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Me me me!

Lifting for dag-like
models?

Great idea!

Takeaway: Monotone circuits for XOR-SAT
can simulate Resolution

...we proved the converse [GGKS'18]

— Proof complexity is cool!
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m Simpler proof for Resolution [Atserias-Miiller'19]

m Generalises better: NP-hardness for

m Nullstellensatz ... previously [Galesi-Lauria"10]
m Polynomial Calculus ...previously [Galesi-Lauria’10]
m Sherali-Adams

m Cutting Planes (requires more work)

m Still open: Sum-of-Squares
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Overview of A:
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Key: Reduction from PHP

(When F is UNSAT)

PHP < Ref(F)

width block-width

Reduction via Tree-Resolution
...in depth n® (surprising!)

width(PHP)/n¢ < block-width(Ref(F))



Ref(F)

m Encoding of “F admits
short Resolution proof”

m Consists of blocks
n layers of n? blocks

m Blocks encode clauses

m Indicators for literals
m Pointers to children
m Name of axiom of F

m Important: Children
picked from lower layer
— Dag!

C ‘>)< ) ( >)<)
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PHP: Weak bit-encoded invertible function

2m pigeons: (@) (@) 00

m holes:

Bit+inv: Each pigeon (hole) associated with O(logm)
variables that name one hole (pigeon)

i—j iff inames jand vice versa

Function: Require every pigeon maps to hole
(mapping need not be onto)



PHP: Weak bit-encoded invertible function

2m pigeons: @ @ 00

m holes:

PHP2" requires degree Q)(m) for
= Polynomial Calculus  [Razborov'98]
» Sherali-Adams [Georgiou-Magen'08]

(Using unary encodings. Easy for SoS)
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width block-width

Intution: Ref(F) looks locally like full binary tree

Exp-size
tree-like
refutation
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PHP Ref(F)
2n? pigeons

(@] [eNe] [oN6]
;><;\
(@]

(e ) (nm) (axn)(nn)

n? holes
Rules of the game uzmzn) ( ) ( ) @D
e Each var of Ref(F) is N
decision tree of vars of PHP ( ) (umnm) ( ) @D
e Each axiom of Ref(F) is
implied by axioms of PHP ( ) ( ) @meny (@ )
nZ
Conclusion: block-width(Ref(F)) - n > width(PHP) = Q(n?)

—  block-width(Ref(F)) > ()

hardcoded



When F is UNSAT

PHP < Ref(F)

width block-width

We showed: Ref(F) has block-width n©()

Apply lifting: Lifted-Ref(F) has Resolution size o
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SA PC

Res NS

Our extension

There is polytime reduction .A:

Fis SAT = A(F) has Res and NS size n°()
Fis UNSAT — A(F) has PC and SA size 21"




Upper bound for NS



Ref(F)

F satisfied by x € {0,1}"

Easy for Resolutionsince (x x» ) (u®% ) (mxn ) (50 % )

Ref(F) < Pebbling

Pebbling

e Root of DAG pebbled Coorr ) e ) G ) @

o If node is pebbled, then >< >< ><
> 1 children is pebbled / /
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Ref(F)

F satisfied by x € {0,1}"

Easy for Resolution since

Ref(F) < Pebbling

“Pebbled” block
= falsified by x

...but Pebbling is
hard for NS!
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Solution: TreeRef(F)
F satisfied by x € {0,1}"
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e Root pebbled
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Solution: TreeRef(F)
F satisfied by x € {0,1}"

Easy for NS since
TreeRef(F)

< End-of-Line
aka Onto-PHP

Hardness still works!
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Result for Cutting Planes

There is polytime reduction A:

Fis SAT == A(F) has CP length n®(1)
Fis UNSAT —> A(F) has CP length 2""""

Highlights
m [GGKS'18]: F has width w = F o g has CP length 22(®)

m Instead: need block-lifting
m Bypass monotone circuits (first such technique?)
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Automating Resolution is NP-hard

Atserias, Miller

Automating Cutting Planes is NP-hard
Goos, Koroth, Pitassi, Mertz

Automating Algebraic Proof Systems is NP-hard

de Rezende, Goos, Nordstrom, Pitassi, Robere, Sokolov

Automating Sum-of-Squares is NP-hard
You?!

Cheers!






