of Razborov-Rudich:

a dense easy subset of hard Boolean functions
 known explicit circuit lower bounds are natural
 natural proofs against strong circuit models break SPRNGs

- influential (emphasize central role of MCSP in Complexity Theory)
- ad-hoc (natural proofs are not mathematical proofs in formal sense)

Natural proofs as proof complexity lower bounds

Razborov: $S_2^2(\alpha) \not\vdash SAT \notin P/poly unless \neg \exists SPRNGs$

Propositional version (Razborov-Krajíček):

 $tt(f, n^{O(1)})$ hard for automatizable propositional proof systems unless $\neg \exists$ SPRNG

 $tt(f, s) \in TAUT \Leftrightarrow f \notin Circuit[s]$

 2^n bits encoding f, poly(s) variables for circuits of size s, total size: $2^{O(n)}$

Natural proofs as proof complexity lower bounds

Razborov: $S_2^2(\alpha) \not\vdash SAT \notin P/poly unless \neg \exists SPRNGs$

Propositional version (Razborov-Krajíček):

 $tt(f, n^{O(1)})$ hard for automatizable propositional proof systems unless $\neg \exists$ SPRNG

 $tt(f, s) \in TAUT \Leftrightarrow f \notin Circuit[s]$

 2^n bits encoding f, poly(s) variables for circuits of size s, total size: $2^{O(n)}$

tt(f, s):

- candidate hard tautologies for strong proof systems
- extensively studied
 - Raz: Resolution has no p-size proofs of $tt(f, n^{O(1)})$
 - Razborov: $Res(\epsilon \log n)$ does not have p-size proofs of $tt(f, n^{\omega(1)})$
 - Proof Complexity Generators

We'll use similar framework for reasoning about hardness of proof complexity LBs

- historically, PCLBs tend to be harder to prove than CLBs major example: AC⁰[p]-Frege LBs still open
- but metamathematics of PCLBs **received less attention** than metamathematics of CLBs

1. 'Simulation' barrier (Cook-Reckhow, Krajíček-Pudlák)

 $P \vdash \mathsf{lb}(Q, n^{O(1)}, \phi) \Rightarrow P \text{ simulates } Q$

 $lb(Q, s, \phi) \in TAUT \Leftrightarrow \neg \exists s$ -size Q-proof of ϕ $lb(Q, s, \phi)$ has $poly(s, |\phi|)$ variables for Q-proofs of size s

1. 'Simulation' barrier (Cook-Reckhow, Krajíček-Pudlák)

 $P \vdash \mathsf{lb}(Q, n^{O(1)}, \phi) \Rightarrow P \text{ simulates } Q$

 $\mathsf{lb}(Q, s, \phi) \in \mathsf{TAUT} \Leftrightarrow \neg \exists s \text{-size } Q \text{-proof of } \phi$ $\mathsf{lb}(Q, s, \phi) \text{ has } poly(s, |\phi|) \text{ variables for } Q \text{-proofs of size } s$

Proof. $P \vdash \mathsf{lb}(Q, n^{O(1)}, \phi) \Rightarrow P \vdash Ref_Q.$

Ex. Reasoning inside EF cannot prove lower bounds for ZFC unless EF simulates ZFC.

1. 'Simulation' barrier (Cook-Reckhow, Krajíček-Pudlák)

 $P \vdash \mathsf{lb}(Q, n^{O(1)}, \phi) \Rightarrow P \text{ simulates } Q$

 $\mathsf{lb}(Q, s, \phi) \in \mathsf{TAUT} \Leftrightarrow \neg \exists s \text{-size } Q \text{-proof of } \phi$ $\mathsf{lb}(Q, s, \phi) \text{ has } poly(s, |\phi|) \text{ variables for } Q \text{-proofs of size } s$

Proof. $P \vdash \mathsf{lb}(Q, n^{O(1)}, \phi) \Rightarrow P \vdash Ref_Q$.

