Size-Degree Trade-offs for Sums-of-Squares Proofs

Tuomas Hakoniemi

Universitat Politècnica de Catalunya

Joint work with Albert Atserias

The setup

Let

$$
Q=\left\{p_{1}=0, \ldots, p_{m}=0, q_{1} \geq 0, \ldots, q_{\ell} \geq 0\right\}
$$

be a set of polynomial constraints of degree at most k in variables

$$
x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}
$$

and denote by I_{n} the ideal generated by

$$
\left\{x_{i}^{2}-x_{i}, \bar{x}_{i}^{2}-\bar{x}_{i}, x_{i}+\bar{x}_{i}-1: i \in[n]\right\} .
$$

SOS proofs over the Boolean hypercube

A Sums-of-Squares (SOS) proof of non-negativity of a polynomial r from Q is an identity of the form

$$
r \equiv s_{0}+\sum_{i \in[\ell]} s_{i} q_{i}+\sum_{j \in[m]} t_{j} p_{j} \quad \bmod I_{n},
$$

where s_{0} and s_{i} are sums of squares and t_{j} are arbitrary polynomials.

SOS proofs over the Boolean hypercube

A Sums-of-Squares (SOS) proof of non-negativity of a polynomial r from Q is an identity of the form

$$
r \equiv s_{0}+\sum_{i \in[\ell]} s_{i} q_{i}+\sum_{j \in[m]} t_{j} p_{j} \quad \bmod I_{n}
$$

where s_{0} and s_{i} are sums of squares and t_{j} are arbitrary polynomials.
An SOS refutation of Q is a proof of non-negativity of -1 from Q.

SOS proofs over the Boolean hypercube

Complexity measures:

- Degree: maximum degree of the summands on the right hand side.
- Monomial size: number of monomials in explicit representations of s_{0}, s_{i} 's as sums of squares and t_{j} 's.

SOS proofs over the Boolean hypercube

Complexity measures:

- Degree: maximum degree of the summands on the right hand side.
- Monomial size: number of monomials in explicit representations of s_{0}, s_{i} 's as sums of squares and t_{j} 's.

Notation:

- $Q \vdash_{d} p \geq q$: there is a degree d SOS proof of non-negativity of $p-q$ from Q.

Dual view: Pseudoexpectations

A degree d pseudoexpectation for Q is a linear functional $E: \mathbb{R}[x]_{\leq d} \rightarrow \mathbb{R}$ such that

- $E(1)=1$;
- $E(p) \geq 0$ if $Q \vdash_{d} p \geq 0$.

Dual view: Pseudoexpectations

A degree d pseudoexpectation for Q is a linear functional $E: \mathbb{R}[x]_{\leq d} \rightarrow \mathbb{R}$ such that

- $E(1)=1$;
- $E(p) \geq 0$ if $Q \vdash_{d} p \geq 0$.

Theorem (Duality theorem for SOS)

For any polynomial p of degree at most $2 d$,

$$
\sup \left\{r \in \mathbb{R}: Q \vdash_{2 d} p \geq r\right\}=\inf \left\{E(p): E \in \mathcal{E}_{2 d}(Q)\right\}
$$

Moreover, if $\mathcal{E}_{2 d}(Q) \neq \emptyset$, then the infimum is attained.

Duality theorem

The key lemma in proving the duality theorem is the following.

Lemma

For any $p \in \mathbb{R}[x]_{2 d}$, there is $r \in \mathbb{R}_{+}$such that

$$
Q \vdash_{2 d} r \geq p .
$$

Then the duality theorem follows from a general duality for pre-ordered vector spaces with order units.

The trade-off theorem

Theorem

If there is a refutation of Q of monomial size s, then there is a refutation of Q of degree at most

$$
4 \sqrt{2(n+1) \log s}+k+4
$$

The trade-off theorem

Theorem

If there is a refutation of Q of monomial size s, then there is a refutation of Q of degree at most

$$
4 \sqrt{2(n+1) \log s}+k+4 .
$$

Corollary

If $d(Q) \geq k+4$, then

$$
s(Q) \geq \exp \left((d(Q)-k-4)^{2} /(32(n+1))\right.
$$

where $s(Q)$ and $d(Q)$ are the minimum monomial size and degree of an SOS refutation for Q.

