
Automated Proof Search:

The Aftermath
Susanna de Rezende, Mika Göös, Sajin Koroth, Ian Mertz,

Jakob Nordström, Toni Pitassi, Robert Robere, Dmitry Sokolov

Me me me!

Here is a problem in
Proof Complexity

Me me me!

Here is a problem in
Proof Complexity

But I wanna work on
Communication :(

Me me me!

Lifting for dag-like
models?

Me me me!

Lifting for dag-like
models?

Great idea!

Me me me!

Lifting for dag-like
models?

Great idea!

Me me me!

Takeaway: Monotone circuits for XOR-SAT

can simulate Resolution

. . . we proved the converse [GGKS’18]

=⇒ Proof complexity is cool!

Lifting for dag-like
models?

Great idea!

Me me me!

Takeaway: Monotone circuits for XOR-SAT

can simulate Resolution

. . . we proved the converse [GGKS’18]

=⇒ Proof complexity is cool!

Lifting for dag-like
models?

Great idea!

Me me me!

Takeaway: Monotone circuits for XOR-SAT

can simulate Resolution

. . . we proved the converse [GGKS’18]

=⇒ Proof complexity is cool!

This talk: Results on
Hardness of Automatability

Simpler proof for Resolution [Atserias–Müller’19]

Generalises better: NP-hardness for
Nullstellensatz . . . previously [Galesi–Lauria’10]
Polynomial Calculus . . . previously [Galesi–Lauria’10]
Sherali–Adams
Cutting Planes (requires more work)

Still open: Sum-of-Squares

This talk: Results on
Hardness of Automatability

Simpler proof for Resolution [Atserias–Müller’19]

Generalises better: NP-hardness for
Nullstellensatz . . . previously [Galesi–Lauria’10]
Polynomial Calculus . . . previously [Galesi–Lauria’10]
Sherali–Adams
Cutting Planes (requires more work)

Still open: Sum-of-Squares

Simple proof of
[Atserias–Müller’19]

Atserias–Müller

There is polytime reduction A that maps
n-variate CNF F to unsatisfiable CNF A(F):

F is SAT =⇒ A(F) has Resolution length nO(1)

F is UNSAT =⇒ A(F) has Resolution length 2nΩ(1)

Overview of A:

Input: F that is SAT-vs-UNSAT

1 Construct Ref(F) of block-width O(1)-vs-nΩ(1)

2 Output Lifted-Ref(F) of Res-length nO(1)-vs-2nΩ(1)

Atserias–Müller

There is polytime reduction A that maps
n-variate CNF F to unsatisfiable CNF A(F):

F is SAT =⇒ A(F) has Resolution length nO(1)

F is UNSAT =⇒ A(F) has Resolution length 2nΩ(1)

Overview of A:

Input: F that is SAT-vs-UNSAT

1 Construct Ref(F) of block-width O(1)-vs-nΩ(1)

2 Output Lifted-Ref(F) of Res-length nO(1)-vs-2nΩ(1)

Atserias–Müller

There is polytime reduction A that maps
n-variate CNF F to unsatisfiable CNF A(F):

F is SAT =⇒ A(F) has Resolution length nO(1)

F is UNSAT =⇒ A(F) has Resolution length 2nΩ(1)

Overview of A:

Input: F that is SAT-vs-UNSAT

1 Construct Ref(F) of block-width O(1)-vs-nΩ(1)

2 Output Lifted-Ref(F) of Res-length nO(1)-vs-2nΩ(1)

We sim
plify

Key: Reduction from PHP
(When F is UNSAT)

PHP ≤ Ref(F)
width block-width

Reduction via Tree-Resolution
. . . in depth nε (surprising!)

width(PHP)/nε ≤ block-width(Ref(F))

Key: Reduction from PHP
(When F is UNSAT)

PHP ≤ Ref(F)
width block-width

Reduction via Tree-Resolution

. . . in depth nε (surprising!)

width(PHP)/nε ≤ block-width(Ref(F))

Key: Reduction from PHP
(When F is UNSAT)

PHP ≤ Ref(F)
width block-width

Reduction via Tree-Resolution
. . . in depth nε (surprising!)

width(PHP)/nε ≤ block-width(Ref(F))

Key: Reduction from PHP
(When F is UNSAT)

PHP ≤ Ref(F)
width block-width

Reduction via Tree-Resolution
. . . in depth nε (surprising!)

width(PHP)/nε ≤ block-width(Ref(F))

n

n²

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

.