Ex. Reasoning inside EF cannot prove lower bounds for ZFC unless EF simulates ZFC.

'Translation' barrier (Cook-Urquhart, Buss, Krajíček-Pudlák)
 PV₁ ∀ dn ∃φ_n ∈ TAUT, |φ_n| = n s.t. ∀π, |π| = n^{log n}, π is not EF-proof of φ_n
 PV₁ ⊢ Haken's lower bound for Resolution (Pitassi-Cook)

 $PV_1 \vdash$ constant-depth Frege lower bounds (Bellantoni-Pitassi-Urquhart)

3. 'Witnessing' barrier (Krajíček)

 $\mathsf{PV}_1 \not\vdash \mathsf{NP} \neq \mathsf{coNP} \text{ unless } \mathsf{NP} \cap \mathsf{coNP} \subseteq_A \mathsf{Circuit}[2^{n^{\epsilon}}]$

 $\mathsf{NP} \neq \mathsf{coNP}$ formalized so that

of assignments of hard $\phi_n \in \mathsf{TAUT}$ is feasible

i.e. 2^n is a length of some number

3. 'Witnessing' barrier (Krajíček)

 $\mathsf{PV}_1 \not\vdash \mathsf{NP} \neq \mathsf{coNP} \text{ unless } \mathsf{NP} \cap \mathsf{coNP} \subseteq_A \mathsf{Circuit}[2^{n^{\epsilon}}]$

 $\mathsf{NP} \neq \mathsf{coNP}$ formalized so that

of assignments of hard $\phi_n \in \mathsf{TAUT}$ is feasible

i.e. 2^n is a length of some number

4. Reductions to hard problems

$$\begin{split} \text{IPS not } p\text{-bounded} &\Rightarrow \text{VP} \neq \text{VNP} \text{ (Grochow-Pitassi)} \\ \text{EF not } p\text{-bounded} &\Rightarrow \text{P} \neq \text{NP consistent with } S_2^1 \end{split}$$

Our results: natural proofs for proof complexity

Natural proofs (more details)

\mathcal{F}_n : Boolean functions on *n* inputs

```
C \subseteq \mathcal{F}_n is \mathcal{B}-natural proof useful against \mathcal{D} iff

Constructivity. truth tables of f \in C recognizable by a \mathcal{B}-circuit

with 2^n inputs and size 2^{O(n)}

Largeness. \Pr[f \in C] \ge 1/2^{O(n)}

Usefulness. f \in C \Rightarrow f \notin \mathcal{D}
```

Natural proofs (more details)

\mathcal{F}_n : Boolean functions on *n* inputs

 $C \subseteq \mathcal{F}_n$ is \mathcal{B} -natural proof useful against \mathcal{D} iff **Constructivity.** truth tables of $f \in C$ recognizable by a \mathcal{B} -circuit with 2^n inputs and size $2^{O(n)}$ **Largeness.** $\Pr[f \in C] \ge 1/2^{O(n)}$ **Usefulness.** $f \in C \Rightarrow f \notin \mathcal{D}$

Razborov-Rudich: SPRNGs $\Rightarrow \neg \exists P/poly-natural proof against P/poly.$

Rudich: Super-bits $\Rightarrow \neg \exists$ NP-natural proof against P/poly.

Super-bit. (PRG safe against nondeterministic circuits) $g : \{0, 1\}^n \mapsto \{0, 1\}^{n+1}$ computable in P/poly s.t. $\exists \epsilon > 0$, \forall nondeterministic circuits C of size $2^{n^{\epsilon}}$, $\Pr[C(y) = 1] - \Pr[C(g(y)) = 1] < 1/|C|$

Proof complexity version of natural proofs

Recall: $tt(f, s) \in TAUT \Leftrightarrow f \notin Circuit[s]$

 $\mathsf{lb}(Q, s, \phi) \in \mathsf{TAUT} \Leftrightarrow \neg \exists s \text{-size Q-proof of } \phi$

