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Polynomial calculus space and resolution width

Preliminaries

Resolution and Polynomial Calculus

I Resolution (Res) a refutational sound and complete propositional
proof system for reasoning about CNFs

Lines: (`1 ∨ . . . ∨ `k)
Rule: C∨x ¬x∨D

C∨D
Contradiction: empty clause

I Polynomial Calculus with Resolution (PCR) extends Resolution to
reason about polynomial equations.

Lines: p = 0, p poly in F[x1, . . . , xn, x̄1, . . . , x̄n]
Rules: x2−x , x+x̄−1 ,

p q
ap+bq ,

p
xp

Contradiction: 1
CNF reasoning : x1 ∨ ¬x2 ∨ x3 7−→ x̄1x2x̄3
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Preliminaries

Complexity measures: width and degree

Resolution width

Clause width: w(C ) = # literals in C
Proof width: w(π) = maxC∈π w(C )

Given CNF F , w(F ` ⊥) = minimal w(π) for π a Res proof of F .

PCR degree

Term degree: deg(t)
Proof degree: deg(π) = maxt∈π deg(t)

For CNF F , deg(F ` ⊥) = minimal deg(π) for π a PCR proof of F .
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Preliminaries

Complexity measures: space

Memory configurations:

Mi = m1 m2 m3 · · · msi

Each mi is a clause in the case of Res, a term in the case of PCR.

Proofs are sequences M1, . . .Mt of memory configurations such that:
M1 = ∅, Mt = {⊥}, and Mi 7→Mi+1 by one of:

I Axiom download: download a clause of F into Mi+1,

I Inference: add conclusion of a rule applied to clauses/polys from Mi ,

I Deletion: delete a clause/poly appearing in Mi .

The space of a proof π is the largest si for Mi ∈ π.
The space needed to prove F ` ⊥ in Res/PCR defined accordingly.
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Polynomial calculus space and resolution width

Main result: context and statement

Relations between proof measures

Res space is lower-bounded by width [Atserias-Dalmau 08]:

F a k-CNF, SpRes(F ` ⊥) ≥ w(F ` ⊥)− k + 1,

Res total space is lower-bounded by width squared [Bonacina 16]:
(total space counts literals rather than just clauses in memory)

F a k-CNF, TSpR(F ` ⊥) ≥ 1

16
(w(F `)− k + 4)2,

PCR space for F ([⊕]) is lower-bounded by Res width for F [FLMNV 13]:

F a k-CNF, SpPCR(F [⊕] ` ⊥) ≥ (w(F ` ⊥)− k + 1)/4.
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Main result: context and statement

Our Contribution

Problem:
Is PCR space lower-bounded by degree, or even by Res width?

Theorem (Main)

Let F be a k-CNF. If F has a PCR refutation in space s
over some field F, then F has a Res refutation of width O(s2) + k .

(In other words, SpPCR(F ` ⊥) ≥ Ω(
√

w(F ` ⊥)− k).)

Corollary

PCR refutations in space s can be transformed
into PCR refutations of degree O(s2) + k .

6 / 20



Polynomial calculus space and resolution width

Main result: context and statement

Our Contribution

Problem:
Is PCR space lower-bounded by degree, or even by Res width?

Theorem (Main)

Let F be a k-CNF. If F has a PCR refutation in space s
over some field F, then F has a Res refutation of width O(s2) + k .

(In other words, SpPCR(F ` ⊥) ≥ Ω(
√

w(F ` ⊥)− k).)

Corollary

PCR refutations in space s can be transformed
into PCR refutations of degree O(s2) + k .

6 / 20



Polynomial calculus space and resolution width

Main result: context and statement

An important tool

Definition (Atserias-Dalmau family)
Let F be a k-CNF. A w -AD family for F is a nonempty family H
of partial assignments to the variables of F such that for each α ∈ H,

I |α| ≤ w ,

I if β ⊆ α then β ∈ H,

I if |α| < w and x a vble, then there is β ⊇ α in H with x ∈ dom(β),

I α does not falsify any clause of F .

Theorem (Atserias Dalmau 08)
If w(F ` ⊥) ≥ w , then there exists a w -AD family for F .
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Main result: context and statement

Res space ≥ width, AD-style

I Assume that F has a Res refutation of space s: M1, . . . ,Mt .

I Assume also that there is a (s+k)-AD family for F .

I Prove inductively that for each i = 1, . . . , t,
there is αi ∈ H with |αi | ≤ s satisfying each clause in Mi .

I Induction goes through because no α in H falsifies F
and because you only need s bits to satisfy s clauses.

I But Mt contains ⊥: contradiction.

In some other resolution lower bound proofs (esp. for width),
a dual approach is used: go up the refutation from the final clause,

finding small assignments that falsify a given clause.

8 / 20



Polynomial calculus space and resolution width

Proof ideas

Towards PCR space

From now on, fix:

I an unsatisfiable k-CNF F ,

I which has a space s PCR refutation M1, . . . ,Mt ,

I but also has a w -AD family H,
(where w will turn out to be 4s2 + k.)

We would like to adapt the AD approach
to show that this situation cannot happen.

But there are difficulties...
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Proof ideas

A difficulty

Obvious problem:

It is no longer true that few bits suffice to satisfy a low-space
configuration. The polynomial 1−

∏n
i=1 xi has space 2

but satisfying 1−
∏n

i=1 xi = 0 requires setting n variables.

Remedy:

Take seriously the idea (borrowed from forcing) that if no extension
of α in H makes something true, then in a sense α makes it false.
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Proof ideas

Forcing with an AD-family

Definition (, meaning “forces”)
For an assignment α ∈ H and a term t, we define

(i) α  t = 0 if α sets some variable in t to 0,

(ii) α  t = 1 if no β ∈ H with β ⊇ α sets any variable in t to 0.