.

.

Ref(F)
Encoding of “F admits
short Resolution proof”

Consists of blocks
n layers of n2 blocks

Blocks encode clauses

Indicators for literals
Pointers to children
Name of axiom of F

Important: Children
picked from lower layer
=⇒ Dag!

PHP: Weak bit-encoded invertible function

2m pigeons:

m holes:

PHP: Weak bit-encoded invertible function

2m pigeons:

m holes:

Bit + inv: Each pigeon (hole) associated with O(log m)
variables that name one hole (pigeon)

i→j iff i names j and vice versa

Function: Require every pigeon maps to hole
(mapping need not be onto)

PHP: Weak bit-encoded invertible function

2m pigeons:

m holes:

Bit + inv: Each pigeon (hole) associated with O(log m)
variables that name one hole (pigeon)

i→j iff i names j and vice versa

Function: Require every pigeon maps to hole
(mapping need not be onto)

PHP: Weak bit-encoded invertible function

2m pigeons:

m holes:

Lower bounds

PHP2m
m requires degree Ω(m) for

Polynomial Calculus [Razborov’98]

Sherali–Adams [Georgiou–Magen’08]

(Using unary encodings. Easy for SoS)

PHP ≤ Ref(F)
width block-width

Intution: Ref(F) looks locally like full binary tree

PHP ≤ Ref(F)
width block-width

Intution: Ref(F) looks locally like full binary tree

⊆
Exp-size
tree-like
refutation

2n² pigeons

n² holes

n

n²

PHP Ref(F)

Rules of the game

• Each var of Ref(F) is
decision tree of vars of PHP

• Each axiom of Ref(F) is
implied by axioms of PHP

2n² pigeons

n² holes

n

n²

ha
rd

co
de

d

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

PHP Ref(F)

Rules of the game

• Each var of Ref(F) is
decision tree of vars of PHP

• Each axiom of Ref(F) is
implied by axioms of PHP

2n² pigeons

n² holes

n

n²

ha
rd

co
de

d

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

PHP Ref(F)

Rules of the game

• Each var of Ref(F) is
decision tree of vars of PHP

• Each axiom of Ref(F) is
implied by axioms of PHP

2n² pigeons

n² holes

n

n²

ha
rd

co
de

d

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

PHP Ref(F)

Rules of the game

• Each var of Ref(F) is
decision tree of vars of PHP

• Each axiom of Ref(F) is
implied by axioms of PHP

2n² pigeons

n² holes

n

n²

ha
rd

co
de

d2n² pigeons

n² holes

n

n²

ha
rd

co
de

d

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

PHP Ref(F)

Rules of the game

• Each var of Ref(F) is
decision tree of vars of PHP

• Each axiom of Ref(F) is
implied by axioms of PHP

2n² pigeons

n² holes

n

n²

ha
rd

co
de

d2n² pigeons

n² holes

n

n²

ha
rd

co
de

d

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

x₁ x₃x₂

PHP Ref(F)

Rules of the game

• Each var of Ref(F) is
decision tree of vars of PHP

• Each axiom of Ref(F) is
implied by axioms of PHP

2n² pigeons

n² holes

n

n²

ha
rd

co
de

d

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

PHP Ref(F)

Rules of the game

• Each var of Ref(F) is
decision tree of vars of PHP

• Each axiom of Ref(F) is
implied by axioms of PHP

2n² pigeons

n² holes

n

n²

ha
rd

co
de

d

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

PHP Ref(F)

