Automated Proof Search:

The Aftermath

Susanna de Rezende, Mika Go0s, Sajin Koroth, Ian Mertz,
Jakob Nordstrom, Toni Pitassi, Robert Robere, Dmitry Sokolov

Me me me!

Me me me!

Here is a problem in
Proof Complexity

Me me me!

Here is a problem in
Proof Complexity

But I wanna work on
Communication :(

Me me me!

Lifting for dag-like
models?

Me me me!

Lifting for dag-like
models?

Great idea!

Me me me!

Lifting for dag-like
models?

Great idea!

Takeaway: Monotone circuits for XOR-SAT
can simulate Resolution

Me me me!

Lifting for dag-like
models?

Great idea!

Takeaway: Monotone circuits for XOR-SAT
can simulate Resolution

...we proved the converse [GGKS'18]

Me me me!

Lifting for dag-like
models?

Great idea!

Takeaway: Monotone circuits for XOR-SAT
can simulate Resolution

...we proved the converse [GGKS'18]

— Proof complexity is cool!

This talk: Results on
Hardness of Automatability

m Simpler proof for Resolution [Atserias-Miiller'19]

m Generalises better: NP-hardness for

m Nullstellensatz ... previously [Galesi-Lauria"10]
m Polynomial Calculus ...previously [Galesi-Lauria’10]
m Sherali-Adams

m Cutting Planes (requires more work)

This talk: Results on
Hardness of Automatability

m Simpler proof for Resolution [Atserias-Miiller'19]

m Generalises better: NP-hardness for

m Nullstellensatz ... previously [Galesi-Lauria"10]
m Polynomial Calculus ...previously [Galesi-Lauria’10]
m Sherali-Adams

m Cutting Planes (requires more work)

m Still open: Sum-of-Squares

Simple proof of

[Atserias—Miiller'19]

Atserias—Miiller

There is polytime reduction A that maps
n-variate CNF F to unsatisfiable CNF A(F):

Fis SAT == .A(F) has Resolution length n°()
F is UNSAT — A(F) has Resolution length on

Atserias—Miiller

There is polytime reduction A that maps
n-variate CNF F to unsatisfiable CNF A(F):

Fis SAT == .A(F) has Resolution length n°()
F is UNSAT — A(F) has Resolution length on

Overview of A:

Input: F that is SAT-vs-UNSAT
Construct Ref(F) of block-width O(1)-vs-n1)
Output Lifted-Ref(F) of Res-length n0(1)-ys-21™"

Atserias—Miiller

There is polytime reduction A that maps
n-variate CNF F to unsatisfiable CNF A(F):

Fis SAT = A(F) has Resolution length n°(!)
F is UNSAT — A(F) has Resolution length on

Overview of A:

Input: F that is SAT-vs-UNSAT
[H Construct Ref(F) of block-width O(l)-VS-I’lQ(l)]
Output Lifted-Ref(F) of Res-length n0()-ys-21""

Key: Reduction from PHP

(When F is UNSAT)

PHP < Ref(F)

width block-width

Key: Reduction from PHP

(When F is UNSAT)

PHP < Ref(F)

width block-width

Reduction via Tree-Resolution

Key: Reduction from PHP

(When F is UNSAT)

PHP < Ref(F)

width block-width

Reduction via Tree-Resolution
...in depth n® (surprising!)

Key: Reduction from PHP

(When F is UNSAT)

PHP < Ref(F)

width block-width

Reduction via Tree-Resolution
...in depth n® (surprising!)

width(PHP)/n¢ < block-width(Ref(F))

Ref(F)

m Encoding of “F admits
short Resolution proof”

m Consists of blocks
n layers of n? blocks

m Blocks encode clauses

m Indicators for literals
m Pointers to children
m Name of axiom of F

m Important: Children
picked from lower layer
— Dag!

C ‘>)<) (>)<)
(e) e) e) -))

PHP: Weak bit-encoded invertible function

2m pigeons: O O><O\<;\c;o
m holes:

PHP: Weak bit-encoded invertible function

2m pigeons: (@) (@) 00

m holes:

Bit+inv: Each pigeon (hole) associated with O(logm)
variables that name one hole (pigeon)

i—j iff inames jand vice versa

PHP: Weak bit-encoded invertible function

2m pigeons: (@) (@) 00

m holes:

Bit+inv: Each pigeon (hole) associated with O(logm)
variables that name one hole (pigeon)

i—j iff inames jand vice versa

Function: Require every pigeon maps to hole
(mapping need not be onto)

PHP: Weak bit-encoded invertible function

2m pigeons: @ @ 00

m holes:

PHP2" requires degree Q)(m) for
= Polynomial Calculus [Razborov'98]
» Sherali-Adams [Georgiou-Magen'08]

(Using unary encodings. Easy for SoS)

PHP < Ref(F)

width block-width

Intution: Ref(F) looks locally like full binary tree

PHP < Ref(F)

width block-width

Intution: Ref(F) looks locally like full binary tree

Exp-size
tree-like
refutation

PHP Ref(F)

2n? pigeons >
o o oo
22 holes C) () C) (
Rules of the game () () () (
e Each var of Ref(F) is
decision tree of vars of PHP () () () (
e Each axiom of Ref(F) is
implied by axioms of PHP () () () (

n2

PHP

Ref
2n2 pigeons
Dot ﬂﬂﬂ

n? holes (unxw)(Cuzm) (mn) (2n)

Rules of the game (DAE))),

e Each var of Ref(F) is
decision tree of vars of PHP () () () ()

e Each axiom of Ref(F) is
implied by axioms of PHP () () () ()

n2

hardcoded

PHP Ref(F)
2n? pigeons

NN

n? holes

Rules of the game () ())),

e Each var of Ref(F) is
decision tree of vars of PHP () () () ()

e Each axiom of Ref(F) is
implied by axioms of PHP () () () ()

hardcoded

PHP Ref(F)
2n? pigeons

NN

n? holes

Rules of the game () (

e Each var of Ref(F) is
decision tree of vars of PHP () (

e Each axiom of Ref(F) is

implied by axioms of PHP () (

) () ()

n2

hardcoded

PHP Ref(F)

2n? pigeons

NN

n2 holes

Rules of the game C

e Each var of Ref(F) is
decision tree of vars of PHP () (

e Each axiom of Ref(F) is

implied by axioms of PHP () (

) () ()

n2

hardcoded

PHP Ref(F)

2n? pigeons

NN

n2 holes

Rules of the game C

e Each var of Ref(F) is
decision tree of vars of PHP () (

e Each axiom of Ref(F) is

implied by axioms of PHP () (

) () ()

n2

hardcoded

PHP Ref(F)
2n? pigeons

NN

(1%) (um)

(mx) (mm)

n? holes
Rules of the game () ())),
e Each var of Ref(F) is
decision tree of vars of PHP () () () ()
e Each axiom of Ref(F) is
implied by axioms of PHP O C D)

n2

hardcoded

PHP Ref(F)
2n? pigeons

NN

(1%) (num)

(mx) (mm)

n? holes
Rules of the game () ())),
e Each var of Ref(F) is
decision tree of vars of PHP () () () ()
e Each axiom of Ref(F) is
implied by axioms of PHP O C D)

n2

hardcoded

PHP Ref(F)
2n? pigeons

NN

(1%) (num)

(mx) (mm)

n? holes
Rules of the game azmzn) () () ()
e Each var of Ref(F) is N
decision tree of vars of PHP () (umnz) () ()
e Each axiom of Ref(F) is
implied by axioms of PHP O C D)

n2

hardcoded

PHP Ref(F)
2n? pigeons

SN

(e) (nm) (axn)(nn)

n? holes
Rules of the game amx) () () ()
e Each var of Ref(F) is N
decision tree of vars of PHP () GExm) () ()
e Each axiom of Ref(F) is
implied by axioms of PHP () () mwnxn ()

n2

hardcoded

PHP

2n? pigeons
o Q><)\i)o oo
o

n? holes

Rules of the game

e Each var of Ref(F) is
decision tree of vars of PHP

e Each axiom of Ref(F) is
implied by axioms of PHP

(e) (nm) (axn)(nn)

(uZ%n) () () ()

() (mnn) () ()

() () @Tmxnmxy) ()

n2

hardcoded

PHP

2n? pigeons
o Q><)\i)o oo
o

n? holes

Rules of the game

e Each var of Ref(F) is
decision tree of vars of PHP

e Each axiom of Ref(F) is
implied by axioms of PHP

(e) (nm) (axn)(nn)

(uZ%n) () () @)

() (mnn) () e

() () @mnny (O)

n2

hardcoded

PHP Ref(F)
2n? pigeons

(@] [eNe] [oN6]
;><;\
(@]

(e) (nm) (axn)(nn)

n? holes
Rules of the game uzmzn) () () @D
e Each var of Ref(F) is N
decision tree of vars of PHP () (umnm) () @D
e Each axiom of Ref(F) is
implied by axioms of PHP () () @meny (@)
nZ
Conclusion: block-width(Ref(F)) - n > width(PHP) = Q(n?)

