Polynomial calculus space and resolution width

Nicola Galesi ${ }^{1}$ Leszek Kołodziejczyk ${ }^{2}$ Neil Thapen ${ }^{3}$
${ }^{1}$ Sapienza University ${ }^{2}$ University of Warsaw ${ }^{3}$ Czech Academy of Sciences

Banff, January 2020

Resolution and Polynomial Calculus

- Resolution (Res) a refutational sound and complete propositional proof system for reasoning about CNFs

$$
\begin{array}{ll}
\text { Lines: } & \left(\ell_{1} \vee \ldots \vee \ell_{k}\right) \\
\text { Rule: } & \frac{C \vee x \neg \times V D}{C V D} \\
\text { Contradiction: } & \text { empty clause }
\end{array}
$$

- Polynomial Calculus with Resolution (PCR) extends Resolution to reason about polynomial equations.

Lines: $\quad p=0, p$ poly in $\mathbb{F}\left[x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}\right]$
Rules: $\quad \overline{x^{2}-\bar{x}}, \quad \overline{x+\bar{x}-1}, \quad \frac{p}{a p+b q}, \quad \frac{p}{x p}$
Contradiction: 1
CNF reasoning: $x_{1} \vee \neg x_{2} \vee x_{3} \longmapsto \bar{x}_{1} x_{2} \bar{x}_{3}$

Complexity measures: width and degree

Resolution width

Clause width: $\mathrm{w}(C)=\#$ literals in C
Proof width: $\mathrm{w}(\pi)=\max _{C \in \pi} \mathrm{w}(C)$
Given CNF $F, \mathrm{w}(F \vdash \perp)=$ minimal $\mathrm{w}(\pi)$ for π a Res proof of F.

PCR degree
Term degree: $\operatorname{deg}(t)$
Proof degree: $\operatorname{deg}(\pi)=\max _{t \in \pi} \operatorname{deg}(t)$
For CNF $F, \operatorname{deg}(F \vdash \perp)=$ minimal $\operatorname{deg}(\pi)$ for π a PCR proof of F.

Complexity measures: space

Memory configurations:

Each m_{i} is a clause in the case of Res, a term in the case of PCR.
Proofs are sequences $\mathbb{M}_{1}, \ldots \mathbb{M}_{t}$ of memory configurations such that:
$\mathbb{M}_{1}=\emptyset, \mathbb{M}_{t}=\{\perp\}$, and $\mathbb{M}_{i} \mapsto \mathbb{M}_{i+1}$ by one of:

- Axiom download: download a clause of F into \mathbb{M}_{i+1},
- Inference: add conclusion of a rule applied to clauses/polys from \mathbb{M}_{i},
- Deletion: delete a clause/poly appearing in \mathbb{M}_{i}.

The space of a proof π is the largest s_{i} for $\mathbb{M}_{i} \in \pi$.
The space needed to prove $F \vdash \perp$ in Res/PCR defined accordingly.

Relations between proof measures

Res space is lower-bounded by width [Atserias-Dalmau 08]:

$$
F \text { a } k \text {-CNF, } \quad \operatorname{Sp}_{\text {Res }}(F \vdash \perp) \geq \mathrm{w}(F \vdash \perp)-k+1,
$$

Res total space is lower-bounded by width squared [Bonacina 16]: (total space counts literals rather than just clauses in memory)

$$
F \text { a } k-\mathrm{CNF}, \quad \mathrm{TSp}_{R}(F \vdash \perp) \geq \frac{1}{16}(\mathrm{w}(F \vdash)-k+4)^{2},
$$

PCR space for $F([\oplus])$ is lower-bounded by Res width for F [FLMNV 13]:

$$
F \text { a } k-C N F, \quad \operatorname{Sp}_{\mathrm{PCR}}(F[\oplus] \vdash \perp) \geq(\mathrm{w}(F \vdash \perp)-k+1) / 4 .
$$

Our Contribution

Problem:
Is PCR space lower-bounded by degree, or even by Res width?

