Polynomial calculus space and resolution width

Nicola Galesi¹ Leszek Kołodziejczyk² Neil Thapen³

¹Sapienza University ²University of Warsaw ³Czech Academy of Sciences

Banff, January 2020

Polynomial calculus space and resolution width ${\buildrel {\buildrel {\uildrel {\uull}\uld$

Resolution and Polynomial Calculus

Resolution (Res) a refutational sound and complete propositional proof system for reasoning about CNFs

Lines: $(\ell_1 \lor \ldots \lor \ell_k)$ Rule: $\frac{C \lor x \quad \neg x \lor D}{C \lor D}$ Contradiction:empty clause

Polynomial Calculus with Resolution (PCR) extends Resolution to reason about polynomial equations.

Complexity measures: width and degree

Resolution width

Clause width: w(C) = # literals in C Proof width: $w(\pi) = \max_{C \in \pi} w(C)$

Given CNF F, $w(F \vdash \bot) = minimal w(\pi)$ for π a Res proof of F.

PCR degree

Term degree: deg(t) Proof degree: deg(π) = max_{t $\in \pi$} deg(t) For CNF F, deg($F \vdash \bot$) = minimal deg(π) for π a PCR proof of F.

Complexity measures: space

Memory configurations:

$$\mathbb{M}_i = \boxed{m_1 \ m_2 \ m_3} \ \cdots \ \boxed{m_{s_i}}$$

Each m_i is a clause in the case of Res, a term in the case of PCR.

Proofs are sequences $\mathbb{M}_1, \dots \mathbb{M}_t$ of memory configurations such that: $\mathbb{M}_1 = \emptyset$, $\mathbb{M}_t = \{\bot\}$, and $\mathbb{M}_i \mapsto \mathbb{M}_{i+1}$ by one of:

- Axiom download: download a clause of F into \mathbb{M}_{i+1} ,
- ▶ Inference: add conclusion of a rule applied to clauses/polys from M_i ,
- Deletion: delete a clause/poly appearing in M_i.

The space of a proof π is the largest s_i for $\mathbb{M}_i \in \pi$. The space needed to prove $F \vdash \bot$ in Res/PCR defined accordingly.

Relations between proof measures

Res space is lower-bounded by width [Atserias-Dalmau 08]:

$${\sf F} \; {\sf a} \; k ext{-}{\sf CNF}, \quad {\sf Sp}_{\sf Res}({\sf F} \vdash \bot) \geq {\sf w}({\sf F} \vdash \bot) - k + 1,$$

Res total space is lower-bounded by width squared [Bonacina 16]: (total space counts literals rather than just clauses in memory)

$$F$$
 a k -CNF, TSp_R $(F \vdash \bot) \geq \frac{1}{16}(w(F \vdash) - k + 4)^2$,

PCR space for $F([\oplus])$ is lower-bounded by Res width for F [FLMNV 13]: F = k-CNF, $Sp_{PCR}(F[\oplus] \vdash \bot) \ge (w(F \vdash \bot) - k + 1)/4.$ Polynomial calculus space and resolution width Main result: context and statement

Our Contribution

Problem: Is PCR space lower-bounded by degree, or even by Res width? Polynomial calculus space and resolution width Main result: context and statement

Our Contribution

Problem:

Is PCR space lower-bounded by degree, or even by Res width?

Theorem (Main)

Let F be a k-CNF. If F has a PCR refutation in space s over some field \mathbb{F} , then F has a Res refutation of width $O(s^2) + k$.

(In other words, $\operatorname{Sp}_{\mathsf{PCR}}(F \vdash \bot) \ge \Omega(\sqrt{\mathsf{w}(F \vdash \bot) - k})$.)

Corollary

PCR refutations in space s can be transformed into PCR refutations of degree $O(s^2) + k$.

An important tool

Definition (Atserias-Dalmau family)

Let *F* be a *k*-CNF. A *w*-*AD* family for *F* is a nonempty family \mathcal{H} of partial assignments to the variables of *F* such that for each $\alpha \in \mathcal{H}$,

$$|\alpha| \le w,$$

• if
$$\beta \subseteq \alpha$$
 then $\beta \in \mathcal{H}$,

▶ if $|\alpha| < w$ and x a vble, then there is $\beta \supseteq \alpha$ in \mathcal{H} with $x \in \text{dom}(\beta)$,

• α does not falsify any clause of *F*.

Theorem (Atserias Dalmau 08) If $w(F \vdash \bot) \ge w$, then there exists a w-AD family for F.

Res space \geq width, AD-style

- Assume that F has a Res refutation of space $s: \mathbb{M}_1, \ldots, \mathbb{M}_t$.
- Assume also that there is a (s+k)-AD family for F.
- Prove inductively that for each i = 1,..., t, there is α_i ∈ H with |α_i| ≤ s satisfying each clause in M_i.
- Induction goes through because no α in H falsifies F and because you only need s bits to satisfy s clauses.
- But \mathbb{M}_t contains \perp : contradiction.