Rules of the game

• Each var of Ref(F) is
decision tree of vars of PHP

• Each axiom of Ref(F) is
implied by axioms of PHP

2n² pigeons

n² holes

n

n²

ha
rd

co
de

d

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

x₁ x₃x₂

x₁ x₃ x₄x₂

x₁ x₃ x₄x₂ x₅

PHP Ref(F)

Rules of the game

• Each var of Ref(F) is
decision tree of vars of PHP

• Each axiom of Ref(F) is
implied by axioms of PHP

2n² pigeons

n² holes

n

n²

ha
rd

co
de

d

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

x₁ x₃x₂

x₁ x₃ x₄x₂

x₁ x₃ x₄x₂ x₅

PHP Ref(F)

Rules of the game

• Each var of Ref(F) is
decision tree of vars of PHP

• Each axiom of Ref(F) is
implied by axioms of PHP

2n² pigeons

n² holes

n

n²

ha
rd

co
de

d

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

x₁ x₃x₂

x₁ x₃ x₄x₂

x₁ x₃ x₄x₂ x₅

PHP Ref(F)

Rules of the game

• Each var of Ref(F) is
decision tree of vars of PHP

• Each axiom of Ref(F) is
implied by axioms of PHP

2n² pigeons

n² holes

n

n²

ha
rd

co
de

d

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

x₁ x₃x₂

x₁ x₃ x₄x₂

x₁ x₃ x₄x₂ x₅

PHP Ref(F)

Rules of the game

• Each var of Ref(F) is
decision tree of vars of PHP

• Each axiom of Ref(F) is
implied by axioms of PHP

2n² pigeons

n² holes

n

n²

ha
rd

co
de

d

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

x₁ x₃x₂

x₁ x₃ x₄x₂

x₁ x₃ x₄x₂ x₅

PHP Ref(F)

Rules of the game

• Each var of Ref(F) is
decision tree of vars of PHP

• Each axiom of Ref(F) is
implied by axioms of PHP

Conclusion: block-width(Ref(F)) · n ≥ width(PHP) = Ω(n2)
=⇒ block-width(Ref(F)) ≥ Ω(n)

When F is UNSAT

PHP ≤ Ref(F)
width block-width

We showed: Ref(F) has block-width nΩ(1)

Apply lifting: Lifted-Ref(F) has Resolution size 2nΩ(1)

Atserias–Müller

There is polytime reduction A:

F is SAT =⇒ A(F) has Res size nO(1)

F is UNSAT =⇒ A(F) has Res size 2nΩ(1)

Atserias–Müller

There is polytime reduction A:

F is SAT =⇒ A(F) has Res size nO(1)

F is UNSAT =⇒ A(F) has Res size 2nΩ(1)

Our extension

There is polytime reduction A:

F is SAT =⇒ A(F) has Res and NS size nO(1)

F is UNSAT =⇒ A(F) has PC and SA size 2nΩ(1)

Res NS

SA PC

Our extension

There is polytime reduction A:

F is SAT =⇒ A(F) has Res and NS size nO(1)

F is UNSAT =⇒ A(F) has PC and SA size 2nΩ(1)

Upper bound for NS

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

.

.

.

Pebbling

• Root of DAG pebbled

• If node is pebbled, then
≥ 1 children is pebbled

Ref(F)
F satisfied by x ∈ {0, 1}n

Easy for Resolution since

Ref(F) ≤ Pebbling

“Pebbled” block
= falsified by x

. . . but Pebbling is
hard for NS!

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

.

.

.

Ref(F)
F satisfied by x ∈ {0, 1}n

Easy for Resolution since

Ref(F) ≤ Pebbling

“Pebbled” block
= falsified by x

. . . but Pebbling is
hard for NS!

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

.

.

.

Ref(F)
F satisfied by x ∈ {0, 1}n

Easy for Resolution since

Ref(F) ≤ Pebbling

“Pebbled” block
= falsified by x

. . . but Pebbling is
hard for NS!