Related work

Theorem (Clegg, Edmonds, Impagliazzo '96)

Let F be a k-CNF. If there is a Resolution refutation of F of length s, then there is a Polynomial Calculus refutation of F of degree $O(\sqrt{n \log s}+k)$.

Related work

Theorem (Clegg, Edmonds, Impagliazzo '96)

Let F be a k-CNF. If there is a Resolution refutation of F of length s, then there is a Polynomial Calculus refutation of F of degree $O(\sqrt{n \log s}+k)$.

Theorem (Impagliazzo, Pudlák, Sgall '99)

Let Q be a set of equality constraints of degree at most k. If there is a Polynomial Calculus refutation of Q with at most s monomials, then there is one of degree $O(\sqrt{n \log s}+k)$.

Related work

Theorem (Clegg, Edmonds, Impagliazzo '96)

Let F be a k-CNF. If there is a Resolution refutation of F of length s, then there is a Polynomial Calculus refutation of F of degree $O(\sqrt{n \log s}+k)$.

Theorem (Impagliazzo, Pudlák, Sgall '99)

Let Q be a set of equality constraints of degree at most k. If there is a Polynomial Calculus refutation of Q with at most s monomials, then there is one of degree $O(\sqrt{n \log s}+k)$.

Theorem (Ben-Sasson, Wigderson '01)

Let F be a k-CNF. If there is a Resolution refutation of F of length s, then there is one of width $O(\sqrt{n \log s}+k)$.

The trade-off theorem

Proof strategy:

- First show that:
- there is a refutation of Q with at most s many (explicit) monomials of degree at least d

there is a refutation of degree $c(d+(n / d) \log s)+k$.

The trade-off theorem

Proof strategy:

- First show that:
- there is a refutation of Q with at most s many (explicit) monomials of degree at least d

$$
\Longrightarrow
$$

there is a refutation of degree $c(d+(n / d) \log s)+k$.

- Theorem follows by choosing $d \approx \sqrt{n \log s}$.

The trade-off theorem

Proof sketch: Given a refutation Π of Q with at most s wide monomials:

The trade-off theorem

Proof sketch: Given a refutation Π of Q with at most s wide monomials:

- Find a popular literal ℓ among the wide monomials of the proof.

The trade-off theorem

Proof sketch: Given a refutation Π of Q with at most s wide monomials:

- Find a popular literal ℓ among the wide monomials of the proof.
- Set the literal to 0 and 1 to obtain refutations $\Pi[\ell / 0]$ and $\Pi[\ell / 1]$ of $Q[\ell / 0]$ and $Q[\ell / 1]$.

The trade-off theorem

Proof sketch: Given a refutation Π of Q with at most s wide monomials:

- Find a popular literal ℓ among the wide monomials of the proof.
- Set the literal to 0 and 1 to obtain refutations $\Pi[\ell / 0]$ and $\Pi[\ell / 1]$ of $Q[\ell / 0]$ and $Q[\ell / 1]$.
- Inductively obtain refutations of $Q[\ell / 0]$ and $Q[\ell / 1]$ of degree $2 d^{\prime}-2$ and $2 d^{\prime}$, respectively.

The trade-off theorem

Proof sketch: Given a refutation Π of Q with at most s wide monomials:

- Find a popular literal ℓ among the wide monomials of the proof.
- Set the literal to 0 and 1 to obtain refutations $\Pi[\ell / 0]$ and $\Pi[\ell / 1]$ of $Q[\ell / 0]$ and $Q[\ell / 1]$.
- Inductively obtain refutations of $Q[\ell / 0]$ and $Q[\ell / 1]$ of degree $2 d^{\prime}-2$ and $2 d^{\prime}$, respectively.
- Combine these refutations into a refutation of Q of degree at most $2 d^{\prime}$.