Our Contribution

Problem:

Is PCR space lower-bounded by degree, or even by Res width?
Theorem (Main)
Let F be a k-CNF. If F has a PCR refutation in space s over some field \mathbb{F}, then F has a Res refutation of width $O\left(s^{2}\right)+k$.
(In other words, $\operatorname{Sp}_{\mathrm{PCR}}(F \vdash \perp) \geq \Omega(\sqrt{\mathrm{w}(F \vdash \perp)-k})$.)
Corollary
PCR refutations in space s can be transformed into PCR refutations of degree $O\left(s^{2}\right)+k$.

An important tool

Definition (Atserias-Dalmau family)
Let F be a k-CNF. A $w-A D$ family for F is a nonempty family \mathcal{H} of partial assignments to the variables of F such that for each $\alpha \in \mathcal{H}$,

- $|\alpha| \leq w$,
- if $\beta \subseteq \alpha$ then $\beta \in \mathcal{H}$,
- if $|\alpha|<w$ and x a vble, then there is $\beta \supseteq \alpha$ in \mathcal{H} with $x \in \operatorname{dom}(\beta)$,
- α does not falsify any clause of F.

Theorem (Atserias Dalmau 08)
If $w(F \vdash \perp) \geq w$, then there exists a w-AD family for F.

Res space \geq width, AD-style

- Assume that F has a Res refutation of space $s: \mathbb{M}_{1}, \ldots, \mathbb{M}_{t}$.
- Assume also that there is a $(s+k)$-AD family for F.
- Prove inductively that for each $i=1, \ldots, t$, there is $\alpha_{i} \in \mathcal{H}$ with $\left|\alpha_{i}\right| \leq s$ satisfying each clause in \mathbb{M}_{i}.
- Induction goes through because no α in \mathcal{H} falsifies F and because you only need s bits to satisfy s clauses.
- But \mathbb{M}_{t} contains \perp : contradiction.

In some other resolution lower bound proofs (esp. for width), a dual approach is used: go up the refutation from the final clause, finding small assignments that falsify a given clause.

Towards PCR space

From now on, fix:

- an unsatisfiable k-CNF F,
- which has a space s PCR refutation $\mathbb{M}_{1}, \ldots, \mathbb{M}_{t}$,
- but also has a w-AD family \mathcal{H}, (where w will turn out to be $4 s^{2}+k$.)

We would like to adapt the AD approach to show that this situation cannot happen.

But there are difficulties...

A difficulty

Obvious problem:
It is no longer true that few bits suffice to satisfy a low-space configuration. The polynomial $1-\prod_{i=1}^{n} x_{i}$ has space 2 but satisfying $1-\prod_{i=1}^{n} x_{i}=0$ requires setting n variables.

A difficulty

Obvious problem:
It is no longer true that few bits suffice to satisfy a low-space configuration. The polynomial $1-\prod_{i=1}^{n} x_{i}$ has space 2 but satisfying $1-\prod_{i=1}^{n} x_{i}=0$ requires setting n variables.

Remedy:
Take seriously the idea (borrowed from forcing) that if no extension of α in \mathcal{H} makes something true, then in a sense α makes it false.

Forcing with an AD-family

Definition (\Vdash, meaning "forces")
For an assignment $\alpha \in \mathcal{H}$ and a term t, we define
(i) $\alpha \Vdash t=0$ if α sets some variable in t to 0 ,
(ii) $\alpha \Vdash t=1$ if no $\beta \in \mathcal{H}$ with $\beta \supseteq \alpha$ sets any variable in t to 0 .

Forcing with an AD-family

Definition ($\mid \vdash$, meaning "forces")
For an assignment $\alpha \in \mathcal{H}$ and a term t, we define
(i) $\alpha \Vdash t=0$ if α sets some variable in t to 0 ,
(ii) $\alpha \Vdash t=1$ if no $\beta \in \mathcal{H}$ with $\beta \supseteq \alpha$ sets any variable in t to 0 .

This generalizes to polynomials and configurations:

- if $p=\sum_{i} a_{i} t_{i}$ with $a_{i} \in \mathbb{F}$, and α forces each t_{i} to a value $b_{i} \in\{0,1\}$, then we say $\alpha \Vdash p=\sum_{i} a_{i} b_{i}$,
- $\alpha \Vdash \mathbb{M}$ if α forces each polynomial in \mathbb{M} to 0 ,
$-\alpha \Vdash \neg \mathbb{M}$ if α forces each polynomial in \mathbb{M} to a value, but at least one of those values is $\neq 0$.