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

.

.

.

Solution: TreeRef(F)
F satisfied by x ∈ {0, 1}n

Easy for NS since

TreeRef(F)
≤ End-of-Line

aka Onto-PHP

Hardness still works!

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

.

.

.

End-of-Line

• Root pebbled

• If node is pebbled, then
unique child and
unique parent pebbled

Solution: TreeRef(F)
F satisfied by x ∈ {0, 1}n

Easy for NS since

TreeRef(F)
≤ End-of-Line

aka Onto-PHP

Hardness still works!

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

.

.

.

End-of-Line

• Root pebbled

• If node is pebbled, then
unique child and
unique parent pebbled

Solution: TreeRef(F)
F satisfied by x ∈ {0, 1}n

Easy for NS since

TreeRef(F)
≤ End-of-Line

aka Onto-PHP

Hardness still works!

x₁

x₁ x₂ x₁ x₂ x₁ x₂ x₁ x₂

x₁

.

.

.

Solution: TreeRef(F)
F satisfied by x ∈ {0, 1}n

Easy for NS since

TreeRef(F)
≤ End-of-Line

aka Onto-PHP

Hardness still works!

Cutting Planes

Result for Cutting Planes

There is polytime reduction A:

F is SAT =⇒ A(F) has CP length nO(1)

F is UNSAT =⇒ A(F) has CP length 2nΩ(1)

Highlights
[GGKS’18]: F has width w⇒ F ◦ g has CP length 2Ω(w)

Instead: need block-lifting
Bypass monotone circuits (first such technique?)

Papers
2019: Automating Resolution is NP-hard

Atserias, Müller

2020: Automating Cutting Planes is NP-hard
Göös, Koroth, Pitassi, Mertz

2021: Automating Algebraic Proof Systems is NP-hard
de Rezende, Göös, Nordström, Pitassi, Robere, Sokolov

2022: Automating Sum-of-Squares is NP-hard
You?!

Cheers!

Papers
2019: Automating Resolution is NP-hard

Atserias, Müller

2020: Automating Cutting Planes is NP-hard
Göös, Koroth, Pitassi, Mertz

2021: Automating Algebraic Proof Systems is NP-hard
de Rezende, Göös, Nordström, Pitassi, Robere, Sokolov

2022: Automating Sum-of-Squares is NP-hard
You?!

Cheers!

Papers
2019: Automating Resolution is NP-hard

Atserias, Müller

2020: Automating Cutting Planes is NP-hard
Göös, Koroth, Pitassi, Mertz

2021: Automating Algebraic Proof Systems is NP-hard
de Rezende, Göös, Nordström, Pitassi, Robere, Sokolov

2022: Automating Sum-of-Squares is NP-hard
You?!

Cheers!

Papers
2019: Automating Resolution is NP-hard

Atserias, Müller

2020: Automating Cutting Planes is NP-hard
Göös, Koroth, Pitassi, Mertz

2021: Automating Algebraic Proof Systems is NP-hard
de Rezende, Göös, Nordström, Pitassi, Robere, Sokolov

2022: Automating Sum-of-Squares is NP-hard

You?!

Cheers!

Papers
2019: Automating Resolution is NP-hard

Atserias, Müller

2020: Automating Cutting Planes is NP-hard
Göös, Koroth, Pitassi, Mertz

2021: Automating Algebraic Proof Systems is NP-hard
de Rezende, Göös, Nordström, Pitassi, Robere, Sokolov

2022: Automating Sum-of-Squares is NP-hard
You?!

Cheers!

Papers
2019: Automating Resolution is NP-hard

Atserias, Müller

2020: Automating Cutting Planes is NP-hard
Göös, Koroth, Pitassi, Mertz

2021: Automating Algebraic Proof Systems is NP-hard
de Rezende, Göös, Nordström, Pitassi, Robere, Sokolov

2022: Automating Sum-of-Squares is NP-hard
You?!

Cheers!

EPFL