In some other resolution lower bound proofs (esp. for width), a dual approach is used: go up the refutation from the final clause, finding small assignments that falsify a given clause.

Towards PCR space

From now on, fix:

- an unsatisfiable k-CNF F,
- which has a space *s* PCR refutation $\mathbb{M}_1, \ldots, \mathbb{M}_t$,
- but also has a w-AD family H, (where w will turn out to be 4s² + k.)

We would like to adapt the AD approach to show that this situation cannot happen.

But there are difficulties...

Polynomial calculus space and resolution width Proof ideas

A difficulty

Obvious problem:

It is no longer true that few bits suffice to satisfy a low-space configuration. The polynomial $1 - \prod_{i=1}^{n} x_i$ has space 2 but satisfying $1 - \prod_{i=1}^{n} x_i = 0$ requires setting *n* variables.

Polynomial calculus space and resolution width Proof ideas

A difficulty

Obvious problem:

It is no longer true that few bits suffice to satisfy a low-space configuration. The polynomial $1 - \prod_{i=1}^{n} x_i$ has space 2 but satisfying $1 - \prod_{i=1}^{n} x_i = 0$ requires setting *n* variables.

Remedy:

Take seriously the idea (borrowed from forcing) that if no extension of α in \mathcal{H} makes something true, then in a sense α makes it false.

Forcing with an AD-family

Definition (II-, meaning "forces") For an assignment $\alpha \in \mathcal{H}$ and a term t, we define (i) $\alpha \Vdash t = 0$ if α sets some variable in t to 0, (ii) $\alpha \Vdash t = 1$ if no $\beta \in \mathcal{H}$ with $\beta \supseteq \alpha$ sets any variable in t to 0.

Forcing with an AD-family

Definition (\Vdash , meaning "forces") For an assignment $\alpha \in \mathcal{H}$ and a term t, we define (i) $\alpha \Vdash t = 0$ if α sets some variable in t to 0, (ii) $\alpha \Vdash t = 1$ if no $\beta \in \mathcal{H}$ with $\beta \supseteq \alpha$ sets any variable in t to 0.

This generalizes to polynomials and configurations:

- if $p = \sum_{i} a_{i}t_{i}$ with $a_{i} \in \mathbb{F}$, and α forces each t_{i} to a value $b_{i} \in \{0, 1\}$, then we say $\alpha \Vdash p = \sum_{i} a_{i}b_{i}$,
- $\alpha \Vdash \mathbb{M}$ if α forces each polynomial in \mathbb{M} to 0,
- α ⊨ ¬M if α forces each polynomial in M to a value, but at least one of those values is ≠ 0.

Forcing: the bad and the good

Bad: E.g.: if $|\alpha| = w$, $x \notin dom(\alpha)$, then $\alpha \Vdash x + \overline{x} - 1 = -1$. (Recall that we can derive $x + \overline{x} - 1$ from no premises at all!)

Good:

For α reasonably small ($|\alpha| \leq w - s - k$ generally suffices):

- it cannot happen that $\alpha \Vdash \mathbb{M}_i$ and $\alpha \Vdash \neg \mathbb{M}_i$,
- it cannot happen that $\alpha \Vdash \mathbb{M}_i$ and $\alpha \Vdash \neg \mathbb{M}_{i+1}$,
- ▶ for any *i*, there is always $\alpha \subseteq \beta_i \in \mathcal{H}$ with $|\beta_i| \leq |\alpha| + s$ such that $\beta_i \Vdash \mathbb{M}_i$ or $\beta_i \Vdash \neg \mathbb{M}_i$.

(So maybe we could go down the refutation like in A-D, maintaining small $\alpha_i \in \mathcal{H}$ such that $\alpha_i \Vdash \mathbb{M}_i$?)

Another difficulty

Slightly less obvious problem: If $\alpha \Vdash \mathbb{M}_i$, and $\beta \supseteq \alpha$ with $\beta \Vdash \mathbb{M}_{i+1}$, there is no guarantee that we can find $\beta' \subseteq \beta$ with $\beta' \Vdash \mathbb{M}_{i+1}$ and $|\beta'| \leq s$. (Deleting bits may cause terms to stop being forced to 1.)

Another difficulty

Slightly less obvious problem:

If $\alpha \Vdash \mathbb{M}_i$, and $\beta \supseteq \alpha$ with $\beta \Vdash \mathbb{M}_{i+1}$, there is no guarantee that we can find $\beta' \subseteq \beta$ with $\beta' \Vdash \mathbb{M}_{i+1}$ and $|\beta'| \leq s$. (Deleting bits may cause terms to stop being forced to 1.)

Remedy:

Go down and up repeatedly in a number of steps $r = 1, \ldots, ?$:

- maintaining α_r that keeps increasing, but $|\alpha_r|$ is under control,
- ▶ finding $i_1 \leq i_2 \leq \ldots \leq i_r \leq \ldots \leq j_r \leq \ldots j_2 \leq j_1$ such that:
 - $\alpha \Vdash \mathbb{M}_{i_r}$ and $\alpha \Vdash \neg \mathbb{M}_{j_r}$,
 - α has increasingly "special" properties
 w.r.t. all configurations between M_i, and M_i.