Unrestricting lemmas

$$
Q[\ell / 0] \vdash_{2 d-2}-1 \geq 0
$$

Unrestricting lemmas

$$
\begin{gathered}
Q[\ell / 0] \vdash_{2 d-2}-1 \geq 0 \\
\Downarrow \\
Q \cup\{\ell=0\} \stackrel{\vdash_{2 d-2}-1 \geq 0}{\vdash_{2 d}}
\end{gathered}
$$

Unrestricting lemmas

$$
\begin{gathered}
Q[\ell / 0] \vdash_{2 d-2}-1 \geq 0 \\
\Downarrow \\
Q \cup\{\ell=0\} \vdash_{2 d-2}-1 \geq 0 \\
\Downarrow \\
\inf \left\{E(\ell): E \in \mathcal{E}_{2 d-2}(Q)\right\}>0
\end{gathered}
$$

Unrestricting lemmas

$$
\begin{gathered}
Q[\ell / 0] \vdash_{2 d-2}-1 \geq 0 \\
\Downarrow \\
Q \cup\{\ell=0\} \stackrel{\vdash_{2 d-2}-1 \geq 0}{\Downarrow} \\
\inf \left\{E(\ell): E \in \mathcal{E}_{2 d-2}(Q)\right\}>0 \\
\Downarrow \\
\sup \left\{r \in \mathbb{R}: Q \vdash_{2 d-2} \ell \geq r\right\}>0
\end{gathered}
$$

Unrestricting lemmas

$$
\begin{gathered}
Q[\ell / 0] \vdash_{2 d-2}-1 \geq 0 \\
\Downarrow \\
Q \cup\{\ell=0\} \vdash_{2 d-2}-1 \geq 0 \\
\Downarrow \\
\inf \left\{E(\ell): E \in \mathcal{E}_{2 d-2}(Q)\right\}>0 \\
\Downarrow \\
\sup \left\{r \in \mathbb{R}: Q \vdash_{2 d-2} \ell \geq r\right\}>0 \\
\Downarrow \\
Q \vdash_{2 d-2} \ell \geq \epsilon
\end{gathered}
$$

Unrestricting lemmas

$$
\begin{gathered}
Q[\ell / 0] \vdash_{2 d-2}-1 \geq 0 \\
\Downarrow \\
Q \cup\{\ell=0\} \vdash_{2 d-2}-1 \geq 0 \\
\Downarrow \\
\inf \left\{E(\ell): E \in \mathcal{E}_{2 d-2}(Q)\right\}>0 \\
\Downarrow \\
\sup \left\{r \in \mathbb{R}: Q \vdash_{2 d-2} \ell \geq r\right\}>0 \\
\Downarrow \\
Q \vdash_{2 d-2} \ell \geq \epsilon
\end{gathered}
$$

Unrestricting lemmas

$$
\begin{aligned}
& Q[\ell / 0] \vdash_{2 d-2}-1 \geq 0 \\
& \Downarrow \\
& Q[\ell / 1] \vdash_{2 d}-1 \geq 0 \\
& Q \cup\{\ell=0\} \vdash_{2 d-2}-1 \geq 0 \\
& Q \cup\{\bar{\ell}=0\} \vdash_{2 d}-1 \geq 0 \\
& \Downarrow \\
& \Downarrow \\
& \inf \left\{E(\ell): E \in \mathcal{E}_{2 d-2}(Q)\right\}>0 \\
& \Downarrow \\
& \inf \left\{E(\bar{\ell}): E \in \mathcal{E}_{2 d}(Q)\right\}>0 \\
& \sup \left\{r \in \mathbb{R}: Q \vdash_{2 d-2} \ell \geq r\right\}>0 \\
& Q \vdash_{2 d-2} \ell \geq \underbrace{\epsilon}_{Q} \vdash_{2 d}-1 \geq 0
\end{aligned}
$$

