· Fr & F = Carles & Formigi & and H alles AVALUATE FIR FREY at the # -03 places to the * $F_{f,z} = (E_n) [n \leq l(z) \& r F_{f,n-r}]$ VARIABLE. assuming (k + 1) S is the (k+1)st place 6 51 1. 1 Has remarch #) at which # is race is # maint #

Automated Proof Search: The Aftermath

Susanna de Rezende, <u>Mika Göös</u>, Sajin Koroth, Ian Mertz, Jakob Nordström, Toni Pitassi, Robert Robere, Dmitry Sokolov

Here is a problem in **Proof Complexity**

Here is a problem in **Proof Complexity**

But I wanna work on **Communication** :(

Lifting for dag-like models?

Lifting for dag-like models?

Great idea!

Lifting for dag-like models?

Great idea!

Takeaway: Monotone circuits for XOR-SAT can simulate **Resolution**

Lifting for dag-like models?

Great idea!

Takeaway:

Monotone circuits for XOR-SAT can simulate **Resolution**

... we proved the converse [GGKS'18]

Lifting for dag-like models?

Great idea!

Takeaway:

Monotone circuits for XOR-SAT can simulate **Resolution**

... we proved the converse [GGKS'18]

 \implies Proof complexity is **cool**!

This talk: Results on Hardness of Automatability

Simpler proof for Resolution [Atserias–Müller'19]

Generalises better: NP-hardness for

- Nullstellensatz ... previously [Galesi–Lauria'10]
- Polynomial Calculus ... previously [Galesi–Lauria'10]
- Sherali–Adams
- Cutting Planes (requires more work)

This talk: Results on Hardness of Automatability

Simpler proof for Resolution [Atserias–Müller'19]

Generalises better: NP-hardness for

- Nullstellensatz ... previously [Galesi–Lauria'10]
- Polynomial Calculus ... previously [Galesi–Lauria'10]
- Sherali–Adams
- Cutting Planes (requires more work)
- Still open: Sum-of-Squares

Simple proof of [Atserias–Müller'19]

There is polytime reduction \mathcal{A} that maps *n*-variate CNF *F* to unsatisfiable CNF $\mathcal{A}(F)$:

F is **SAT** $\implies \mathcal{A}(F)$ has Resolution length $n^{O(1)}$ *F* is **UNSAT** $\implies \mathcal{A}(F)$ has Resolution length $2^{n^{\Omega(1)}}$

There is polytime reduction \mathcal{A} that maps *n*-variate CNF *F* to unsatisfiable CNF $\mathcal{A}(F)$:

F is **SAT** $\implies \mathcal{A}(F)$ has Resolution length $n^{O(1)}$ *F* is **UNSAT** $\implies \mathcal{A}(F)$ has Resolution length $2^{n^{\Omega(1)}}$

Overview of \mathcal{A} :

Input: F that is SAT-vs-UNSAT

1 Construct **Ref**(*F*) of block-width O(1)-vs- $n^{\Omega(1)}$

2 Output Lifted-Ref(*F*) of Res-length $n^{O(1)}$ -vs- $2^{n^{\Omega(1)}}$

There is polytime reduction \mathcal{A} that maps *n*-variate CNF *F* to unsatisfiable CNF $\mathcal{A}(F)$:

F is **SAT** $\implies \mathcal{A}(F)$ has Resolution length $n^{O(1)}$ *F* is **UNSAT** $\implies \mathcal{A}(F)$ has Resolution length $2^{n^{\Omega(1)}}$

(When F is UNSAT)

(When *F* is UNSAT)

Reduction via Tree-Resolution

(When *F* is UNSAT)

Reduction via **Tree-Resolution** ... in depth n^{ε} (surprising!)

