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The setup

Let
Q = {p1 = 0, . . . , pm = 0, q1 ≥ 0, . . . , q` ≥ 0}

be a set of polynomial constraints of degree at most k in variables

x1, . . . , xn, x̄1, . . . , x̄n,

and denote by In the ideal generated by

{x2
i − xi , x̄

2
i − x̄i , xi + x̄i − 1 : i ∈ [n]}.
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SOS proofs over the Boolean hypercube

A Sums-of-Squares (SOS) proof of non-negativity of a polynomial r
from Q is an identity of the form

r ≡ s0 +
∑
i∈[`]

siqi +
∑
j∈[m]

tjpj mod In,

where s0 and si are sums of squares and tj are arbitrary polynomials.

An SOS refutation of Q is a proof of non-negativity of −1 from Q.
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SOS proofs over the Boolean hypercube

Complexity measures:
Degree: maximum degree of the summands on the right hand
side.
Monomial size: number of monomials in explicit
representations of s0, si ’s as sums of squares and tj ’s.

Notation:
Q `d p ≥ q: there is a degree d SOS proof of non-negativity
of p − q from Q.
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Dual view: Pseudoexpectations

A degree d pseudoexpectation for Q is a linear functional
E : R[x ]≤d → R such that

E (1) = 1;
E (p) ≥ 0 if Q `d p ≥ 0.

Theorem (Duality theorem for SOS)

For any polynomial p of degree at most 2d ,

sup{r ∈ R : Q `2d p ≥ r} = inf{E (p) : E ∈ E2d(Q)}.

Moreover, if E2d(Q) 6= ∅, then the infimum is attained.
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Duality theorem

The key lemma in proving the duality theorem is the following.

Lemma
For any p ∈ R[x ]2d , there is r ∈ R+ such that

Q `2d r ≥ p.

Then the duality theorem follows from a general duality for
pre-ordered vector spaces with order units.
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The trade-off theorem

Theorem
If there is a refutation of Q of monomial size s, then there is a
refutation of Q of degree at most

4
√

2(n + 1) log s + k + 4.

Corollary

If d(Q) ≥ k + 4, then

s(Q) ≥ exp((d(Q)− k − 4)2/(32(n + 1)),

where s(Q) and d(Q) are the minimum monomial size and degree
of an SOS refutation for Q.
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Related work

Theorem (Clegg, Edmonds, Impagliazzo ’96)

Let F be a k-CNF. If there is a Resolution refutation of F of length
s, then there is a Polynomial Calculus refutation of F of degree
O(

√
n log s + k).

Theorem (Impagliazzo, Pudlák, Sgall ’99)

Let Q be a set of equality constraints of degree at most k . If there
is a Polynomial Calculus refutation of Q with at most s monomials,
then there is one of degree O(

√
n log s + k).

Theorem (Ben-Sasson, Wigderson ’01)

Let F be a k-CNF. If there is a Resolution refutation of F of length
s, then there is one of width O(

√
n log s + k).
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The trade-off theorem

Proof strategy:
First show that:

there is a refutation of Q with at most s many (explicit)
monomials of degree at least d

=⇒

there is a refutation of degree c(d + (n/d) log s) + k .

Theorem follows by choosing d ≈
√
n log s.
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The trade-off theorem

Proof sketch: Given a refutation Π of Q with at most s wide
monomials:

Find a popular literal ` among the wide monomials of the
proof.
Set the literal to 0 and 1 to obtain refutations Π[`/0] and
Π[`/1] of Q[`/0] and Q[`/1].
Inductively obtain refutations of Q[`/0] and Q[`/1] of degree
2d ′ − 2 and 2d ′, respectively.
Combine these refutations into a refutation of Q of degree at
most 2d ′.
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Unrestricting lemmas

Q[`/0] `2d−2 −1 ≥ 0
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Unrestricting lemmas
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Unrestricting lemmas

Q[`/0] `2d−2 −1 ≥ 0

Q ∪ {` = 0} `2d−2 −1 ≥ 0
?

The problem: The degree of q[`/0] might be a lot smaller
than the degree of q, and so a naive simulation might exceed
the degree bound.