Unrestricting lemmas

$$
\begin{aligned}
& Q[\ell / 0] \vdash_{2 d-2}-1 \geq 0 \\
& \Downarrow ? \\
& Q[\ell / 1] \vdash_{2 d}-1 \geq 0 \\
& \Downarrow ? \\
& Q \cup\{\ell=0\} \vdash_{2 d-2}-1 \geq 0 \\
& Q \cup\{\bar{\ell}=0\} \vdash_{2 d}-1 \geq 0 \\
& \Downarrow \\
& \Downarrow \\
& \inf \left\{E(\ell): E \in \mathcal{E}_{2 d-2}(Q)\right\}>0 \\
& \Downarrow \\
& \inf \left\{E(\bar{\ell}): E \in \mathcal{E}_{2 d}(Q)\right\}>0 \\
& \sup \left\{r \in \mathbb{R}: Q \vdash_{2 d-2} \ell \geq r\right\}>0 \\
& Q \vdash_{2 d-2} \ell \geq \underbrace{\epsilon \vdash_{2 d} \ell \leq 1-\delta}_{Q \vdash_{2 d}-1 \geq 0}
\end{aligned}
$$

Unrestricting lemmas

$$
\begin{gathered}
Q[\ell / 0] \vdash_{2 d-2}-1 \geq 0 \\
\Downarrow ?
\end{gathered}
$$

$$
\begin{gathered}
Q[\ell / 1] \vdash_{2 d}-1 \geq 0 \\
\Downarrow ? \\
Q \cup\{\bar{\ell}=0\} \vdash_{2 d}-1 \geq 0
\end{gathered}
$$

The problem: The degree of $q[\ell / 0]$ might be a lot smaller than the degree of q, and so a naive simulation might exceed the degree bound.

SOS proofs modulo cut-off functions

Call any function $c: Q \rightarrow \mathbb{N}$ such that

$$
c(q) \geq \operatorname{deg}(q)
$$

a cut-off function for Q.

SOS proofs modulo cut-off functions

Call any function $c: Q \rightarrow \mathbb{N}$ such that

$$
c(q) \geq \operatorname{deg}(q)
$$

a cut-off function for Q. An SOS proof

$$
p \equiv s_{0}+\sum_{i} s_{i} q_{i}+\sum_{j} t_{j} p_{j} \quad \bmod I_{n}
$$

is of degree $2 d$ modulo a cut-off function c, if

- $\operatorname{deg}(p), \operatorname{deg}\left(s_{0}\right) \leq 2 d$;
- $\operatorname{deg}\left(s_{i}\right) \leq 2 d-c\left(q_{i}\right)$ and $\operatorname{deg}\left(t_{j}\right) \leq 2 d-c\left(p_{j}\right)$.

Duality for SOS modulo cut-off functions

Theorem (Duality modulo cut-off functions)

Let c be a cut-off function for Q. Then for any polynomial p of degree at most $2 d$,

$$
\sup \left\{r \in \mathbb{R}: Q \vdash_{2 d}^{c} p \geq r\right\}=\inf \left\{E(p): E \in \mathcal{E}_{2 d}^{c}(Q)\right\} .
$$

Moreover, if $\mathcal{E}_{2 d}^{c}(Q) \neq \emptyset$, then the infimum is attained.

Updated proof sketch

Given a refutation Π of Q with at most s wide monomials and a cut-off function c for Q :
(1) Find a popular literal ℓ among the wide monomials of the proof.
(2) Set the literal to 0 and 1 to obtain refutations $\Pi[\ell / 0]$ and $\Pi[\ell / 1]$.
(3) Inductively obtain refutations of $Q[\ell / 0]$ and $Q[\ell / 1]$ of degree $2 d^{\prime}-2$ and $2 d^{\prime}$ modulo c, respectively.
(9) Combine the refutations into a refutation of Q of degree at most $2 d^{\prime}$ modulo c.

