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Simple proof of
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Ref(F)
Encoding of “F admits
short Resolution proof”

Consists of blocks
n layers of n2 blocks

Blocks encode clauses

Indicators for literals
Pointers to children
Name of axiom of F

Important: Children
picked from lower layer
=⇒ Dag!
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PHP: Weak bit-encoded invertible function

2m  pigeons:

m  holes:

Lower bounds

PHP2m
m requires degree Ω(m) for

Polynomial Calculus [Razborov’98]

Sherali–Adams [Georgiou–Magen’08]

(Using unary encodings. Easy for SoS)
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PHP ≤ Ref(F)
width block-width

Intution: Ref(F) looks locally like full binary tree

⊆
Exp-size
tree-like
refutation
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PHP Ref(F)

Rules of the game

• Each var of Ref(F) is
decision tree of vars of PHP

• Each axiom of Ref(F) is
implied by axioms of PHP

Conclusion: block-width(Ref(F)) · n ≥ width(PHP) = Ω(n2)
=⇒ block-width(Ref(F)) ≥ Ω(n)



When F is UNSAT

PHP ≤ Ref(F)
width block-width

We showed: Ref(F) has block-width nΩ(1)

Apply lifting: Lifted-Ref(F) has Resolution size 2nΩ(1)
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Res NS

SA PC

Our extension

There is polytime reduction A:
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Result for Cutting Planes

There is polytime reduction A:

F is SAT =⇒ A(F) has CP length nO(1)

F is UNSAT =⇒ A(F) has CP length 2nΩ(1)

Highlights
[GGKS’18]: F has width w⇒ F ◦ g has CP length 2Ω(w)

Instead: need block-lifting
Bypass monotone circuits (first such technique?)
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de Rezende, Göös, Nordström, Pitassi, Robere, Sokolov

2022: Automating Sum-of-Squares is NP-hard
You?!

Cheers!



Papers
2019: Automating Resolution is NP-hard

Atserias, Müller

2020: Automating Cutting Planes is NP-hard
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