Q[`/1] `2d −1 ≥ 0

Q ∪ {¯̀ = 0} `2d −1 ≥ 0
?

Tuomas Hakoniemi Size-Degree Trade-offs for Sums-of-Squares Proofs



SOS proofs modulo cut-off functions

Call any function c : Q → N such that

c(q) ≥ deg(q)

a cut-off function for Q.

An SOS proof

p ≡ s0 +
∑
i

siqi +
∑
j

tjpj mod In

is of degree 2d modulo a cut-off function c , if
deg(p), deg(s0) ≤ 2d ;
deg(si ) ≤ 2d − c(qi ) and deg(tj) ≤ 2d − c(pj).
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Duality for SOS modulo cut-off functions

Theorem (Duality modulo cut-off functions)

Let c be a cut-off function for Q. Then for any polynomial p of
degree at most 2d ,

sup{r ∈ R : Q `c2d p ≥ r} = inf{E (p) : E ∈ Ec2d(Q)}.

Moreover, if Ec2d(Q) 6= ∅, then the infimum is attained.
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Updated proof sketch

Given a refutation Π of Q with at most s wide monomials and a
cut-off function c for Q:

1 Find a popular literal ` among the wide monomials of the
proof.

2 Set the literal to 0 and 1 to obtain refutations Π[`/0] and
Π[`/1].

3 Inductively obtain refutations of Q[`/0] and Q[`/1] of degree
2d ′ − 2 and 2d ′ modulo c , respectively.

4 Combine the refutations into a refutation of Q of degree at
most 2d ′ modulo c .
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Unrestricting lemmas with cut-off functions

Q[`/0] `c2d−2 −1 ≥ 0

Q ∪ {` = 0} `c[` 7→1]
2d−2 −1 ≥ 0

inf{E (`) : E ∈ Ec2d−2(Q)} > 0

sup{r ∈ R : Q `c2d−2 ` ≥ r} > 0

Q `c2d−2 ` ≥ ε

Q[`/1] `c2d −1 ≥ 0

Q ∪ {¯̀ = 0} `c[¯̀7→1]
2d −1 ≥ 0

inf{E (¯̀) : E ∈ Ec2d(Q)} > 0

sup{r ∈ R : Q `c2d ¯̀≥ r} > 0

Q `c2d ` ≤ 1− δ

Q `c2d −1 ≥ 0
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Trade-off for Positivstellensatz proofs

The above proof works for Positivstellensatz proofs of bounded
product-width, i.e. the maximum number of inequality constraints
multiplied together. We have the following.

Theorem
If there is a refutation of Q of monomial size s and product-width
w , then there is a refutation of Q of degree at most

4
√

2(n + 1) log s + kw + 4.
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Applications: Knapsack

Theorem (Grigoriev ’01)

For odd k ,

KNAPSACKn,k := {2x1 + . . .+ 2xn = k}

requires degree Ω(min{k, 2n − k}) to refute in SOS.

Corollary
For odd k , every SOS refutation of KNAPSACKn,k has monomial
size exp(Ω(k2/n)).
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Applications: Tseitin formulas

Let (Gn)n∈N be a sequence of degree d expander graphs, and let

TSn := {
∏
e:u∈e

(1− 2xe) = −1 : u ∈ V (Gn)}.

Theorem (Grigoriev ’01)

TSn requires degree Ω(n) to refute in SOS.

Corollary

Every SOS refutation of TSn has monomial size exp(Ω(n)).
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Applications: sparse random k-CNFs

Theorem (Schoenenbeck ’08)

Asymptotically almost surely, a sparse random k-CNF requires
degree Ω(n) to refute in SOS.

Corollary
Asymptotically almost surely, every SOS refutation of a sparse
random k-CNF has monomial size exp(Ω(n)).
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Open problems

Is the trade-off optimal for small refutations? Is there a set of
constraints that has a small SOS refutation, but needs degree
Ω(
√
n) to refute?

Can one minimize both degree and monomial size
simultaneously or does one necessarily grow if the other one is
minimized?
Does the trade-off hold for general Positivstellensatz proofs?
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Thank you!
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