Forcing: the bad and the good

Bad:
E.g.: if $|\alpha|=w, x \notin \operatorname{dom}(\alpha)$, then $\alpha \Vdash x+\bar{x}-1=-1$.
(Recall that we can derive $x+\bar{x}-1$ from no premises at all!)
Good:
For α reasonably small ($|\alpha| \leq w-s-k$ generally suffices):

- it cannot happen that $\alpha \Vdash \mathbb{M}_{i}$ and $\alpha \Vdash \neg \mathbb{M}_{i}$,
- it cannot happen that $\alpha \Vdash \mathbb{M}_{i}$ and $\alpha \Vdash \neg \mathbb{M}_{i+1}$,
- for any i, there is always $\alpha \subseteq \beta_{i} \in \mathcal{H}$ with $\left|\beta_{i}\right| \leq|\alpha|+s$ such that $\beta_{i} \Vdash \mathbb{M}_{i}$ or $\beta_{i} \Vdash \neg \mathbb{M}_{i}$.
(So maybe we could go down the refutation like in A-D, maintaining small $\alpha_{i} \in \mathcal{H}$ such that $\alpha_{i} \Vdash \mathbb{M}_{i}$?)

Another difficulty

Slightly less obvious problem:
If $\alpha \Vdash \mathbb{M}_{i}$, and $\beta \supseteq \alpha$ with $\beta \Vdash \mathbb{M}_{i+1}$, there is no guarantee that we can find $\beta^{\prime} \subseteq \beta$ with $\beta^{\prime} \Vdash \mathbb{M}_{i+1}$ and $\left|\beta^{\prime}\right| \leq s$. (Deleting bits may cause terms to stop being forced to 1.)

Another difficulty

Slightly less obvious problem:
If $\alpha \Vdash \mathbb{M}_{i}$, and $\beta \supseteq \alpha$ with $\beta \Vdash \mathbb{M}_{i+1}$, there is no guarantee that we can find $\beta^{\prime} \subseteq \beta$ with $\beta^{\prime} \mid \vdash \mathbb{M}_{i+1}$ and $\left|\beta^{\prime}\right| \leq s$.
(Deleting bits may cause terms to stop being forced to 1.)
Remedy:
Go down and up repeatedly in a number of steps $r=1, \ldots$,?:

- maintaning α_{r} that keeps increasing, but $\left|\alpha_{r}\right|$ is under control,
- finding $i_{1} \leq i_{2} \leq \ldots \leq i_{r} \leq \ldots \leq j_{r} \leq \ldots j_{2} \leq j_{1}$ such that:
- $\alpha \Vdash \mathbb{M}_{i_{r}}$ and $\alpha \Vdash \neg \mathbb{M}_{j_{r}}$,
- α has increasingly "special" properties w.r.t. all configurations between $\mathbb{M}_{i_{r}}$ and $\mathbb{M}_{j_{r}}$.

The "special" property: non-zero terms

Definition

- $\operatorname{NZ}(\alpha, \mathbb{M})=|\{t \in \mathbb{M}: \alpha \Vdash t=0\}|$.
- α guarantees $\geq r$ NZ-terms in \mathbb{M} if for each $\beta \in \mathcal{H}$ $\beta \supseteq \alpha$ implies $\operatorname{NZ}(\beta, \mathbb{M}) \geq r$.

Some observations:

- Every α guarantees ≥ 0 NZ-terms in every \mathbb{M}_{i}.
- If α guarantees $\geq s$ NZ-terms in \mathbb{M}_{i}, then it forces each t in \mathbb{M}_{i} to 1 .
- If α guarantees $\geq r$ NZ-terms in \mathbb{M}_{i}, and $\gamma \supseteq \alpha$ with $\operatorname{NZ}\left(\alpha, \mathbb{M}_{i}\right)=r$ and $\gamma \Vdash(\neg) \mathbb{M}_{i}$, then there is $\beta \supseteq \alpha$ with $\beta \Vdash(\neg) \mathbb{M}_{i}$ and $|\beta| \leq|\alpha|+s$.