Definition: pps Q defines Q-natural property useful against pps P $\equiv Q \vdash \mathsf{lb}(P, 2^{O(n)}, tt(f, n^{O(1)})) \text{ for } \frac{1}{2^{O(n)}} \text{ of all } f \in \mathcal{F}_n$

Proof complexity version of natural proofs

Recall: $tt(f, s) \in TAUT \Leftrightarrow f \notin Circuit[s]$

 $\mathsf{lb}(Q, s, \phi) \in \mathsf{TAUT} \Leftrightarrow \neg \exists s \text{-size Q-proof of } \phi$

Definition: pps Q defines Q-natural property useful against pps P $\equiv Q \vdash lb(P, 2^{O(n)}, tt(f, n^{O(1)})) \text{ for } \frac{1}{2^{O(n)}} \text{ of all } f \in \mathcal{F}_n$

WHY this definition?

- o constructivity: replaced by provability
- o largeness: accepts many hard tautologies instead of hard functions
- \circ tt(*f*, *s*): candidate hard tautologies for strong proof systems

we consider also random 3CNFs instead of tt(f, s) formulas

Note: if we want $\phi \in \mathsf{TAUT}$ hard for all pps

 ϕ cannot be generated in (det.) p-time, i.e. focus on random ϕ (Alternative definitions possible)

Proof complexity version of natural proofs

Recall: $tt(f, s) \in TAUT \Leftrightarrow f \notin Circuit[s]$

 $\mathsf{lb}(Q, s, \phi) \in \mathsf{TAUT} \Leftrightarrow \neg \exists s \text{-size Q-proof of } \phi$

Definition: pps Q defines Q-natural property useful against pps P $\equiv Q \vdash lb(P, 2^{O(n)}, tt(f, n^{O(1)})) \text{ for } \frac{1}{2^{O(n)}} \text{ of all } f \in \mathcal{F}_n$

WHY this definition?

o constructivity: replaced by provability

o largeness: accepts many hard tautologies instead of hard functions

 \circ tt(*f*, *s*): candidate hard tautologies for strong proof systems

we consider also random 3CNFs instead of tt(f, s) formulas

Note: if we want $\phi \in \mathsf{TAUT}$ hard for all pps

 ϕ cannot be generated in (det.) p-time, i.e. focus on random ϕ (Alternative definitions possible)

Ex.: EF-natural proofs useful against Resolution?

Super-bits $\Rightarrow \forall \text{ pps } P \text{ simulating Resolution}$ for each f, tt $(f, n^{O(1)})$ hard for Por $\forall \text{ pps } Q$, $\neg \exists Q$ -natural property useful against P.

Super-bits $\Rightarrow \forall \text{ pps } P \text{ simulating Resolution}$ for each f, $\text{tt}(f, n^{O(1)})$ hard for Por $\forall \text{ pps } Q$, $\neg \exists Q$ -natural property useful against P.

Proof: By counterpositive. Assume $P \vdash tt(f, n^k)$

Suffices to construct NP/poly-natural property useful against P/poly:

Super-bits $\Rightarrow \forall \text{ pps } P \text{ simulating Resolution}$ for each f, $\text{tt}(f, n^{O(1)})$ hard for Por $\forall \text{ pps } Q$, $\neg \exists Q$ -natural property useful against P.

Proof: By counterpositive. Assume $P \vdash tt(f, n^k)$

Suffices to construct NP/poly-natural property useful against P/poly:

 $S := \{ g \in \mathcal{F}_n \mid Q \vdash lb(P, 2^{O(n)}, \mathsf{tt}(f \oplus g, n^k/3)) \}$

Super-bits $\Rightarrow \forall$ pps P simulating Resolution for each f, tt $(f, n^{O(1)})$ hard for Por \forall pps Q, $\neg \exists Q$ -natural property useful again

 $\neg \exists Q$ -natural property useful against P.