Unrestricting lemmas with cut-off functions

$$
\begin{aligned}
& Q[\ell / 0] \underset{\underset{2 d-2}{c}-1 \geq 0}{\stackrel{c}{\vdash^{2}}} \\
& Q[\ell / 1] \vdash_{\substack{2 d \\
\Downarrow}}^{c}-1 \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \inf \left\{E(\ell): E \in \mathcal{E}_{2 d-2}^{c}(Q)\right\}>0 \\
& \Downarrow \\
& \inf \left\{E(\bar{\ell}): E \in \mathcal{E}_{2 d}^{c}(Q)\right\}>0 \\
& \sup \left\{r \in \mathbb{R}: Q \vdash_{2 d-2}^{c} \ell \geq r\right\}>0 \\
& \Downarrow \\
& \sup \left\{r \in \mathbb{R}: Q \vdash_{2 d}^{c} \bar{\ell} \geq r\right\}>0 \\
& Q \vdash_{2 d-2}^{c} \ell \geq \epsilon \\
& Q \vdash_{2 d}^{c} \ell \leq 1-\delta \\
& Q \vdash_{2 d}^{c}-1 \geq 0
\end{aligned}
$$

Trade-off for Positivstellensatz proofs

The above proof works for Positivstellensatz proofs of bounded product-width, i.e. the maximum number of inequality constraints multiplied together. We have the following.

Theorem

If there is a refutation of Q of monomial size s and product-width w, then there is a refutation of Q of degree at most

$$
4 \sqrt{2(n+1) \log s}+k w+4
$$

Applications: Knapsack

Theorem (Grigoriev '01)

For odd k,
KNAPSACK $_{n, k}:=\left\{2 x_{1}+\ldots+2 x_{n}=k\right\}$
requires degree $\Omega(\min \{k, 2 n-k\})$ to refute in SOS.

Applications: Knapsack

Theorem (Grigoriev '01)

For odd k,

$$
\text { KNAPSACK }_{n, k}:=\left\{2 x_{1}+\ldots+2 x_{n}=k\right\}
$$

requires degree $\Omega(\min \{k, 2 n-k\})$ to refute in SOS.

Corollary

For odd k, every SOS refutation of $\mathrm{KNAPSACK}_{n, k}$ has monomial size $\exp \left(\Omega\left(k^{2} / n\right)\right)$.

Applications: Tseitin formulas

Let $\left(G_{n}\right)_{n \in \mathbb{N}}$ be a sequence of degree d expander graphs, and let

$$
\mathrm{TS}_{n}:=\left\{\prod_{e: u \in e}\left(1-2 x_{e}\right)=-1: u \in V\left(G_{n}\right)\right\}
$$

Theorem (Grigoriev '01)

TS_{n} requires degree $\Omega(n)$ to refute in SOS.

Applications: Tseitin formulas

Let $\left(G_{n}\right)_{n \in \mathbb{N}}$ be a sequence of degree d expander graphs, and let

$$
\mathrm{TS}_{n}:=\left\{\prod_{e: u \in e}\left(1-2 x_{e}\right)=-1: u \in V\left(G_{n}\right)\right\}
$$

Theorem (Grigoriev '01)

TS_{n} requires degree $\Omega(n)$ to refute in SOS.
Corollary
Every SOS refutation of TS_{n} has monomial size $\exp (\Omega(n))$.

Applications: sparse random $k-C N F s$

Theorem (Schoenenbeck '08)

Asymptotically almost surely, a sparse random k-CNF requires degree $\Omega(n)$ to refute in SOS.

Applications: sparse random k-CNFs

Theorem (Schoenenbeck '08)

Asymptotically almost surely, a sparse random k-CNF requires degree $\Omega(n)$ to refute in SOS.

Corollary

Asymptotically almost surely, every SOS refutation of a sparse random $k-C N F$ has monomial size $\exp (\Omega(n))$.

Open problems

- Is the trade-off optimal for small refutations? Is there a set of constraints that has a small SOS refutation, but needs degree $\Omega(\sqrt{n})$ to refute?

Open problems

- Is the trade-off optimal for small refutations? Is there a set of constraints that has a small SOS refutation, but needs degree $\Omega(\sqrt{n})$ to refute?
- Can one minimize both degree and monomial size simultaneously or does one necessarily grow if the other one is minimized?

Open problems

- Is the trade-off optimal for small refutations? Is there a set of constraints that has a small SOS refutation, but needs degree $\Omega(\sqrt{n})$ to refute?
- Can one minimize both degree and monomial size simultaneously or does one necessarily grow if the other one is minimized?
- Does the trade-off hold for general Positivstellensatz proofs?

Thank you!