— block-width(Ref(F)) > ()

hardcoded

When F is UNSAT

PHP < Ref(F)

width block-width

We showed: Ref(F) has block-width n©()

Apply lifting: Lifted-Ref(F) has Resolution size o

Atserias—Miiller

There is polytime reduction A:

Fis SAT == A(F) has Res size n°)
Fis UNSAT = A(F) has Res size 21"

Atserias—Miiller

There is polytime reduction A:

Fis SAT == A(F) has Res size n°)
Fis UNSAT = A(F) has Res size 21"

Our extension

There is polytime reduction A:

Fis SAT = A(F) has Res and NS size n°()
Fis UNSAT — A(F) has PC and SA size 21"

SA PC

Res NS

Our extension

There is polytime reduction .A:

Fis SAT = A(F) has Res and NS size n°()
Fis UNSAT — A(F) has PC and SA size 21"

Upper bound for NS

Ref(F)

F satisfied by x € {0,1}"

Easy for Resolutionsince (x x») (u®%) (mxn) (50 %)

Ref(F) < Pebbling

Pebbling

e Root of DAG pebbled Coorr) e) G) @

o If node is pebbled, then >< >< ><
> 1 children is pebbled / /

Ref(F)

F satisfied by x € {0,1}"

Easy for Resolution since

Ref(F) < Pebbling

“Pebbled” block
= falsified by x

Ref(F)

F satisfied by x € {0,1}"

Easy for Resolution since

Ref(F) < Pebbling

“Pebbled” block
= falsified by x

...but Pebbling is
hard for NS!

Solution: TreeRef(F)
F satisfied by x € {0,1}"

Solution: TreeRef(F)
F satisfied by x € {0,1}"

Easy for NS since = = e
(X1 X2) (X1 X2) (X1 X2) (X1 X2)
TreeRef(F)

< End-of-Line

aka Onto-PHP (‘>)(<\<\<\ D)
()

e Root pebbled / /
e If node is pebbled, then 1

unique child and o) (o) (-) (o)
unique parent pebbled

Solution: TreeRef(F)
F satisfied by x € {0,1}"

Easy for NS since = = e
(nm) (me) (A=)
TreeRef(F)

< End-of-Line

aka Onto-PHP r g

e Root pebbled

e If node is pebbled, then
unique child and
unique parent pebbled

Solution: TreeRef(F)
F satisfied by x € {0,1}"

Easy for NS since
TreeRef(F)

< End-of-Line
aka Onto-PHP

Hardness still works!

Cutting Planes

Result for Cutting Planes

There is polytime reduction A:

Fis SAT == A(F) has CP length n®(1)
Fis UNSAT —> A(F) has CP length 2""""

Highlights
m [GGKS'18]: F has width w = F o g has CP length 22(®)

m Instead: need block-lifting
m Bypass monotone circuits (first such technique?)

Papers

2019: Automating Resolution is NP-hard

Atserias, Miiller

Papers

2019: Automating Resolution is NP-hard

Atserias, Miiller

2020: Automating Cutting Planes is NP-hard
Goos, Koroth, Pitassi, Mertz

Papers

2019: Automating Resolution is NP-hard

Atserias, Miiller

2020: Automating Cutting Planes is NP-hard
Goos, Koroth, Pitassi, Mertz

2021: Automating Algebraic Proof Systems is NP-hard

de Rezende, Goos, Nordstrom, Pitassi, Robere, Sokolov

Papers

2019:

2020:

2021:

2022:

Automating Resolution is NP-hard

Atserias, Miiller

Automating Cutting Planes is NP-hard
Goos, Koroth, Pitassi, Mertz

Automating Algebraic Proof Systems is NP-hard

de Rezende, Goos, Nordstrom, Pitassi, Robere, Sokolov

Automating Sum-of-Squares is NP-hard

Papers

2019:

2020:

2021:

2022:

Automating Resolution is NP-hard

Atserias, Miiller

Automating Cutting Planes is NP-hard
Goos, Koroth, Pitassi, Mertz

Automating Algebraic Proof Systems is NP-hard

de Rezende, Goos, Nordstrom, Pitassi, Robere, Sokolov

Automating Sum-of-Squares is NP-hard
You?!

Papers

2019:

2020:

2021:

2022:

Automating Resolution is NP-hard

Atserias, Miller

Automating Cutting Planes is NP-hard
Goos, Koroth, Pitassi, Mertz

Automating Algebraic Proof Systems is NP-hard

de Rezende, Goos, Nordstrom, Pitassi, Robere, Sokolov

Automating Sum-of-Squares is NP-hard
You?!

Cheers!