This generalizes to polynomials and configurations:

I if p =
∑

i ai ti with ai ∈ F, and α forces each ti to a value
bi ∈ {0, 1}, then we say α  p =

∑
i aibi ,

I α M if α forces each polynomial in M to 0,

I α  ¬M if α forces each polynomial in M to a value,
but at least one of those values is 6= 0.
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Proof ideas

Forcing: the bad and the good

Bad:
E.g.: if |α| = w , x /∈ dom(α), then α  x + x̄ − 1 = −1.
(Recall that we can derive x + x̄ − 1 from no premises at all!)

Good:
For α reasonably small (|α| ≤ w − s − k generally suffices):

I it cannot happen that α Mi and α  ¬Mi ,

I it cannot happen that α Mi and α  ¬Mi+1,

I for any i , there is always α ⊆ βi ∈ H with |βi | ≤ |α|+ s
such that βi Mi or βi  ¬Mi .

(So maybe we could go down the refutation like in A-D,
maintaining small αi ∈ H such that αi Mi?)
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Proof ideas

Another difficulty

Slightly less obvious problem:

If α Mi , and β ⊇ α with β Mi+1, there is no guarantee
that we can find β′ ⊆ β with β′ Mi+1 and |β′| ≤ s.
(Deleting bits may cause terms to stop being forced to 1.)

Remedy:

Go down and up repeatedly in a number of steps r = 1, . . . , ?:

I maintaning αr that keeps increasing, but |αr | is under control,
I finding i1 ≤ i2 ≤ . . . ≤ ir ≤ . . . ≤ jr ≤ . . . j2 ≤ j1 such that:

I α Mir and α  ¬Mjr ,
I α has increasingly “special” properties

w.r.t. all configurations between Mir and Mjr .
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Proof ideas

The “special” property: non-zero terms

Definition
I NZ(α,M) = |{t ∈M : α 6 t = 0}|.
I α guarantees ≥ r NZ-terms in M if for each β ∈ H
β ⊇ α implies NZ(β,M) ≥ r .

Some observations:

I Every α guarantees ≥ 0 NZ-terms in every Mi .

I If α guarantees ≥ s NZ-terms in Mi ,
then it forces each t in Mi to 1.

I If α guarantees ≥ r NZ-terms in Mi ,
and γ ⊇ α with NZ(α,Mi ) = r and γ  (¬)Mi ,
then there is β ⊇ α with β  (¬)Mi and |β| ≤ |α|+ s.
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Proof ideas

Main Lemma

Lemma (Main)

For each r ≤ s, there are αr ∈ H and 1 ≤ ir < jr ≤ t such that:

1. αr Mir and α  ¬Mjr ,

2. αr guarantees ≥ r NZ-terms in each M` for ir ≤ ` ≤ jr ,

3. |αr | ≤ 4rs.

The proof is by induction on r .
The base case uses α0 = ∅, i0 = 1, and j0 = t.
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Proof ideas

Inductive step: downwards

Mjr · · ·
αr  ¬Mjr

Mir · · · αr Mir

...

Mi ′ · · · β Mi ′

...

Mi ′+1 · · · γ Mi ′+1

I i ′ is greatest in [ir , jr ] s.t. there is β ⊇ αr with β Mi ′

and NZ(β,Mi ′) = r ; if none exists, i ′ = ir . W.l.o.g. |β| ≤ |αr |+ s.

I Then exists γ ⊇ β such that γ  Mi ′+1. W.l.o.g. |γ| ≤ |αr |+ 2s.
Necessarily NZ(γ,Mi ′+1) > r .

I The number i ′ + 1 will be ir+1.
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Proof ideas

Inductive step: upwards

Mjr · · ·
γ  ¬Mjr

Mir+1
· · · γ Mir+1

...

Mj′−1 · · · ζ  ¬Mj′−1

...

Mj′ · · · δ  ¬Mj′

I j ′ is smallest in [ir+1, jr ] s.t. there is δ ⊇ γ with NZ(δ,Mj′) = r ;
if none exists, j ′ = jr . W.l.o.g. |δ| ≤ |α|+ 3s. Necessarily, δ  ¬Mj′ .

I Then exists ζ ⊇ δ such that ζ  ¬Mj′−1. W.l.o.g. |ζ| ≤ |α|+ 4s.
Necessarily NZ(ζ,Mj′−1) > r .

I The number j ′ − 1 becomes jr+1, and ζ becomes αr+1.
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Proof ideas

Wrapping up the proof

I After s inductive steps we get is < js and αs with |αs | ≤ 4s2.

I We have αs Mis , αs  ¬Mjs .

I Moreover, NZ(αs ,M`) = s for each ` in between.
This means that αs M` or αs  ¬M`.

I By an easy induction, we get αs M` for each
` = is , is + 1, . . . , js . This contradicts αs  ¬Mjs .
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Conclusion

Improvements and consequences

I Argument works for wider class of “configurational proof systems”
as long as each configuration is a boolean function of ≤ s terms.

I The bound on width is actually ∼ 2s2 + k ,
and for the special case of PCR it is ∼ s2 + k .

I A simple variant of our argument (once up, once down)
reproves Bonacina’s “Res total space ≥ (width)2”.

I We get Ω(
√
n) PCR space lower bounds for GOPn and FPHPn.

I And n-variable formulas with nO(1)-size, O(1)-degree PCR proofs
but no o(

√
n)-space PCR proofs independently of characteristic.
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Conclusion

Open problem

Recall our main result:

Theorem
If a k-CNF F has a PCR refutation in space s,
then it has a Res refutation of width O(s2) + k .

Problem
Is the square in our result needed?

(The intriguing option that it is needed for general systems
but not for PCR has not been ruled out.)
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