The "special" property: non-zero terms

Definition

$$\blacktriangleright \mathsf{NZ}(\alpha, \mathbb{M}) = |\{t \in \mathbb{M} : \alpha \not\vDash t = 0\}|.$$

• α guarantees $\geq r$ NZ-terms in \mathbb{M} if for each $\beta \in \mathcal{H}$ $\beta \supseteq \alpha$ implies NZ(β, \mathbb{M}) $\geq r$.

Some observations:

- Every α guarantees \geq 0 NZ-terms in every \mathbb{M}_i .
- If α guarantees ≥ s NZ-terms in M_i, then it forces each t in M_i to 1.
- ▶ If α guarantees $\geq r$ NZ-terms in \mathbb{M}_i , and $\gamma \supseteq \alpha$ with NZ(α, \mathbb{M}_i) = r and $\gamma \Vdash (\neg)\mathbb{M}_i$, then there is $\beta \supseteq \alpha$ with $\beta \Vdash (\neg)\mathbb{M}_i$ and $|\beta| \leq |\alpha| + s$.

Main Lemma

Lemma (Main)

For each $r \leq s$, there are $\alpha_r \in H$ and $1 \leq i_r < j_r \leq t$ such that:

1.
$$\alpha_r \Vdash \mathbb{M}_{i_r}$$
 and $\alpha \Vdash \neg \mathbb{M}_{j_r}$,

2. α_r guarantees $\geq r$ NZ-terms in each \mathbb{M}_{ℓ} for $i_r \leq \ell \leq j_r$,

3.
$$|\alpha_r| \le 4rs$$
.

The proof is by induction on *r*. The base case uses $\alpha_0 = \emptyset$, $i_0 = 1$, and $j_0 = t$.

Inductive step: downwards

- ▶ *i'* is greatest in $[i_r, j_r]$ s.t. there is $\beta \supseteq \alpha_r$ with $\beta \Vdash \mathbb{M}_{i'}$ and $\mathsf{NZ}(\beta, \mathbb{M}_{i'}) = r$; if none exists, $i' = i_r$. W.I.o.g. $|\beta| \le |\alpha_r| + s$.
- Then exists γ ⊇ β such that γ ⊨ M_{i'+1}. W.I.o.g. |γ| ≤ |α_r| + 2s. Necessarily NZ(γ, M_{i'+1}) > r.

• The number i' + 1 will be i_{r+1} .

Inductive step: upwards

- ▶ j' is smallest in $[i_{r+1}, j_r]$ s.t. there is $\delta \supseteq \gamma$ with NZ $(\delta, \mathbb{M}_{j'}) = r$; if none exists, $j' = j_r$. W.I.o.g. $|\delta| \le |\alpha| + 3s$. Necessarily, $\delta \Vdash \neg M_{j'}$.
- Then exists ζ ⊇ δ such that ζ ⊢ ¬M_{j'-1}. W.I.o.g. |ζ| ≤ |α| + 4s. Necessarily NZ(ζ, M_{j'-1}) > r.

• The number j' - 1 becomes j_{r+1} , and ζ becomes α_{r+1} .

Wrapping up the proof

- After *s* inductive steps we get $i_s < j_s$ and α_s with $|\alpha_s| \le 4s^2$.
- We have $\alpha_s \Vdash \mathbb{M}_{i_s}$, $\alpha_s \Vdash \neg \mathbb{M}_{j_s}$.
- ▶ Moreover, $NZ(\alpha_s, \mathbb{M}_\ell) = s$ for each ℓ in between. This means that $\alpha_s \Vdash \mathbb{M}_\ell$ or $\alpha_s \Vdash \neg \mathbb{M}_\ell$.
- ▶ By an easy induction, we get $\alpha_s \Vdash \mathbb{M}_{\ell}$ for each $\ell = i_s, i_s + 1, \dots, j_s$. This contradicts $\alpha_s \Vdash \neg \mathbb{M}_{j_s}$.

Improvements and consequences

- Argument works for wider class of "configurational proof systems" as long as each configuration is a boolean function of ≤ s terms.
- The bound on width is actually ~ 2s² + k, and for the special case of PCR it is ~ s² + k.
- ► A simple variant of our argument (once up, once down) reproves Bonacina's "Res total space ≥ (width)²".
- We get $\Omega(\sqrt{n})$ PCR space lower bounds for GOP_n and FPHP_n.
- ► And *n*-variable formulas with n^{O(1)}-size, O(1)-degree PCR proofs but no o(√n)-space PCR proofs independently of characteristic.

Polynomial calculus space and resolution width \hgap Conclusion

Open problem

Recall our main result:

```
Theorem
If a k-CNF F has a PCR refutation in space s,
then it has a Res refutation of width O(s^2) + k.
```

Problem

Is the square in our result needed?

(The intriguing option that it is needed for general systems but not for PCR has not been ruled out.)