Main Lemma

Lemma (Main)

For each $r \leq s$, there are $\alpha_{r} \in H$ and $1 \leq i_{r}<j_{r} \leq t$ such that:

1. $\alpha_{r} \Vdash \mathbb{M}_{i_{r}}$ and $\alpha \Vdash \neg \mathbb{M}_{j_{r}}$,
2. α_{r} guarantees $\geq r \mathrm{NZ}$-terms in each \mathbb{M}_{ℓ} for $i_{r} \leq \ell \leq j_{r}$, 3. $\left|\alpha_{r}\right| \leq 4 r s$.

The proof is by induction on r.
The base case uses $\alpha_{0}=\emptyset, i_{0}=1$, and $j_{0}=t$.

Inductive step: downwards

- i^{\prime} is greatest in $\left[i_{r}, j_{r}\right]$ s.t. there is $\beta \supseteq \alpha_{r}$ with $\beta \Vdash \mathbb{M}_{i^{\prime}}$ and $\mathrm{NZ}\left(\beta, \mathbb{M}_{i^{\prime}}\right)=r$; if none exists, $i^{\prime}=i_{r}$. W.I.o.g. $|\beta| \leq\left|\alpha_{r}\right|+s$.
- Then exists $\gamma \supseteq \beta$ such that $\gamma \Vdash M_{i^{\prime}+1}$. W.I.o.g. $|\gamma| \leq\left|\alpha_{r}\right|+2 s$. Necessarily $\mathrm{NZ}\left(\gamma, \mathbb{M}_{i^{\prime}+1}\right)>r$.
- The number $i^{\prime}+1$ will be i_{r+1}.

Inductive step: upwards

- j^{\prime} is smallest in $\left[i_{r+1}, j_{r}\right]$ s.t. there is $\delta \supseteq \gamma$ with $\operatorname{NZ}\left(\delta, \mathbb{M}_{j^{\prime}}\right)=r$; if none exists, $j^{\prime}=j_{r}$. W.I.o.g. $|\delta| \leq|\alpha|+3 s$. Necessarily, $\delta \Vdash \neg M_{j^{\prime}}$.
- Then exists $\zeta \supseteq \delta$ such that $\zeta \Vdash \neg M_{j^{\prime}-1}$. W.I.o.g. $|\zeta| \leq|\alpha|+4 s$. Necessarily $\mathrm{NZ}\left(\zeta, \mathbb{M}_{j^{\prime}-1}\right)>r$.
- The number $j^{\prime}-1$ becomes j_{r+1}, and ζ becomes α_{r+1}.

Wrapping up the proof

- After s inductive steps we get $i_{s}<j_{s}$ and α_{s} with $\left|\alpha_{s}\right| \leq 4 s^{2}$.
- We have $\alpha_{s} \Vdash \mathbb{M}_{i_{s}}, \alpha_{s} \Vdash \neg \mathbb{M}_{j_{s}}$.
- Moreover, $\mathrm{NZ}\left(\alpha_{s}, \mathbb{M}_{\ell}\right)=s$ for each ℓ in between. This means that $\alpha_{s} \Vdash \mathbb{M}_{\ell}$ or $\alpha_{s} \Vdash \neg \mathbb{M}_{\ell}$.
- By an easy induction, we get $\alpha_{s} \Vdash \mathbb{M}_{\ell}$ for each $\ell=i_{s}, i_{s}+1, \ldots, j_{s}$. This contradicts $\alpha_{s} \Vdash \neg \mathbb{M}_{j_{s}}$.

Improvements and consequences

- Argument works for wider class of "configurational proof systems" as long as each configuration is a boolean function of $\leq s$ terms.
- The bound on width is actually $\sim 2 s^{2}+k$, and for the special case of PCR it is $\sim s^{2}+k$.
- A simple variant of our argument (once up, once down) reproves Bonacina's "Res total space $\geq(\text { width })^{2}$ ".
- We get $\Omega(\sqrt{n})$ PCR space lower bounds for GOP n and FPHP n.
- And n-variable formulas with $n^{O(1)}$-size, $O(1)$-degree PCR proofs but no $o(\sqrt{n})$-space PCR proofs independently of characteristic.

Open problem

Recall our main result:
Theorem
If a k-CNF F has a PCR refutation in space s, then it has a Res refutation of width $O\left(s^{2}\right)+k$.

Problem

Is the square in our result needed?
(The intriguing option that it is needed for general systems but not for PCR has not been ruled out.)