(When F is UNSAT)

Reduction via **Tree-Resolution** ... in depth n^{ε} (surprising!)

width(PHP)/ $n^{\varepsilon} \leq \text{block-width}(\text{Ref}(F))$

 $\operatorname{Ref}(F)$

- Encoding of "F admits short Resolution proof"
- Consists of blocks
 n layers of n² blocks
- Blocks encode clauses
 - Indicators for literals
 - Pointers to children
 - Name of axiom of *F*
- Important: Children picked from lower layer
 Dag!

Bit + inv: Each pigeon (hole) associated with $O(\log m)$ variables that *name* one hole (pigeon)

 $i \rightarrow j$ *iff i* names *j* and vice versa

Bit + inv: Each pigeon (hole) associated with $O(\log m)$ variables that *name* one hole (pigeon)

 $i \rightarrow j$ *iff i* names *j* and vice versa

Function: Require every pigeon maps to hole (mapping need not be *onto*)

Intution: Ref(*F*) looks locally like **full binary tree**

Intution: Ref(*F*) looks locally like **full binary tree**

$\operatorname{Ref}(F)$

Rules of the game

PHP

- Each var of Ref(*F*) is decision tree of vars of PHP
- Each axiom of Ref(*F*) is implied by axioms of PHP

- Each var of Ref(*F*) is decision tree of vars of PHP
- Each axiom of Ref(*F*) is implied by axioms of PHP

 n^2 holes

- Each var of Ref(*F*) is decision tree of vars of PHP
- Each axiom of Ref(*F*) is implied by axioms of PHP

- Each var of Ref(*F*) is decision tree of vars of PHP
- Each axiom of Ref(*F*) is implied by axioms of PHP

- Each var of Ref(*F*) is decision tree of vars of PHP
- Each axiom of Ref(*F*) is implied by axioms of PHP

 n^2 holes

- Each var of Ref(*F*) is decision tree of vars of PHP
- Each axiom of Ref(*F*) is implied by axioms of PHP

 n^2 holes

- Each var of Ref(*F*) is decision tree of vars of PHP
- Each axiom of Ref(*F*) is implied by axioms of PHP

 n^2 holes

- Each var of Ref(*F*) is decision tree of vars of PHP
- Each axiom of Ref(*F*) is implied by axioms of PHP

 n^2 holes

- Each var of Ref(*F*) is decision tree of vars of PHP
- Each axiom of Ref(*F*) is implied by axioms of PHP

 n^2 holes

- Each var of Ref(*F*) is decision tree of vars of PHP
- Each axiom of Ref(*F*) is implied by axioms of PHP

 n^2 holes

- Each var of Ref(*F*) is decision tree of vars of PHP
- Each axiom of Ref(*F*) is implied by axioms of PHP

Rules of the game

- Each var of Ref(*F*) is decision tree of vars of PHP
- Each axiom of Ref(*F*) is implied by axioms of PHP

Conclusion:

block-width($\operatorname{Ref}(F)$) $\cdot n \geq \operatorname{width}(\operatorname{PHP}) = \Omega(n^2)$ block-width($\operatorname{Ref}(F)$) $\geq \Omega(n)$

When *F* is UNSAT

We showed: Ref(*F*) has block-width $n^{\Omega(1)}$

Apply lifting: Lifted-Ref(F) has Resolution size $2^{n^{\Omega(1)}}$

There is polytime reduction \mathcal{A} :

 $F \text{ is } \mathbf{SAT} \implies \mathcal{A}(F) \text{ has } \mathbf{Res} \text{ size } n^{O(1)}$ $F \text{ is } \mathbf{UNSAT} \implies \mathcal{A}(F) \text{ has } \mathbf{Res} \text{ size } 2^{n^{\Omega(1)}}$

There is polytime reduction \mathcal{A} :

 $F \text{ is } \mathbf{SAT} \implies \mathcal{A}(F) \text{ has } \mathbf{Res} \text{ size } n^{O(1)}$ $F \text{ is } \mathbf{UNSAT} \implies \mathcal{A}(F) \text{ has } \mathbf{Res} \text{ size } 2^{n^{\Omega(1)}}$