Proof: By counterpositive. Assume $P \vdash tt(f, n^k)$

Suffices to construct NP/poly-natural property useful against P/poly:

$$S := \{ g \in \mathcal{F}_n \mid Q \vdash lb(P, 2^{O(n)}, \mathsf{tt}(f \oplus g, n^k/3)) \}$$

Constuctivity \checkmark Largeness \checkmark Usefulness:

Super-bits $\Rightarrow \forall \text{ pps } P \text{ simulating Resolution}$ for each f, tt $(f, n^{O(1)})$ hard for Por $\forall \text{ pps } Q$, $\neg \exists Q$ -natural property useful against P.

Proof: By counterpositive. Assume $P \vdash tt(f, n^k)$

Suffices to construct NP/poly-natural property useful against P/poly:

$$S := \{ g \in \mathcal{F}_n \mid Q \vdash lb(P, 2^{O(n)}, \mathsf{tt}(f \oplus g, n^k/3)) \}$$

Constuctivity \checkmark Largeness \checkmark Usefulness:

Claim:
$$P \vdash \operatorname{tt}(f \oplus g, n^k/3) \lor \operatorname{tt}(g, n^k/3)$$

Therefore, $g \in \operatorname{Circuit}[n^k/3] \Rightarrow P \vdash \operatorname{tt}(f \oplus g, n^k/3) \Rightarrow g \notin S$

Theorem 2 (Unconditional LB)

Definition: The existence of super-bits admits feasible proofs if \forall non-uniform pps $P \exists$ pps Q s.t. for $1 - 1/2^{\omega(n)}$ fraction of f_n 's $Q \vdash \operatorname{lb}(P, 2^{O(n)}, \operatorname{tt}(f_n, n^{O(1)}))$

Theorem 2: The existence of super-bits does not admit feasible proofs.

Theorem 2 (Unconditional LB)

Definition: The existence of super-bits admits feasible proofs if \forall non-uniform pps $P \exists$ pps Q s.t. for $1 - 1/2^{\omega(n)}$ fraction of f_n 's $Q \vdash \operatorname{lb}(P, 2^{O(n)}, \operatorname{tt}(f_n, n^{O(1)}))$

Theorem 2: The existence of super-bits does not admit feasible proofs.

Note: Thm 2 unconditional but does not imply NP \neq coNP because lb(P, 2^{O(n)}, tt(f_n, n^{O(1)})) might not be a tautology.

Proof:

 $\exists \text{ NP-natural property against } P/\text{poly} \Rightarrow \checkmark$ $else \Rightarrow \text{SAT} \notin P/\text{poly}$ $\Rightarrow \exists \text{ pps } P \text{ s.t. } P \vdash \text{tt}(SAT, n^2)$ $\Rightarrow \neg \exists Q-\text{natural proof against } P \text{ (by Theorem 1)}$

Theorem 2 (Unconditional LB)

Definition: The existence of super-bits admits feasible proofs if \forall non-uniform pps $P \exists$ pps Q s.t. for $1 - 1/2^{\omega(n)}$ fraction of f_n 's $Q \vdash \operatorname{lb}(P, 2^{O(n)}, \operatorname{tt}(f_n, n^{O(1)}))$

Theorem 2: The existence of super-bits does not admit feasible proofs.

Note: Thm 2 unconditional but does not imply NP \neq coNP because lb(P, 2^{O(n)}, tt(f_n, n^{O(1)})) might not be a tautology.