Our extension

There is polytime reduction \mathcal{A} :

F is **SAT** $\implies \mathcal{A}(F)$ has **Res** and **NS** size $n^{O(1)}$ *F* is **UNSAT** $\implies \mathcal{A}(F)$ has **PC** and **SA** size $2^{n^{\Omega(1)}}$

Our extension

There is polytime reduction \mathcal{A} :

F is **SAT** $\implies \mathcal{A}(F)$ has **Res** and **NS** size $n^{O(1)}$ *F* is **UNSAT** $\implies \mathcal{A}(F)$ has **PC** and **SA** size $2^{n^{\Omega(1)}}$

Upper bound for NS

Easy for Resolution since $\operatorname{Ref}(F) \leq \operatorname{Pebbling}$

Pebbling

- Root of DAG pebbled
- If node is pebbled, then ≥ 1 children is pebbled

Easy for Resolution since $\operatorname{Ref}(F) \leq \operatorname{Pebbling}$

"Pebbled" block = falsified by x

Easy for Resolution since $\operatorname{Ref}(F) \leq \operatorname{Pebbling}$

"Pebbled" block = falsified by x

... but Pebbling is hard for **NS**!

Solution: TreeRef(F) *F* satisfied by $x \in \{0,1\}^n$

 \overline{x}_1 \overline{x}_2

.

.

.

.

.

Result for Cutting Planes

```
There is polytime reduction \mathcal{A}:
```

 $F \text{ is } \mathbf{SAT} \implies \mathcal{A}(F) \text{ has } \mathbf{CP} \text{ length } n^{O(1)}$ $F \text{ is } \mathbf{UNSAT} \implies \mathcal{A}(F) \text{ has } \mathbf{CP} \text{ length } 2^{n^{\Omega(1)}}$

Highlights

- **GGKS'18**]: *F* has width $w \Rightarrow F \circ g$ has CP length $2^{\Omega(w)}$
- Instead: need block-lifting
- Bypass monotone circuits (first such technique?)

2019: Automating Resolution is **NP**-hard Atserias, Müller

- 2019: Automating Resolution is **NP**-hard Atserias, Müller
- 2020: Automating Cutting Planes is **NP**-hard Göös, Koroth, Pitassi, Mertz

- 2019: Automating Resolution is **NP**-hard Atserias, Müller
- 2020: Automating Cutting Planes is **NP**-hard Göös, Koroth, Pitassi, Mertz
- 2021: Automating Algebraic Proof Systems is **NP**-hard de Rezende, Göös, Nordström, Pitassi, Robere, Sokolov

- 2019: Automating Resolution is **NP**-hard Atserias, Müller
- 2020: Automating Cutting Planes is **NP**-hard Göös, Koroth, Pitassi, Mertz
- 2021: Automating Algebraic Proof Systems is **NP**-hard de Rezende, Göös, Nordström, Pitassi, Robere, Sokolov
- 2022: Automating Sum-of-Squares is **NP**-hard

- 2019: Automating Resolution is **NP**-hard Atserias, Müller
- 2020: Automating Cutting Planes is **NP**-hard Göös, Koroth, Pitassi, Mertz
- 2021: Automating Algebraic Proof Systems is **NP**-hard de Rezende, Göös, Nordström, Pitassi, Robere, Sokolov
- 2022: Automating Sum-of-Squares is **NP**-hard **You?!**

- 2019: Automating Resolution is **NP**-hard Atserias, Müller
- 2020: Automating Cutting Planes is **NP**-hard Göös, Koroth, Pitassi, Mertz
- 2021: Automating Algebraic Proof Systems is **NP**-hard de Rezende, Göös, Nordström, Pitassi, Robere, Sokolov

Cheers!

2022: Automating Sum-of-Squares is **NP**-hard **You?!**

EPFL