Proof:

∃ NP-natural property against P/poly ⇒ \checkmark else ⇒ SAT ∉ P/poly ⇒ ∃ pps P s.t. P ⊢ tt(SAT, n²) ⇒ ¬∃ Q-natural proof against P (by Theorem 1)

Compare to natural proofs: Thm 2 unconditional but does not necessarilly work for specific systems like EF

Feige's hypothesis (random 3CNFs)

 $U_{\Delta,n}$: distribution over 3CNFs on *n* inputs with Δn clauses, $\Delta > 0$ pick each clause by selecting 3 literals uniformly at random from 2n possibilities

Nondeterministic Feige's hypothesis:

 \forall non-uniform pps *R* w.h.p. $\phi \in \text{UNSAT}$ but $\neg \phi$ hard for *R*.

Definition: Nondeterministic Feige's hypothesis admits feasible proofs if \forall non-uniform pps $P \exists$ pps Q s.t. for 1 - o(1) fraction of ϕ , $Q \vdash lb(P, |\phi|^k, \phi)$.

Feige's hypothesis (random 3CNFs)

 $U_{\Delta,n}$: distribution over 3CNFs on *n* inputs with Δn clauses, $\Delta > 0$ pick each clause by selecting 3 literals uniformly at random from 2n possibilities

Nondeterministic Feige's hypothesis:

 \forall non-uniform pps *R* w.h.p. $\phi \in \text{UNSAT}$ but $\neg \phi$ hard for *R*.

Definition: Nondeterministic Feige's hypothesis admits feasible proofs if \forall non-uniform pps $P \exists$ pps Q s.t. for 1 - o(1) fraction of ϕ , $Q \vdash lb(P, |\phi|^k, \phi)$.

Theorem 3: Super-bits $\Rightarrow \neg \exists$ feasible proof of nondet. Feige hypothesis

Feige's hypothesis (random 3CNFs)

 $U_{\Delta,n}$: distribution over 3CNFs on *n* inputs with Δn clauses, $\Delta > 0$ pick each clause by selecting 3 literals uniformly at random from 2n possibilities

Nondeterministic Feige's hypothesis:

 \forall non-uniform pps *R* w.h.p. $\phi \in \text{UNSAT}$ but $\neg \phi$ hard for *R*.

Definition: Nondeterministic Feige's hypothesis admits feasible proofs if \forall non-uniform pps $P \exists$ pps Q s.t. for 1 - o(1) fraction of ϕ , $Q \vdash lb(P, |\phi|^k, \phi)$.

Theorem 3: Super-bits $\Rightarrow \neg \exists$ feasible proof of nondet. Feige hypothesis

Proof: Use $KT(y) = min\{|d| + t; U^d(i) = y_i \text{ in } t \text{ steps}\}$

Claim: If $KT(\phi)$ high, then ϕ unsatisfiable.

Proceed as in Thm 1 but with tautologies expressing high KT instead of tt(f, s).

First-order unprovability of \exists Super-bits

We can show that the existence of super-bits cannot be proved in theories of bounded arithmetic either.

We can show that the existence of super-bits cannot be proved in theories of bounded arithmetic either.

- also unconditional result
- completely different proof

Theorem 4: $\mathsf{PV}_1 \not\vdash \exists$ Super-bits.

 \exists Super-bits formalized so that 2^n is a length of a number.

We can show that the existence of super-bits cannot be proved in theories of bounded arithmetic either.

- also unconditional result
- completely different proof

Theorem 4: $\mathsf{PV}_1 \not\vdash \exists$ Super-bits.

 \exists Super-bits formalized so that 2^n is a length of a number.

Proof:

Builds on Krajíček's proof of a conditional unprovability of NP \neq coNP.

- Show hardness of PCLBs for specific systems such as EF?
- Show unconditional hardness of non-deterministic Feige's hypothesis?
- Get hardness of PCLBs for other families of random tautologies?
 All p-time samplable families?
- Find more applications of non-constructive methods in Proof Complexity.
- Better understanding of metamathematics of lower bounds and connections between Proof Complexity and Circuit Complexity LBs?

Thank You for Your Attention

Krajíček's Fest & Complexity Theory with a Human Face

1-4 September 2020, Tábor, Czech Republic

more info: users.math.cas.cz/~pich